blob: d3fa46bd9fe1a007d462e3d31615db580b468fa6 [file] [log] [blame]
Marat Dukhan69722492019-11-11 19:55:50 -08001// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#pragma once
7
8#include <gtest/gtest.h>
9
10#include <algorithm>
11#include <cmath>
12#include <cassert>
13#include <cstddef>
14#include <cstdlib>
15#include <functional>
16#include <random>
17#include <vector>
18
19#include <xnnpack.h>
20
21
22class ResizeBilinearOperatorTester {
23 public:
24 inline ResizeBilinearOperatorTester& input_size(size_t input_height, size_t input_width) {
25 assert(input_height >= 1);
26 assert(input_width >= 1);
27 this->input_height_ = input_height;
28 this->input_width_ = input_width;
29 return *this;
30 }
31
32 inline ResizeBilinearOperatorTester& input_height(size_t input_height) {
33 assert(input_height >= 1);
34 this->input_height_ = input_height;
35 return *this;
36 }
37
38 inline size_t input_height() const {
39 return this->input_height_;
40 }
41
42 inline ResizeBilinearOperatorTester& input_width(size_t input_width) {
43 assert(input_width >= 1);
44 this->input_width_ = input_width;
45 return *this;
46 }
47
48 inline size_t input_width() const {
49 return this->input_width_;
50 }
51
52 inline ResizeBilinearOperatorTester& output_size(size_t output_height, size_t output_width) {
53 assert(output_height >= 1);
54 assert(output_width >= 1);
55 this->output_height_ = output_height;
56 this->output_width_ = output_width;
57 return *this;
58 }
59
60 inline ResizeBilinearOperatorTester& output_height(size_t output_height) {
61 assert(output_height >= 1);
62 this->output_height_ = output_height;
63 return *this;
64 }
65
66 inline size_t output_height() const {
67 return this->output_height_;
68 }
69
70 inline ResizeBilinearOperatorTester& output_width(size_t output_width) {
71 assert(output_width >= 1);
72 this->output_width_ = output_width;
73 return *this;
74 }
75
76 inline size_t output_width() const {
77 return this->output_width_;
78 }
79
80 inline float height_scale() const {
81 if (align_corners() && output_height() > 1) {
82 return float(input_height() - 1) / float(output_height() - 1);
83 } else {
84 return float(input_height()) / float(output_height());
85 }
86 }
87
88 inline float width_scale() const {
89 if (align_corners() && output_width() > 1) {
90 return float(input_width() - 1) / float(output_width() - 1);
91 } else {
92 return float(input_width()) / float(output_width());
93 }
94 }
95
96 inline ResizeBilinearOperatorTester& channels(size_t channels) {
97 assert(channels != 0);
98 this->channels_ = channels;
99 return *this;
100 }
101
102 inline size_t channels() const {
103 return this->channels_;
104 }
105
106 inline ResizeBilinearOperatorTester& batch_size(size_t batch_size) {
107 assert(batch_size != 0);
108 this->batch_size_ = batch_size;
109 return *this;
110 }
111
112 inline size_t batch_size() const {
113 return this->batch_size_;
114 }
115
116 inline ResizeBilinearOperatorTester& input_pixel_stride(size_t input_pixel_stride) {
117 assert(input_pixel_stride != 0);
118 this->input_pixel_stride_ = input_pixel_stride;
119 return *this;
120 }
121
122 inline size_t input_pixel_stride() const {
123 if (this->input_pixel_stride_ == 0) {
124 return channels();
125 } else {
126 assert(this->input_pixel_stride_ >= channels());
127 return this->input_pixel_stride_;
128 }
129 }
130
131 inline ResizeBilinearOperatorTester& output_pixel_stride(size_t output_pixel_stride) {
132 assert(output_pixel_stride != 0);
133 this->output_pixel_stride_ = output_pixel_stride;
134 return *this;
135 }
136
137 inline size_t output_pixel_stride() const {
138 if (this->output_pixel_stride_ == 0) {
139 return channels();
140 } else {
141 assert(this->output_pixel_stride_ >= channels());
142 return this->output_pixel_stride_;
143 }
144 }
145
146 inline ResizeBilinearOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) {
147 assert(next_input_height >= 1);
148 assert(next_input_width >= 1);
149 this->next_input_height_ = next_input_height;
150 this->next_input_width_ = next_input_width;
151 return *this;
152 }
153
154 inline ResizeBilinearOperatorTester& next_input_height(uint32_t next_input_height) {
155 assert(next_input_height >= 1);
156 this->next_input_height_ = next_input_height;
157 return *this;
158 }
159
160 inline uint32_t next_input_height() const {
161 if (this->next_input_height_ == 0) {
162 return input_height();
163 } else {
164 return this->next_input_height_;
165 }
166 }
167
168 inline ResizeBilinearOperatorTester& next_input_width(uint32_t next_input_width) {
169 assert(next_input_width >= 1);
170 this->next_input_width_ = next_input_width;
171 return *this;
172 }
173
174 inline uint32_t next_input_width() const {
175 if (this->next_input_width_ == 0) {
176 return input_width();
177 } else {
178 return this->next_input_width_;
179 }
180 }
181
182 inline ResizeBilinearOperatorTester& next_batch_size(size_t next_batch_size) {
183 assert(next_batch_size >= 1);
184 this->next_batch_size_ = next_batch_size;
185 return *this;
186 }
187
188 inline size_t next_batch_size() const {
189 if (this->next_batch_size_ == 0) {
190 return batch_size();
191 } else {
192 return this->next_batch_size_;
193 }
194 }
195
196 inline ResizeBilinearOperatorTester& align_corners(bool align_corners) {
197 this->align_corners_ = align_corners;
198 return *this;
199 }
200
201 inline bool align_corners() const {
202 return this->align_corners_;
203 }
204
205 inline ResizeBilinearOperatorTester& tf_legacy_mode(bool tf_legacy_mode) {
206 this->tf_legacy_mode_ = tf_legacy_mode;
207 return *this;
208 }
209
210 inline bool tf_legacy_mode() const {
211 return this->tf_legacy_mode_;
212 }
213
214 inline ResizeBilinearOperatorTester& iterations(size_t iterations) {
215 this->iterations_ = iterations;
216 return *this;
217 }
218
219 inline size_t iterations() const {
220 return this->iterations_;
221 }
222
XNNPACK Teama5cb6772020-10-20 18:04:33 -0700223 void TestNHWCxF32() const {
Marat Dukhanf5c46252020-05-22 10:36:13 -0700224 if (align_corners()) {
225 ASSERT_FALSE(tf_legacy_mode());
226 }
227
Marat Dukhan69722492019-11-11 19:55:50 -0800228 std::random_device random_device;
229 auto rng = std::mt19937(random_device());
230 auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
231
232 std::vector<float> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
233 std::vector<float> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels());
234 std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
235 for (size_t iteration = 0; iteration < iterations(); iteration++) {
236 std::generate(input.begin(), input.end(), std::ref(f32rng));
237 std::fill(output.begin(), output.end(), std::nanf(""));
238
239 // Compute reference results.
Marat Dukhanf5c46252020-05-22 10:36:13 -0700240 const float offset = (tf_legacy_mode() || align_corners()) ? 0.0f : 0.5f;
Marat Dukhan69722492019-11-11 19:55:50 -0800241 for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) {
242 for (size_t output_y = 0; output_y < output_height(); output_y++) {
243 const float input_y = (float(output_y) + offset) * height_scale() - offset;
244 const int64_t input_y_top = std::max<int64_t>(int64_t(std::floor(input_y)), 0);
245 const int64_t input_y_bottom = std::min<int64_t>(int64_t(std::ceil(input_y)), input_height() - 1);
246 const float y_alpha = input_y - std::floor(input_y);
247 for (size_t output_x = 0; output_x < output_width(); output_x++) {
248 const float input_x = (float(output_x) + offset) * width_scale() - offset;
249 const int64_t input_x_left = std::max<int64_t>(int64_t(std::floor(input_x)), 0);
250 const int64_t input_x_right = std::min<int64_t>(int64_t(std::ceil(input_x)), input_width() - 1);
251 const float x_alpha = input_x - std::floor(input_x);
252 for (size_t c = 0; c < channels(); c++) {
253 output_ref[((batch_index * output_height() + output_y) * output_width() + output_x) * channels() + c] =
254 input[((batch_index * input_height() + input_y_top) * input_width() + input_x_left) * input_pixel_stride() + c] * (1.0f - y_alpha) * (1.0f - x_alpha) +
255 input[((batch_index * input_height() + input_y_top) * input_width() + input_x_right) * input_pixel_stride() + c] * (1.0f - y_alpha) * x_alpha +
256 input[((batch_index * input_height() + input_y_bottom) * input_width() + input_x_left) * input_pixel_stride() + c] * y_alpha * (1.0f - x_alpha) +
257 input[((batch_index * input_height() + input_y_bottom) * input_width() + input_x_right) * input_pixel_stride() + c] * y_alpha * x_alpha;
258 }
259 }
260 }
261 }
262
263 // Create, setup, run, and destroy Resize Bilinear operator.
Marat Dukhan04f03be2019-11-19 12:36:47 -0800264 ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
Marat Dukhan69722492019-11-11 19:55:50 -0800265 xnn_operator_t resize_bilinear_op = nullptr;
266
267 ASSERT_EQ(xnn_status_success,
268 xnn_create_resize_bilinear2d_nhwc_f32(
269 channels(), input_pixel_stride(), output_pixel_stride(),
270 (align_corners() ? XNN_FLAG_ALIGN_CORNERS : 0) | (tf_legacy_mode() ? XNN_FLAG_TENSORFLOW_LEGACY_MODE : 0),
271 &resize_bilinear_op));
272 ASSERT_NE(nullptr, resize_bilinear_op);
273
274 // Smart pointer to automatically delete resize_bilinear_op.
275 std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_resize_bilinear_op(resize_bilinear_op, xnn_delete_operator);
276
277 ASSERT_EQ(xnn_status_success,
278 xnn_setup_resize_bilinear2d_nhwc_f32(
279 resize_bilinear_op,
280 batch_size(), input_height(), input_width(),
281 output_height(), output_width(),
282 input.data(), output.data(),
283 nullptr /* thread pool */));
284
285 ASSERT_EQ(xnn_status_success,
286 xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */));
287
288 // Verify results.
289 for (size_t i = 0; i < batch_size(); i++) {
290 for (size_t y = 0; y < output_height(); y++) {
291 for (size_t x = 0; x < output_width(); x++) {
292 for (size_t c = 0; c < channels(); c++) {
293 ASSERT_NEAR(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c],
294 output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
295 std::abs(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-5f) <<
296 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
297 }
298 }
299 }
300 }
301 }
302 }
303
Artsiom Ablavatski97918102020-10-27 15:52:59 -0700304 void TestNCHWxF32() const {
305 if (align_corners()) {
306 ASSERT_FALSE(tf_legacy_mode());
307 }
308
309 std::random_device random_device;
310 auto rng = std::mt19937(random_device());
311 auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
312
313 std::vector<float> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
314 std::vector<float> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels());
315 std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
316 for (size_t iteration = 0; iteration < iterations(); iteration++) {
317 std::generate(input.begin(), input.end(), std::ref(f32rng));
318 std::fill(output.begin(), output.end(), std::nanf(""));
319
320 // Compute reference results.
321 const float offset = (tf_legacy_mode() || align_corners()) ? 0.0f : 0.5f;
322 const int64_t input_num_pixels = input_height() * input_width();
323 const int64_t input_num_elements = input_num_pixels * input_pixel_stride();
324 const int64_t output_num_pixels = output_height() * output_width();
325 const int64_t output_num_elements = output_num_pixels * channels();
326 for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) {
327 for (size_t output_y = 0; output_y < output_height(); output_y++) {
328 const float input_y = (float(output_y) + offset) * height_scale() - offset;
329 const int64_t input_y_top = std::max<int64_t>(int64_t(std::floor(input_y)), 0);
330 const int64_t input_y_bottom = std::min<int64_t>(int64_t(std::ceil(input_y)), input_height() - 1);
331 const float y_alpha = input_y - std::floor(input_y);
332 for (size_t output_x = 0; output_x < output_width(); output_x++) {
333 const float input_x = (float(output_x) + offset) * width_scale() - offset;
334 const int64_t input_x_left = std::max<int64_t>(int64_t(std::floor(input_x)), 0);
335 const int64_t input_x_right = std::min<int64_t>(int64_t(std::ceil(input_x)), input_width() - 1);
336 const float x_alpha = input_x - std::floor(input_x);
337 for (size_t c = 0; c < channels(); c++) {
338 output_ref[batch_index * output_num_elements + c * output_num_pixels + output_y * output_width() + output_x] =
339 input[batch_index * input_num_elements + c * input_num_pixels + input_y_top * input_width() + input_x_left] * (1.0f - y_alpha) * (1.0f - x_alpha) +
340 input[batch_index * input_num_elements + c * input_num_pixels + input_y_top * input_width() + input_x_right] * (1.0f - y_alpha) * x_alpha +
341 input[batch_index * input_num_elements + c * input_num_pixels + input_y_bottom * input_width() + input_x_left] * y_alpha * (1.0f - x_alpha) +
342 input[batch_index * input_num_elements + c * input_num_pixels + input_y_bottom * input_width() + input_x_right] * y_alpha * x_alpha;
343 }
344 }
345 }
346 }
347
348 // Create, setup, run, and destroy Resize Bilinear operator.
349 ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
350 xnn_operator_t resize_bilinear_op = nullptr;
351
352 ASSERT_EQ(xnn_status_success,
353 xnn_create_resize_bilinear2d_nchw_f32(
354 channels(), input_pixel_stride(), output_pixel_stride(),
355 (align_corners() ? XNN_FLAG_ALIGN_CORNERS : 0) | (tf_legacy_mode() ? XNN_FLAG_TENSORFLOW_LEGACY_MODE : 0),
356 &resize_bilinear_op));
357 ASSERT_NE(nullptr, resize_bilinear_op);
358
359 // Smart pointer to automatically delete resize_bilinear_op.
360 std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_resize_bilinear_op(resize_bilinear_op, xnn_delete_operator);
361
362 ASSERT_EQ(xnn_status_success,
363 xnn_setup_resize_bilinear2d_nchw_f32(
364 resize_bilinear_op,
365 batch_size(), input_height(), input_width(),
366 output_height(), output_width(),
367 input.data(), output.data(),
368 nullptr /* thread pool */));
369
370 ASSERT_EQ(xnn_status_success,
371 xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */));
372
373 // Verify results.
374 for (size_t i = 0; i < batch_size(); i++) {
375 for (size_t y = 0; y < output_height(); y++) {
376 for (size_t x = 0; x < output_width(); x++) {
377 for (size_t c = 0; c < channels(); c++) {
378 ASSERT_NEAR(output[i * output_num_elements + c * output_num_pixels + y * output_width() + x],
379 output_ref[i * output_num_elements + c * output_num_pixels + y * output_width() + x],
380 1.0e-6f) <<
381 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
382 }
383 }
384 }
385 }
386 }
387 }
388
Marat Dukhan69722492019-11-11 19:55:50 -0800389 // void TestSetupF32() const {
390 // std::random_device random_device;
391 // auto rng = std::mt19937(random_device());
392 // auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
393
394 // std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + std::max(
395 // (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
396 // (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
397 // std::vector<float> output(std::max(
398 // (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
399 // (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels()));
400 // std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
401 // std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
402 // for (size_t iteration = 0; iteration < iterations(); iteration++) {
403 // std::generate(input.begin(), input.end(), std::ref(f32rng));
404 // std::fill(output.begin(), output.end(), std::nanf(""));
405
406 // // Compute reference results, without clamping.
407 // for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) {
408 // for (size_t output_y = 0; output_y < output_height(); output_y++) {
409 // for (size_t output_x = 0; output_x < output_width(); output_x++) {
410 // for (size_t c = 0; c < channels(); c++) {
411 // float acc = 0.0f;
412 // size_t n = 0;
413 // for (size_t py = 0; py < pooling_height(); py++) {
414 // const size_t iy = output_y * stride_height() + py - padding_top();
415 // for (size_t px = 0; px < pooling_width(); px++) {
416 // const size_t input_x = output_x * stride_width() + px - padding_left();
417 // if (input_x < input_width() && iy < input_height()) {
418 // acc += input[((batch_index * input_height() + iy) * input_width() + input_x) * input_pixel_stride() + c];
419 // n += 1;
420 // }
421 // }
422 // }
423 // output_ref[((batch_index * output_height() + output_y) * output_width() + output_x) * channels() + c] = acc / float(n);
424 // }
425 // }
426 // }
427 // }
428
429 // // Compute clamping parameters.
430 // const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
431 // const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
432 // const float accumulated_range = accumulated_max - accumulated_min;
433 // const float output_min = accumulated_range == 0.0f ?
434 // -std::numeric_limits<float>::infinity() :
435 // accumulated_min + accumulated_range / 255.0f * float(qmin());
436 // const float output_max = accumulated_range == 0.0f ?
437 // +std::numeric_limits<float>::infinity() :
438 // accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
439
440 // // Clamp reference results.
441 // for (float& value : output_ref) {
442 // value = std::max(std::min(value, output_max), output_min);
443 // }
444
445 // // Create, setup, and run Average Pooling operator once.
Marat Dukhan04f03be2019-11-19 12:36:47 -0800446 // ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
Marat Dukhan69722492019-11-11 19:55:50 -0800447 // xnn_operator_t resize_bilinear_op = nullptr;
448
449 // ASSERT_EQ(xnn_status_success,
450 // xnn_create_average_pooling2d_nhwc_f32(
451 // padding_top(), padding_right(), padding_bottom(), padding_left(),
452 // pooling_height(), pooling_width(),
453 // stride_height(), stride_width(),
454 // channels(), input_pixel_stride(), output_pixel_stride(),
455 // output_min, output_max,
456 // 0, &resize_bilinear_op));
457 // ASSERT_NE(nullptr, resize_bilinear_op);
458
459 // ASSERT_EQ(xnn_status_success,
460 // xnn_setup_average_pooling2d_nhwc_f32(
461 // resize_bilinear_op,
462 // batch_size(), input_height(), input_width(),
463 // input.data(), output.data(),
464 // nullptr /* thread pool */));
465
466 // ASSERT_EQ(xnn_status_success,
467 // xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */));
468
469 // // Verify results of the first run.
470 // for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) {
471 // for (size_t y = 0; y < output_height(); y++) {
472 // for (size_t x = 0; x < output_width(); x++) {
473 // for (size_t c = 0; c < channels(); c++) {
474 // ASSERT_LE(output[((batch_index * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max);
475 // ASSERT_GE(output[((batch_index * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min);
476 // ASSERT_NEAR(output[((batch_index * output_height() + y) * output_width() + x) * output_pixel_stride() + c],
477 // output_ref[((batch_index * output_height() + y) * output_width() + x) * channels() + c],
478 // std::abs(output_ref[((batch_index * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-6f) <<
479 // "in batch index " << batch_index << ", pixel (" << y << ", " << x << "), channel " << c;
480 // }
481 // }
482 // }
483 // }
484
485 // // Re-generate data for the second run.
486 // std::generate(input.begin(), input.end(), std::ref(f32rng));
487 // std::fill(output.begin(), output.end(), std::nanf(""));
488
489 // // Compute reference results for the second run.
490 // for (size_t batch_index = 0; batch_index < next_batch_size(); batch_index++) {
491 // for (size_t output_y = 0; output_y < next_output_height(); output_y++) {
492 // for (size_t output_x = 0; output_x < next_output_width(); output_x++) {
493 // for (size_t c = 0; c < channels(); c++) {
494 // float acc = 0.0f;
495 // int32_t n = 0;
496 // for (size_t py = 0; py < pooling_height(); py++) {
497 // const size_t iy = output_y * stride_height() + py - padding_top();
498 // for (size_t px = 0; px < pooling_width(); px++) {
499 // const size_t input_x = output_x * stride_width() + px - padding_left();
500 // if (input_x < next_input_width() && iy < next_input_height()) {
501 // acc += input[((batch_index * next_input_height() + iy) * next_input_width() + input_x) * input_pixel_stride() + c];
502 // n += 1;
503 // }
504 // }
505 // }
506 // next_output_ref[((batch_index * next_output_height() + output_y) * next_output_width() + output_x) * channels() + c] =
507 // std::max(std::min(acc / float(n), output_max), output_min);
508 // }
509 // }
510 // }
511 // }
512
513 // // Setup and run Average Pooling operator the second time, and destroutput_y the operator.
514 // ASSERT_EQ(xnn_status_success,
515 // xnn_setup_average_pooling2d_nhwc_f32(
516 // resize_bilinear_op,
517 // next_batch_size(), next_input_height(), next_input_width(),
518 // input.data(), output.data(),
519 // nullptr /* thread pool */));
520
521 // ASSERT_EQ(xnn_status_success,
522 // xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */));
523
524 // ASSERT_EQ(xnn_status_success,
525 // xnn_delete_operator(resize_bilinear_op));
526 // resize_bilinear_op = nullptr;
527
528 // // Verify results of the second run.
529 // for (size_t batch_index = 0; batch_index < next_batch_size(); batch_index++) {
530 // for (size_t y = 0; y < next_output_height(); y++) {
531 // for (size_t x = 0; x < next_output_width(); x++) {
532 // for (size_t c = 0; c < channels(); c++) {
533 // ASSERT_LE(output[((batch_index * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_max);
534 // ASSERT_GE(output[((batch_index * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_min);
535 // ASSERT_NEAR(output[((batch_index * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c],
536 // next_output_ref[((batch_index * next_output_height() + y) * next_output_width() + x) * channels() + c],
537 // std::abs(next_output_ref[((batch_index * next_output_height() + y) * next_output_width() + x) * channels() + c]) * 1.0e-6f) <<
538 // "in batch index " << batch_index << ", pixel (" << y << ", " << x << "), channel " << c;
539 // }
540 // }
541 // }
542 // }
543 // }
544 // }
545
546 private:
547 size_t input_height_{1};
548 size_t input_width_{1};
549 size_t output_height_{1};
550 size_t output_width_{1};
551 size_t channels_{1};
552 size_t batch_size_{1};
553 size_t input_pixel_stride_{0};
554 size_t output_pixel_stride_{0};
555 size_t next_input_height_{0};
556 size_t next_input_width_{0};
557 size_t next_batch_size_{0};
558 bool align_corners_{false};
559 bool tf_legacy_mode_{false};
560 size_t iterations_{1};
561};