blob: fdb219fb80aac93ef334c81a0980c662cd45b59b [file] [log] [blame]
Marat Dukhan22aae132019-11-22 17:10:29 -08001// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#include <assert.h>
7#include <stddef.h>
8
9#include <arm_neon.h>
10
11#include <xnnpack/math-stubs.h>
12
13
14void xnn_math_f32_sigmoid__neonfma_p5_nr2recps(
15 size_t n,
16 const float* input,
17 float* output)
18{
19 assert(n % (4 * sizeof(float)) == 0);
20
21 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
22 // The smallest x for which sigmoidf(x) is normalized.
23 // This number is also the smallest x for which expf(x) is normalized.
24 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f);
25 // The largest x for which sigmoidf(x) is not equal 1.0.
26 const float32x4_t vone_cutoff = vmovq_n_f32(0x1.154244p+4f);
27 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
28 const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E43p-1f);
29 const float32x4_t vln2_lo = vmovq_n_f32(-0x1.05C61p-29f);
30 const float32x4_t vone = vmovq_n_f32(1.0f);
31
32 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
33 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
34 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
35 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
36 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
37
38 for (; n != 0; n -= 4 * sizeof(float)) {
39 const float32x4_t vx = vld1q_f32(input); input += 4;
40
41 // General structure of the algorithm:
42 // / exp(x) / (1 + exp(x)) if x <= 0
43 // f[x] :=
44 // \ 1 - f[-x] if x >= 0
45 //
Marat Dukhan91f8d862019-11-27 12:25:42 -080046 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
47 // then replace result with 1 - f[-z] if x >= 0.
Marat Dukhan22aae132019-11-22 17:10:29 -080048 const float32x4_t vz = vabsq_f32(vx);
49
50 // Compute reduced argument n := round(-z / log(2)).
51 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
52 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
53 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
54 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
55 // anyway. We fixup the result for such inputs at the very end of the algorithm.
56 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
57
58 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
59 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
60 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
61
Marat Dukhan91f8d862019-11-27 12:25:42 -080062 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
Marat Dukhan22aae132019-11-22 17:10:29 -080063 vn = vsubq_f32(vn, vmagic_bias);
64
Marat Dukhan91f8d862019-11-27 12:25:42 -080065 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
Marat Dukhan22aae132019-11-22 17:10:29 -080066 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
67 float32x4_t vt = vfmaq_f32(vz, vn, vln2_hi);
68 vt = vfmaq_f32(vt, vn, vln2_lo);
69
Marat Dukhan91f8d862019-11-27 12:25:42 -080070 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
71 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
Marat Dukhan22aae132019-11-22 17:10:29 -080072 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
73 vp = vfmaq_f32(vc3, vp, vt);
74 vp = vfmaq_f32(vc2, vp, vt);
75 vp = vfmaq_f32(vc1, vp, vt);
76
Marat Dukhan91f8d862019-11-27 12:25:42 -080077 // Reconstruct the exp(-z) value:
Marat Dukhan22aae132019-11-22 17:10:29 -080078 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
79 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
80 // = s + (t * s) * p
81 vt = vmulq_f32(vt, vs);
82 float32x4_t ve = vfmaq_f32(vs, vp, vt);
83
Marat Dukhan91f8d862019-11-27 12:25:42 -080084 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
Marat Dukhan22aae132019-11-22 17:10:29 -080085 float32x4_t vd = vaddq_f32(ve, vone);
86
87 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
Marat Dukhan91f8d862019-11-27 12:25:42 -080088 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
Marat Dukhan22aae132019-11-22 17:10:29 -080089 // Thus the reciprocal of the denominator never overflows.
90 float32x4_t vr = vrecpeq_f32(vd);
91 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
92 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
93
Marat Dukhan91f8d862019-11-27 12:25:42 -080094 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
Marat Dukhan22aae132019-11-22 17:10:29 -080095 float32x4_t vf = vmulq_f32(ve, vr);
96
Marat Dukhan91f8d862019-11-27 12:25:42 -080097 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
Marat Dukhan22aae132019-11-22 17:10:29 -080098 const uint32x4_t vm = vcltq_s32(vreinterpretq_s32_f32(vx), vmovq_n_s32(0));
99 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
100
101 // For inputs above 1.0 cutoff, replace output with 1.0.
102 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
103 vf = vbslq_f32(vcgtq_f32(vx, vone_cutoff), vone, vf);
104
105 // For inputs below denormal cutoff, replace output with +0.0f.
106 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
107 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
108
109 vst1q_f32(output, vf); output += 4;
110 }
111}