blob: d524501986efaf1cb94f3125e9f8f82a18955991 [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x12(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070023 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080024{
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33
34 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
44 // Load 12 (3x4) inputs at a time.
45 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
46 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
47 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
48
49 // Subtract maximum input x := i - i_max. This implies x <= 0.
50 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
51 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
52 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
53
54 // Compute reduced argument n := round(x / log(2)).
55 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
56 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
slowy07ab1127f2021-07-27 08:23:22 +070057 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
Marat Dukhan8137e4c2020-01-25 12:56:58 -080058 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
59 // of the algorithm.
60 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
61 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
62 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e);
63
64 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
65 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
66 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
67 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
68 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
69
70 // Subtract the large number back to get final n := round(x / log(2)).
71 vn0123 = vsubq_f32(vn0123, vmagic_bias);
72 vn4567 = vsubq_f32(vn4567, vmagic_bias);
73 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
74
75 // Compute reduced argument t := z - n * log(2).
76 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
77 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
78 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
79 float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
80
81 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
82 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
83 vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
84
Marat Dukhan102a7392020-11-20 01:18:10 -080085 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -080086 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
87 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
88 float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
89
90 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
91 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
92 vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
93
94 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
95 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
96 vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
97
98 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
99 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
100 vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
101
102 // Reconstruct the final f value:
103 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
104 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
105 // = s + (t * s) * p
106 vt0123 = vmulq_f32(vt0123, vs0123);
107 vt4567 = vmulq_f32(vt4567, vs4567);
108 vt89AB = vmulq_f32(vt89AB, vs89AB);
109
110 float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
111 float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
112 float32x4_t vf89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
113
114 // For inputs below denormal cutoff, replace output with +0.0f.
115 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
116 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
117 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
118 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
119
120 // Store 12 (3x4) outputs at a time.
121 vst1q_f32(output, vf0123); output += 4;
122 vst1q_f32(output, vf4567); output += 4;
123 vst1q_f32(output, vf89AB); output += 4;
124
125 // Accumulate computed exponents.
126 vacc0 = vaddq_f32(vacc0, vf0123);
127 vacc0 = vaddq_f32(vacc0, vf4567);
128 vacc0 = vaddq_f32(vacc0, vf89AB);
129 }
130
131 float32x4_t vacc = vacc0;
132 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
133 // Load 4 inputs at a time.
134 const float32x4_t vi = vld1q_f32(input); input += 4;
135
136 // Subtract maximum input x := i - i_max. This implies x <= 0.
137 const float32x4_t vx = vsubq_f32(vi, vi_max);
138
139 // Compute reduced argument n := round(x / log(2)).
140 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
141 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
slowy07ab1127f2021-07-27 08:23:22 +0700142 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800143 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
144 // of the algorithm.
145 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
146
147 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
148 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
149 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
150
151 // Subtract the large number back to get final n := round(x / log(2)).
152 vn = vsubq_f32(vn, vmagic_bias);
153
154 // Compute reduced argument t := z - n * log(2).
155 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
156 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
157 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
158
Marat Dukhan102a7392020-11-20 01:18:10 -0800159 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800160 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
161 vp = vfmaq_f32(vc3, vp, vt);
162 vp = vfmaq_f32(vc2, vp, vt);
163 vp = vfmaq_f32(vc1, vp, vt);
164
165 // Reconstruct the final f value:
166 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
167 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
168 // = s + (t * s) * p
169 vt = vmulq_f32(vt, vs);
170 float32x4_t vf = vfmaq_f32(vs, vp, vt);
171
172 // For inputs below denormal cutoff, replace output with +0.0f.
173 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
174 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
175
176 // Store 4 outputs at a time.
177 vst1q_f32(output, vf); output += 4;
178
179 // Accumulate computed exponents.
180 vacc = vaddq_f32(vacc, vf);
181 }
182#if XNN_ARCH_ARM64
183 float vacc_lo = vaddvq_f32(vacc);
184#else
185 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
186#endif
187 if (elements != 0) {
188 assert(elements >= 1 * sizeof(float));
189 assert(elements <= 3 * sizeof(float));
190 // Load 4 inputs at a time.
191 const float32x4_t vi = vld1q_f32(input); input += 4;
192
193 // Subtract maximum input x := i - i_max. This implies x <= 0.
194 const float32x4_t vx = vsubq_f32(vi, vi_max);
195
196 // Compute reduced argument n := round(x / log(2)).
197 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
198 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
slowy07ab1127f2021-07-27 08:23:22 +0700199 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800200 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
201 // of the algorithm.
202 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
203
204 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
205 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
206 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
207
208 // Subtract the large number back to get final n := round(x / log(2)).
209 vn = vsubq_f32(vn, vmagic_bias);
210
211 // Compute reduced argument t := z - n * log(2).
212 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
213 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
214 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
215
Marat Dukhan102a7392020-11-20 01:18:10 -0800216 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800217 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
218 vp = vfmaq_f32(vc3, vp, vt);
219 vp = vfmaq_f32(vc2, vp, vt);
220 vp = vfmaq_f32(vc1, vp, vt);
221
222 // Reconstruct the final f value:
223 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
224 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
225 // = s + (t * s) * p
226 vt = vmulq_f32(vt, vs);
227 float32x4_t vf = vfmaq_f32(vs, vp, vt);
228
229 // For inputs below denormal cutoff, replace output with +0.0f.
230 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
231 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
232
233 float32x2_t vf_lo = vget_low_f32(vf);
234 if (elements & (2 * sizeof(float))) {
235 // Store 2 outputs at a time.
236 vst1_f32(output, vf_lo); output += 2;
237
238 // Accumulate 2 computed exponents.
239 #if XNN_ARCH_ARM64
240 vacc_lo += vaddv_f32(vf_lo);
241 #else
242 vacc_lo = vadd_f32(vacc_lo, vf_lo);
243 #endif
244
245 vf_lo = vget_high_f32(vf);
246 }
247 if (elements & (1 * sizeof(float))) {
248 // Store 1 output at a time.
249 vst1_lane_f32(output, vf_lo, 0);
250
251 // Accumulate 1 computed exponent.
252 #if XNN_ARCH_ARM64
253 vacc_lo += vget_lane_f32(vf_lo, 0);
254 #else
255 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
256 #endif
257 }
258 }
259 // Reduce 4 elements in the SIMD register
260#if XNN_ARCH_ARM64
261 *sum = vacc_lo;
262#else
263 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
264#endif
265}