blob: a3357c71621a4902a7485166561aea4e7234ce47 [file] [log] [blame]
Marat Dukhana438aca2020-11-20 15:45:01 -08001// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#include <assert.h>
7#include <stddef.h>
8
9#include <emmintrin.h>
10
11#include <xnnpack/math-stubs.h>
12
13
14void xnn_math_f32_expm1minus__sse2_rr2_p6(
15 size_t n,
16 const float* input,
17 float* output)
18{
19 assert(n % (4 * sizeof(float)) == 0);
20
21 // The largest x for which expm1f(x) is saturated at -1.0f.
22 const __m128 vsat_cutoff = _mm_set1_ps(-0x1.154246p+4f);
23 const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
24 const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
25 // Last 7 bits are zeroes
26 const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
27 const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
28
29 const __m128 vc6 = _mm_set1_ps(0x1.6b7338p-10f);
30 const __m128 vc5 = _mm_set1_ps(0x1.12278Ep-7f);
31 const __m128 vc4 = _mm_set1_ps(0x1.555716p-5f);
32 const __m128 vc3 = _mm_set1_ps(0x1.5554B0p-3f);
33 const __m128 vc2 = _mm_set1_ps(0x1.FFFFFEp-2f);
34
35 const __m128 vone = _mm_set1_ps(1.0f);
36
37 for (; n != 0; n -= 4 * sizeof(float)) {
38 __m128 vx = _mm_loadu_ps(input);
39
40 // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
41 // To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation
42 // expm1f(sat_cutoff) == -1.0f. The order of operands in the [V]MAXPS instruction matters: it ensures that NaN
43 // inputs are passed unchanged.
44 vx = _mm_max_ps(vsat_cutoff, vx);
45
46 // Compute reduced argument n := round(x / log(2)).
47 // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
48 // the large number back. The trick with adding large number is valid only within certain bounds
49 // (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x are
50 // restricted to [-17.328680, 0].
51 // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
52 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
53
54 // Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e.
55 // -17.328680 <= x <= 0.0, and -25 <= n <= 0 accordingly.
56 // For NaN inputs, s would have zero mantissa and can have arbitrary sign and exponent, depending on the input
57 // NaN payload. In these cases, n and t are NaNs with the same payload as input while s is non-NaN, and thus
58 // input payload would be propagated in all computations.
59 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
60
61 // Subtract the large number back to get final n := round(x / log(2)).
62 vn = _mm_sub_ps(vn, vmagic_bias);
63
64 // Compute reduced argument t := x - n * log(2).
65 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
66 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
67 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
68
69 // Compute degree-6 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2].
70 // P(t) = t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))
71 // = t + t * (t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) = t + t * p
72 __m128 vp = _mm_add_ps(_mm_mul_ps(vc6, vt), vc5);
73 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc4);
74 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
75 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
76 vp = _mm_mul_ps(vp, vt);
77
78 // Reconstruct the final f value:
79 // f = s * (1 + t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))) - 1
80 // = (s - 1) + s * (t + t * p)
81 // = (s - 1) + ((t * s) + (t * s) * p)
82 vt = _mm_mul_ps(vt, vs);
83 const __m128 vsm1 = _mm_sub_ps(vs, vone);
84 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vt);
85 __m128 vf = _mm_add_ps(vp, vsm1);
86
87 _mm_storeu_ps(output, vf);
88
89 input += 4;
90 output += 4;
91 }
92}