XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 1 | // Copyright (c) Facebook, Inc. and its affiliates. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Copyright 2019 Google LLC |
| 5 | // |
| 6 | // This source code is licensed under the BSD-style license found in the |
| 7 | // LICENSE file in the root directory of this source tree. |
| 8 | |
| 9 | #pragma once |
| 10 | |
| 11 | #include <gtest/gtest.h> |
| 12 | |
| 13 | #include <cstddef> |
| 14 | #include <cstdlib> |
| 15 | #include <algorithm> |
| 16 | #include <cmath> |
| 17 | #include <functional> |
Marat Dukhan | 5ce30d9 | 2020-04-14 03:31:26 -0700 | [diff] [blame] | 18 | #include <limits> |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 19 | #include <random> |
| 20 | #include <vector> |
| 21 | |
Frank Barchard | 7e2cbb0 | 2020-06-12 01:22:13 -0700 | [diff] [blame] | 22 | #include <fp16.h> |
| 23 | |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 24 | #include <xnnpack.h> |
| 25 | |
| 26 | |
| 27 | class GlobalAveragePoolingOperatorTester { |
| 28 | public: |
| 29 | inline GlobalAveragePoolingOperatorTester& channels(size_t channels) { |
| 30 | assert(channels != 0); |
| 31 | this->channels_ = channels; |
| 32 | return *this; |
| 33 | } |
| 34 | |
| 35 | inline size_t channels() const { |
| 36 | return this->channels_; |
| 37 | } |
| 38 | |
| 39 | inline GlobalAveragePoolingOperatorTester& width(size_t width) { |
| 40 | assert(width != 0); |
| 41 | this->width_ = width; |
| 42 | return *this; |
| 43 | } |
| 44 | |
| 45 | inline size_t width() const { |
| 46 | return this->width_; |
| 47 | } |
| 48 | |
| 49 | inline GlobalAveragePoolingOperatorTester& input_stride(size_t input_stride) { |
| 50 | assert(input_stride != 0); |
| 51 | this->input_stride_ = input_stride; |
| 52 | return *this; |
| 53 | } |
| 54 | |
| 55 | inline size_t input_stride() const { |
| 56 | if (this->input_stride_ == 0) { |
| 57 | return channels(); |
| 58 | } else { |
| 59 | assert(this->input_stride_ >= channels()); |
| 60 | return this->input_stride_; |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | inline GlobalAveragePoolingOperatorTester& output_stride(size_t output_stride) { |
| 65 | assert(output_stride != 0); |
| 66 | this->output_stride_ = output_stride; |
| 67 | return *this; |
| 68 | } |
| 69 | |
| 70 | inline size_t output_stride() const { |
| 71 | if (this->output_stride_ == 0) { |
| 72 | return channels(); |
| 73 | } else { |
| 74 | assert(this->output_stride_ >= channels()); |
| 75 | return this->output_stride_; |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | inline GlobalAveragePoolingOperatorTester& batch_size(size_t batch_size) { |
| 80 | assert(batch_size != 0); |
| 81 | this->batch_size_ = batch_size; |
| 82 | return *this; |
| 83 | } |
| 84 | |
| 85 | inline size_t batch_size() const { |
| 86 | return this->batch_size_; |
| 87 | } |
| 88 | |
| 89 | inline GlobalAveragePoolingOperatorTester& input_scale(float input_scale) { |
| 90 | assert(input_scale > 0.0f); |
| 91 | assert(std::isnormal(input_scale)); |
| 92 | this->input_scale_ = input_scale; |
| 93 | return *this; |
| 94 | } |
| 95 | |
| 96 | inline float input_scale() const { |
| 97 | return this->input_scale_; |
| 98 | } |
| 99 | |
| 100 | inline GlobalAveragePoolingOperatorTester& input_zero_point(uint8_t input_zero_point) { |
| 101 | this->input_zero_point_ = input_zero_point; |
| 102 | return *this; |
| 103 | } |
| 104 | |
| 105 | inline uint8_t input_zero_point() const { |
| 106 | return this->input_zero_point_; |
| 107 | } |
| 108 | |
| 109 | inline GlobalAveragePoolingOperatorTester& output_scale(float output_scale) { |
| 110 | assert(output_scale > 0.0f); |
| 111 | assert(std::isnormal(output_scale)); |
| 112 | this->output_scale_ = output_scale; |
| 113 | return *this; |
| 114 | } |
| 115 | |
| 116 | inline float output_scale() const { |
| 117 | return this->output_scale_; |
| 118 | } |
| 119 | |
| 120 | inline GlobalAveragePoolingOperatorTester& output_zero_point(uint8_t output_zero_point) { |
| 121 | this->output_zero_point_ = output_zero_point; |
| 122 | return *this; |
| 123 | } |
| 124 | |
| 125 | inline uint8_t output_zero_point() const { |
| 126 | return this->output_zero_point_; |
| 127 | } |
| 128 | |
| 129 | inline GlobalAveragePoolingOperatorTester& qmin(uint8_t qmin) { |
| 130 | this->qmin_ = qmin; |
| 131 | return *this; |
| 132 | } |
| 133 | |
| 134 | inline uint8_t qmin() const { |
| 135 | return this->qmin_; |
| 136 | } |
| 137 | |
| 138 | inline GlobalAveragePoolingOperatorTester& qmax(uint8_t qmax) { |
| 139 | this->qmax_ = qmax; |
| 140 | return *this; |
| 141 | } |
| 142 | |
| 143 | inline uint8_t qmax() const { |
| 144 | return this->qmax_; |
| 145 | } |
| 146 | |
| 147 | inline GlobalAveragePoolingOperatorTester& iterations(size_t iterations) { |
| 148 | this->iterations_ = iterations; |
| 149 | return *this; |
| 150 | } |
| 151 | |
| 152 | inline size_t iterations() const { |
| 153 | return this->iterations_; |
| 154 | } |
| 155 | |
Marat Dukhan | 08b7a97 | 2020-07-14 18:17:29 -0700 | [diff] [blame] | 156 | void TestNWCxQU8() const { |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 157 | std::random_device random_device; |
| 158 | auto rng = std::mt19937(random_device()); |
Marat Dukhan | 5ce30d9 | 2020-04-14 03:31:26 -0700 | [diff] [blame] | 159 | auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 160 | |
| 161 | std::vector<uint8_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| 162 | std::vector<uint8_t> output(batch_size() * output_stride()); |
| 163 | std::vector<float> output_ref(batch_size() * channels()); |
| 164 | for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| 165 | std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| 166 | std::fill(output.begin(), output.end(), 0xA5); |
| 167 | |
| 168 | // Compute reference results. |
| 169 | const double scale = double(input_scale()) / (double(width()) * double(output_scale())); |
| 170 | for (size_t i = 0; i < batch_size(); i++) { |
| 171 | for (size_t j = 0; j < channels(); j++) { |
| 172 | double acc = 0.0f; |
| 173 | for (size_t k = 0; k < width(); k++) { |
| 174 | acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point())); |
| 175 | } |
| 176 | output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point())); |
| 177 | output_ref[i * channels() + j] = std::min<float>(output_ref[i * channels() + j], float(qmax())); |
| 178 | output_ref[i * channels() + j] = std::max<float>(output_ref[i * channels() + j], float(qmin())); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | // Create, setup, run, and destroy Global Average Pooling operator. |
Marat Dukhan | 04f03be | 2019-11-19 12:36:47 -0800 | [diff] [blame] | 183 | ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 184 | xnn_operator_t global_average_pooling_op = nullptr; |
| 185 | |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 186 | xnn_status status = xnn_create_global_average_pooling_nwc_qu8( |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 187 | channels(), input_stride(), output_stride(), |
| 188 | input_zero_point(), input_scale(), |
| 189 | output_zero_point(), output_scale(), |
| 190 | qmin(), qmax(), |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 191 | 0, &global_average_pooling_op); |
| 192 | if (status == xnn_status_unsupported_hardware) { |
| 193 | GTEST_SKIP(); |
| 194 | } |
| 195 | ASSERT_EQ(xnn_status_success, status); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 196 | ASSERT_NE(nullptr, global_average_pooling_op); |
| 197 | |
| 198 | // Smart pointer to automatically delete global_average_pooling_op. |
| 199 | std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| 200 | |
| 201 | ASSERT_EQ(xnn_status_success, |
Marat Dukhan | 08b7a97 | 2020-07-14 18:17:29 -0700 | [diff] [blame] | 202 | xnn_setup_global_average_pooling_nwc_qu8( |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 203 | global_average_pooling_op, |
| 204 | batch_size(), width(), |
| 205 | input.data(), output.data(), |
| 206 | nullptr /* thread pool */)); |
| 207 | |
| 208 | ASSERT_EQ(xnn_status_success, |
| 209 | xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| 210 | |
| 211 | // Verify results. |
| 212 | for (size_t i = 0; i < batch_size(); i++) { |
| 213 | for (size_t c = 0; c < channels(); c++) { |
| 214 | ASSERT_LE(uint32_t(output[i * output_stride() + c]), uint32_t(qmax())); |
| 215 | ASSERT_GE(uint32_t(output[i * output_stride() + c]), uint32_t(qmin())); |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 216 | ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f) |
| 217 | << "at batch index " << i << " / " << batch_size() |
| 218 | << ", channel " << c << " / " << channels(); |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | void TestNWCxQS8() const { |
| 225 | std::random_device random_device; |
| 226 | auto rng = std::mt19937(random_device()); |
| 227 | auto i8rng = std::bind( |
| 228 | std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng); |
| 229 | |
| 230 | std::vector<int8_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| 231 | std::vector<int8_t> output(batch_size() * output_stride()); |
| 232 | std::vector<float> output_ref(batch_size() * channels()); |
| 233 | for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| 234 | std::generate(input.begin(), input.end(), std::ref(i8rng)); |
| 235 | std::fill(output.begin(), output.end(), 0xA5); |
| 236 | |
| 237 | // Compute reference results. |
| 238 | const double scale = double(input_scale()) / (double(width()) * double(output_scale())); |
| 239 | for (size_t i = 0; i < batch_size(); i++) { |
| 240 | for (size_t j = 0; j < channels(); j++) { |
| 241 | double acc = 0.0f; |
| 242 | for (size_t k = 0; k < width(); k++) { |
| 243 | acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point() - 0x80)); |
| 244 | } |
| 245 | output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point() - 0x80)); |
| 246 | output_ref[i * channels() + j] = std::min<float>(output_ref[i * channels() + j], float(qmax() - 0x80)); |
| 247 | output_ref[i * channels() + j] = std::max<float>(output_ref[i * channels() + j], float(qmin() - 0x80)); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | // Create, setup, run, and destroy Global Average Pooling operator. |
| 252 | ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| 253 | xnn_operator_t global_average_pooling_op = nullptr; |
| 254 | |
| 255 | xnn_status status = xnn_create_global_average_pooling_nwc_qs8( |
| 256 | channels(), input_stride(), output_stride(), |
| 257 | int8_t(input_zero_point() - 0x80), input_scale(), |
| 258 | int8_t(output_zero_point() - 0x80), output_scale(), |
| 259 | int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), |
| 260 | 0, &global_average_pooling_op); |
| 261 | if (status == xnn_status_unsupported_hardware) { |
| 262 | GTEST_SKIP(); |
| 263 | } |
| 264 | ASSERT_EQ(xnn_status_success, status); |
| 265 | ASSERT_NE(nullptr, global_average_pooling_op); |
| 266 | |
| 267 | // Smart pointer to automatically delete global_average_pooling_op. |
| 268 | std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| 269 | |
| 270 | ASSERT_EQ(xnn_status_success, |
| 271 | xnn_setup_global_average_pooling_nwc_qs8( |
| 272 | global_average_pooling_op, |
| 273 | batch_size(), width(), |
| 274 | input.data(), output.data(), |
| 275 | nullptr /* thread pool */)); |
| 276 | |
| 277 | ASSERT_EQ(xnn_status_success, |
| 278 | xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| 279 | |
| 280 | // Verify results. |
| 281 | for (size_t i = 0; i < batch_size(); i++) { |
| 282 | for (size_t c = 0; c < channels(); c++) { |
| 283 | ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax() - 0x80)); |
| 284 | ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin() - 0x80)); |
| 285 | ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f) |
| 286 | << "at batch index " << i << " / " << batch_size() |
| 287 | << ", channel " << c << " / " << channels(); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 288 | } |
| 289 | } |
| 290 | } |
| 291 | } |
| 292 | |
Frank Barchard | 7e2cbb0 | 2020-06-12 01:22:13 -0700 | [diff] [blame] | 293 | void TestNWCxF16() const { |
| 294 | std::random_device random_device; |
| 295 | auto rng = std::mt19937(random_device()); |
Frank Barchard | d2750b0 | 2020-10-06 12:19:03 -0700 | [diff] [blame] | 296 | auto f32rng = std::bind(std::uniform_real_distribution<float>(1.0e-3f, 1.0f), rng); |
Frank Barchard | 7e2cbb0 | 2020-06-12 01:22:13 -0700 | [diff] [blame] | 297 | auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| 298 | |
| 299 | std::vector<uint16_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| 300 | std::vector<uint16_t> output(batch_size() * output_stride()); |
| 301 | std::vector<float> output_ref(batch_size() * channels()); |
| 302 | for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| 303 | std::generate(input.begin(), input.end(), std::ref(f16rng)); |
| 304 | std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| 305 | |
| 306 | // Compute reference results, without clamping. |
| 307 | for (size_t i = 0; i < batch_size(); i++) { |
| 308 | for (size_t j = 0; j < channels(); j++) { |
| 309 | float acc = 0.0f; |
| 310 | for (size_t k = 0; k < width(); k++) { |
| 311 | acc += fp16_ieee_to_fp32_value(input[(i * width() + k) * input_stride() + j]); |
| 312 | } |
| 313 | output_ref[i * channels() + j] = acc / float(width()); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | // Compute clamping parameters. |
| 318 | const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| 319 | const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| 320 | const float accumulated_range = accumulated_max - accumulated_min; |
Frank Barchard | 3913370 | 2020-06-22 13:25:10 -0700 | [diff] [blame] | 321 | const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
| 322 | const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
| 323 | const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min; |
| 324 | const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max; |
Frank Barchard | 7e2cbb0 | 2020-06-12 01:22:13 -0700 | [diff] [blame] | 325 | |
| 326 | // Clamp reference results. |
| 327 | for (float& value : output_ref) { |
| 328 | value = std::max(std::min(value, output_max), output_min); |
| 329 | } |
| 330 | |
| 331 | // Create, setup, run, and destroy Global Average Pooling operator. |
| 332 | ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| 333 | xnn_operator_t global_average_pooling_op = nullptr; |
| 334 | |
Marat Dukhan | ef61d02 | 2020-06-19 13:54:49 -0700 | [diff] [blame] | 335 | xnn_status status = xnn_create_global_average_pooling_nwc_f16( |
Frank Barchard | 7e2cbb0 | 2020-06-12 01:22:13 -0700 | [diff] [blame] | 336 | channels(), input_stride(), output_stride(), |
| 337 | output_min, output_max, |
Marat Dukhan | ef61d02 | 2020-06-19 13:54:49 -0700 | [diff] [blame] | 338 | 0, &global_average_pooling_op); |
| 339 | if (status == xnn_status_unsupported_hardware) { |
| 340 | GTEST_SKIP(); |
| 341 | } |
| 342 | ASSERT_EQ(xnn_status_success, status); |
Frank Barchard | 7e2cbb0 | 2020-06-12 01:22:13 -0700 | [diff] [blame] | 343 | ASSERT_NE(nullptr, global_average_pooling_op); |
| 344 | |
| 345 | // Smart pointer to automatically delete global_average_pooling_op. |
| 346 | std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| 347 | |
| 348 | ASSERT_EQ(xnn_status_success, |
| 349 | xnn_setup_global_average_pooling_nwc_f16( |
| 350 | global_average_pooling_op, |
| 351 | batch_size(), width(), |
| 352 | input.data(), output.data(), |
| 353 | nullptr /* thread pool */)); |
| 354 | |
| 355 | ASSERT_EQ(xnn_status_success, |
| 356 | xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| 357 | |
| 358 | // Verify results. |
| 359 | for (size_t i = 0; i < batch_size(); i++) { |
| 360 | for (size_t c = 0; c < channels(); c++) { |
| 361 | ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max); |
| 362 | ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min); |
Frank Barchard | 2b9d29b | 2020-09-17 12:03:39 -0700 | [diff] [blame] | 363 | ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-4f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f)) |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 364 | << "at batch index " << i << " / " << batch_size() |
| 365 | << ", channel " << c << " / " << channels(); |
Frank Barchard | 7e2cbb0 | 2020-06-12 01:22:13 -0700 | [diff] [blame] | 366 | } |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | |
Marat Dukhan | efc47b8 | 2019-11-18 09:25:38 -0800 | [diff] [blame] | 371 | void TestNWCxF32() const { |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 372 | std::random_device random_device; |
| 373 | auto rng = std::mt19937(random_device()); |
| 374 | auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| 375 | |
| 376 | std::vector<float> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| 377 | std::vector<float> output(batch_size() * output_stride()); |
| 378 | std::vector<float> output_ref(batch_size() * channels()); |
| 379 | for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| 380 | std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| 381 | std::fill(output.begin(), output.end(), std::nanf("")); |
| 382 | |
| 383 | // Compute reference results, without clamping. |
| 384 | for (size_t i = 0; i < batch_size(); i++) { |
| 385 | for (size_t j = 0; j < channels(); j++) { |
| 386 | float acc = 0.0f; |
| 387 | for (size_t k = 0; k < width(); k++) { |
| 388 | acc += input[(i * width() + k) * input_stride() + j]; |
| 389 | } |
| 390 | output_ref[i * channels() + j] = acc / float(width()); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | // Compute clamping parameters. |
| 395 | const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| 396 | const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| 397 | const float accumulated_range = accumulated_max - accumulated_min; |
| 398 | const float output_min = accumulated_range == 0.0f ? |
| 399 | -std::numeric_limits<float>::infinity() : |
| 400 | accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| 401 | const float output_max = accumulated_range == 0.0f ? |
| 402 | +std::numeric_limits<float>::infinity() : |
| 403 | accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| 404 | |
| 405 | // Clamp reference results. |
| 406 | for (float& value : output_ref) { |
| 407 | value = std::max(std::min(value, output_max), output_min); |
| 408 | } |
| 409 | |
| 410 | // Create, setup, run, and destroy Global Average Pooling operator. |
Marat Dukhan | 04f03be | 2019-11-19 12:36:47 -0800 | [diff] [blame] | 411 | ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 412 | xnn_operator_t global_average_pooling_op = nullptr; |
| 413 | |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 414 | xnn_status status = xnn_create_global_average_pooling_nwc_f32( |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 415 | channels(), input_stride(), output_stride(), |
| 416 | output_min, output_max, |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 417 | 0, &global_average_pooling_op); |
| 418 | if (status == xnn_status_unsupported_hardware) { |
| 419 | GTEST_SKIP(); |
| 420 | } |
| 421 | ASSERT_EQ(xnn_status_success, status); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 422 | ASSERT_NE(nullptr, global_average_pooling_op); |
| 423 | |
| 424 | // Smart pointer to automatically delete global_average_pooling_op. |
| 425 | std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| 426 | |
| 427 | ASSERT_EQ(xnn_status_success, |
| 428 | xnn_setup_global_average_pooling_nwc_f32( |
| 429 | global_average_pooling_op, |
| 430 | batch_size(), width(), |
| 431 | input.data(), output.data(), |
| 432 | nullptr /* thread pool */)); |
| 433 | |
| 434 | ASSERT_EQ(xnn_status_success, |
| 435 | xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| 436 | |
| 437 | // Verify results. |
| 438 | for (size_t i = 0; i < batch_size(); i++) { |
| 439 | for (size_t c = 0; c < channels(); c++) { |
| 440 | ASSERT_LE(output[i * output_stride() + c], output_max); |
| 441 | ASSERT_GE(output[i * output_stride() + c], output_min); |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 442 | ASSERT_NEAR(output[i * output_stride() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-6f) |
| 443 | << "at batch index " << i << " / " << batch_size() |
| 444 | << ", channel " << c << " / " << channels(); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 445 | } |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | |
Marat Dukhan | efc47b8 | 2019-11-18 09:25:38 -0800 | [diff] [blame] | 450 | void TestNCWxF32() const { |
| 451 | std::random_device random_device; |
| 452 | auto rng = std::mt19937(random_device()); |
| 453 | auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| 454 | |
| 455 | std::vector<float> input(batch_size() * channels() * width() + XNN_EXTRA_BYTES / sizeof(float)); |
| 456 | std::vector<float> output(batch_size() * channels()); |
| 457 | std::vector<float> output_ref(batch_size() * channels()); |
| 458 | for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| 459 | std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| 460 | std::fill(output.begin(), output.end(), std::nanf("")); |
| 461 | |
| 462 | // Compute reference results, without clamping. |
| 463 | for (size_t i = 0; i < batch_size(); i++) { |
| 464 | for (size_t j = 0; j < channels(); j++) { |
| 465 | float acc = 0.0f; |
| 466 | for (size_t k = 0; k < width(); k++) { |
| 467 | acc += input[(i * channels() + j) * width() + k]; |
| 468 | } |
| 469 | output_ref[i * channels() + j] = acc / float(width()); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | // Compute clamping parameters. |
| 474 | const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| 475 | const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| 476 | const float accumulated_range = accumulated_max - accumulated_min; |
| 477 | const float output_min = accumulated_range == 0.0f ? |
| 478 | -std::numeric_limits<float>::infinity() : |
| 479 | accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| 480 | const float output_max = accumulated_range == 0.0f ? |
| 481 | +std::numeric_limits<float>::infinity() : |
| 482 | accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| 483 | |
| 484 | // Clamp reference results. |
| 485 | for (float& value : output_ref) { |
| 486 | value = std::max(std::min(value, output_max), output_min); |
| 487 | } |
| 488 | |
| 489 | // Create, setup, run, and destroy Global Average Pooling operator. |
Marat Dukhan | 04f03be | 2019-11-19 12:36:47 -0800 | [diff] [blame] | 490 | ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
Marat Dukhan | efc47b8 | 2019-11-18 09:25:38 -0800 | [diff] [blame] | 491 | xnn_operator_t global_average_pooling_op = nullptr; |
| 492 | |
| 493 | xnn_status status = xnn_create_global_average_pooling_ncw_f32( |
| 494 | channels(), output_min, output_max, |
| 495 | 0, &global_average_pooling_op); |
| 496 | if (status == xnn_status_unsupported_parameter) { |
| 497 | GTEST_SKIP(); |
| 498 | } |
| 499 | ASSERT_EQ(xnn_status_success, status); |
| 500 | |
| 501 | // Smart pointer to automatically delete global_average_pooling_op. |
| 502 | std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| 503 | |
| 504 | ASSERT_EQ(xnn_status_success, |
| 505 | xnn_setup_global_average_pooling_ncw_f32( |
| 506 | global_average_pooling_op, |
| 507 | batch_size(), width(), |
| 508 | input.data(), output.data(), |
| 509 | nullptr /* thread pool */)); |
| 510 | |
| 511 | ASSERT_EQ(xnn_status_success, |
| 512 | xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| 513 | |
| 514 | // Verify results. |
| 515 | for (size_t i = 0; i < batch_size(); i++) { |
| 516 | for (size_t c = 0; c < channels(); c++) { |
| 517 | ASSERT_LE(output[i * channels() + c], output_max); |
| 518 | ASSERT_GE(output[i * channels() + c], output_min); |
Marat Dukhan | 9e0b539 | 2020-08-07 02:29:34 -0700 | [diff] [blame] | 519 | ASSERT_NEAR(output[i * channels() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-5f) |
| 520 | << "at batch index " << i << " / " << batch_size() |
| 521 | << ", channel " << c << " / " << channels(); |
Marat Dukhan | efc47b8 | 2019-11-18 09:25:38 -0800 | [diff] [blame] | 522 | } |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 527 | private: |
| 528 | size_t batch_size_{1}; |
| 529 | size_t width_{1}; |
| 530 | size_t channels_{1}; |
| 531 | size_t input_stride_{0}; |
| 532 | size_t output_stride_{0}; |
| 533 | float input_scale_{1.0f}; |
| 534 | float output_scale_{1.0f}; |
| 535 | uint8_t input_zero_point_{121}; |
| 536 | uint8_t output_zero_point_{133}; |
| 537 | uint8_t qmin_{0}; |
| 538 | uint8_t qmax_{255}; |
| 539 | size_t iterations_{1}; |
| 540 | }; |