blob: 2e69f40b6eb348e390997f391e0363449e1e04b5 [file] [log] [blame]
Marat Dukhanb39689d2020-01-24 13:32:20 -08001// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert ELEMENTS_TILE % 4 == 0
7$assert ELEMENTS_TILE >= 4
8$SIMD_TILE = ELEMENTS_TILE // 4
9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10#include <assert.h>
11
12#include <emmintrin.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070023 float max) XNN_DISABLE_TSAN
Marat Dukhanb39689d2020-01-24 13:32:20 -080024{
25 assert(elements % sizeof(float) == 0);
26
27 const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30 const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33 const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34
35 const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36 const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37 const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38 const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39 const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40
41 const __m128 vi_max = _mm_set1_ps(max);
42
43 $for K in range(ACCUMULATORS):
44 __m128 vacc${K} = _mm_setzero_ps();
45 for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
46 // Load ${ELEMENTS_TILE} (${SIMD_TILE}x4) inputs at a time.
47 const __m128 vi${ABC[0:4]} = _mm_loadu_ps(input);
48 $for N in range(4, ELEMENTS_TILE, 4):
49 const __m128 vi${ABC[N:N+4]} = _mm_loadu_ps(input + ${N});
50 input += ${ELEMENTS_TILE};
51
52 // Subtract maximum input x := i - i_max. This implies x <= 0.
53 $for N in range(0, ELEMENTS_TILE, 4):
54 const __m128 vx${ABC[N:N+4]} = _mm_sub_ps(vi${ABC[N:N+4]}, vi_max);
55
56 // Compute reduced argument elements := round(x / log(2)).
57 $for N in range(0, ELEMENTS_TILE, 4):
58 __m128 vn${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vx${ABC[N:N+4]}, vlog2e), vmagic_bias);
59
60 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
61 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
62 $for N in range(0, ELEMENTS_TILE, 4):
63 const __m128 vs${ABC[N:N+4]} = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn${ABC[N:N+4]}), 23));
64
65 // Subtract the large number back to get final elements := round(x / log(2)).
66 $for N in range(0, ELEMENTS_TILE, 4):
67 vn${ABC[N:N+4]} = _mm_sub_ps(vn${ABC[N:N+4]}, vmagic_bias);
68
69 // Compute reduced argument t := x - elements * log(2).
70 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
71 $for N in range(0, ELEMENTS_TILE, 4):
72 __m128 vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_hi), vx${ABC[N:N+4]});
73
74 $for N in range(0, ELEMENTS_TILE, 4):
75 vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_lo), vt${ABC[N:N+4]});
76
Marat Dukhan102a7392020-11-20 01:18:10 -080077 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhanb39689d2020-01-24 13:32:20 -080078 $for N in range(0, ELEMENTS_TILE, 4):
79 __m128 vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vc5, vt${ABC[N:N+4]}), vc4);
80
81 $for N in range(0, ELEMENTS_TILE, 4):
82 vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc3);
83
84 $for N in range(0, ELEMENTS_TILE, 4):
85 vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc2);
86
87 $for N in range(0, ELEMENTS_TILE, 4):
88 vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc1);
89
90 // Reconstruct the final f value:
91 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
92 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
93 // = s + (t * s) * p
94 $for N in range(0, ELEMENTS_TILE, 4):
95 vt${ABC[N:N+4]} = _mm_mul_ps(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
96
97 $for N in range(0, ELEMENTS_TILE, 4):
98 __m128 vf${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vt${ABC[N:N+4]}, vp${ABC[N:N+4]}), vs${ABC[N:N+4]});
99
100 // For inputs below zero cutoff, replace output with +0.0f.
101 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
102 $for N in range(0, ELEMENTS_TILE, 4):
103 vf${ABC[N:N+4]} = _mm_andnot_ps(_mm_cmplt_ps(vx${ABC[N:N+4]}, vdenorm_cutoff), vf${ABC[N:N+4]});
104
105 // Store ${ELEMENTS_TILE} (${SIMD_TILE}x4) outputs at a time.
106 _mm_storeu_ps(output, vf${ABC[0:4]});
107 $for N in range(4, ELEMENTS_TILE, 4):
108 _mm_storeu_ps(output + ${N}, vf${ABC[N:N+4]});
109 output += ${ELEMENTS_TILE};
110
111 // Accumulate computed exponents.
112 $for N in range(0, ELEMENTS_TILE, 4):
113 vacc${N % ACCUMULATORS} = _mm_add_ps(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]});
114 }
115 $if ACCUMULATORS > 1:
116 // Add up all accumulators to vacc0
117 $ACC_SLICE = 1
118 $while ACC_SLICE < ACCUMULATORS:
119 $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
120 $if A + ACC_SLICE < ACCUMULATORS:
121 vacc${A} = _mm_add_ps(vacc${A}, vacc${A + ACC_SLICE});
122 $ACC_SLICE *= 2
123
124 __m128 vacc = vacc0;
125 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
126 // Load 4 inputs at a time.
127 const __m128 vi = _mm_loadu_ps(input);
128 input += 4;
129
130 // Subtract maximum input x := i - i_max. This implies x <= 0.
131 const __m128 vx = _mm_sub_ps(vi, vi_max);
132
133 // Compute reduced argument elements := round(x / log(2)).
134 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
135
136 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
137 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
138 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
139
140 // Subtract the large number back to get final elements := round(x / log(2)).
141 vn = _mm_sub_ps(vn, vmagic_bias);
142
143 // Compute reduced argument t := x - elements * log(2).
144 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
145 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
146 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
147
Marat Dukhan102a7392020-11-20 01:18:10 -0800148 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhanb39689d2020-01-24 13:32:20 -0800149 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
150 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
151 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
152 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
153
154 // Reconstruct the final f value:
155 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
156 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
157 // = s + (t * s) * p
158 vt = _mm_mul_ps(vt, vs);
159 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
160
161 // For inputs below zero cutoff, replace output with +0.0f.
162 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
163 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
164
165 // Store 4 outputs at a time.
166 _mm_storeu_ps(output, vf);
167 output += 4;
168
169 // Accumulate computed exponents.
170 vacc = _mm_add_ps(vacc, vf);
171 }
172 if (elements != 0) {
173 assert(elements >= 1 * sizeof(float));
174 assert(elements <= 3 * sizeof(float));
175 // Load 4 inputs at a time.
Marat Dukhanb2217dd2020-05-28 17:30:28 -0700176 const __m128 vi = _mm_loadu_ps(input);
Marat Dukhanb39689d2020-01-24 13:32:20 -0800177
178 // Subtract maximum input x := i - i_max. This implies x <= 0.
179 const __m128 vx = _mm_sub_ps(vi, vi_max);
180
181 // Compute reduced argument elements := round(x / log(2)).
182 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
183
184 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
185 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
186 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
187
188 // Subtract the large number back to get final elements := round(x / log(2)).
189 vn = _mm_sub_ps(vn, vmagic_bias);
190
191 // Compute reduced argument t := x - elements * log(2).
192 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
193 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
194 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
195
Marat Dukhan102a7392020-11-20 01:18:10 -0800196 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhanb39689d2020-01-24 13:32:20 -0800197 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
198 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
199 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
200 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
201
202 // Reconstruct the final f value:
203 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
204 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
205 // = s + (t * s) * p
206 vt = _mm_mul_ps(vt, vs);
207 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
208
209 // For inputs below zero cutoff, replace output with +0.0f.
210 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
211 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
212
213 if (elements & (2 * sizeof(float))) {
214 // Store 2 outputs at a time.
215 _mm_storel_pi((__m64*) output, vf);
216 output += 2;
217
218 // Accumulate 2 computed exponents.
219 vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
220
221 vf = _mm_movehl_ps(vf, vf);
222 }
223 if (elements & (1 * sizeof(float))) {
224 // Store 1 output at a time.
225 _mm_store_ss(output, vf);
226
227 // Accumulate 1 computed exponent.
228 vacc = _mm_add_ss(vacc, vf);
229 }
230 }
231 // Reduce 4 elements in the SIMD register
232 vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
233 vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
234 _mm_store_ss(sum, vacc);
235}