Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 1 | // Copyright 2021 Google LLC |
| 2 | // |
| 3 | // This source code is licensed under the BSD-style license found in the |
| 4 | // LICENSE file in the root directory of this source tree. |
| 5 | |
| 6 | #include <stdint.h> |
| 7 | #include <stddef.h> |
| 8 | #include <assert.h> |
| 9 | #include <math.h> |
| 10 | |
| 11 | #include <fp16.h> |
| 12 | |
| 13 | #include <xnnpack/math.h> |
| 14 | #include <xnnpack/params-init.h> |
| 15 | |
| 16 | |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 17 | void xnn_init_qu8_conv_minmax_gemmlowp_scalar_params( |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 18 | union xnn_qu8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 19 | uint8_t kernel_zero_point, |
| 20 | float scale, |
| 21 | uint8_t output_zero_point, |
| 22 | uint8_t output_min, |
| 23 | uint8_t output_max) |
| 24 | { |
| 25 | // Compute requantization parameters |
| 26 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 27 | |
| 28 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 29 | const int32_t multiplier = (int32_t) (((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 30 | assert(multiplier >= INT32_C(0x40000000)); |
| 31 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 32 | |
| 33 | // Shift is in [0, 31] range. |
| 34 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 35 | assert(shift >= 0); |
| 36 | assert(shift < 32); |
| 37 | |
| 38 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 39 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 40 | |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 41 | params->gemmlowp_scalar.kernel_zero_point = (int32_t) (uint32_t) kernel_zero_point; |
| 42 | params->gemmlowp_scalar.multiplier = multiplier; |
| 43 | params->gemmlowp_scalar.remainder_mask = (int32_t) remainder_mask; |
| 44 | params->gemmlowp_scalar.remainder_threshold = (int32_t) remainder_threshold; |
| 45 | params->gemmlowp_scalar.shift = (uint32_t) shift; |
| 46 | params->gemmlowp_scalar.output_min_less_zero_point = |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 47 | (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 48 | params->gemmlowp_scalar.output_max_less_zero_point = |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 49 | (int32_t) (uint32_t) output_max - (int32_t) (uint32_t) output_zero_point; |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 50 | params->gemmlowp_scalar.output_zero_point = (int32_t) (uint32_t) output_zero_point; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 51 | } |
| 52 | |
| 53 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 54 | void xnn_init_qu8_conv_minmax_gemmlowp_sse2_params( |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 55 | union xnn_qu8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 56 | uint8_t kernel_zero_point, |
| 57 | float scale, |
| 58 | uint8_t output_zero_point, |
| 59 | uint8_t output_min, |
| 60 | uint8_t output_max) |
| 61 | { |
| 62 | // Compute requantization parameters. |
| 63 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 64 | |
| 65 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 66 | const int32_t multiplier = (int32_t) (((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 67 | assert(multiplier >= INT32_C(0x40000000)); |
| 68 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 69 | |
| 70 | // Shift is in [0, 31] range. |
| 71 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 72 | assert(shift >= 0); |
| 73 | assert(shift < 32); |
| 74 | |
| 75 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 76 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 77 | for (uint32_t i = 0; i < 8; i++) { |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 78 | params->gemmlowp_sse2.kernel_zero_point[i] = (int16_t) (uint16_t) kernel_zero_point; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 79 | } |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 80 | params->gemmlowp_sse2.multiplier[0] = multiplier; |
| 81 | params->gemmlowp_sse2.multiplier[1] = multiplier; |
| 82 | params->gemmlowp_sse2.multiplier[2] = multiplier; |
| 83 | params->gemmlowp_sse2.multiplier[3] = multiplier; |
| 84 | params->gemmlowp_sse2.rounding[0] = UINT64_C(0x40000000); |
| 85 | params->gemmlowp_sse2.rounding[1] = UINT64_C(0x40000000); |
| 86 | params->gemmlowp_sse2.remainder_mask[0] = (int32_t) remainder_mask; |
| 87 | params->gemmlowp_sse2.remainder_mask[1] = (int32_t) remainder_mask; |
| 88 | params->gemmlowp_sse2.remainder_mask[2] = (int32_t) remainder_mask; |
| 89 | params->gemmlowp_sse2.remainder_mask[3] = (int32_t) remainder_mask; |
| 90 | params->gemmlowp_sse2.remainder_threshold[0] = (int32_t) remainder_threshold; |
| 91 | params->gemmlowp_sse2.remainder_threshold[1] = (int32_t) remainder_threshold; |
| 92 | params->gemmlowp_sse2.remainder_threshold[2] = (int32_t) remainder_threshold; |
| 93 | params->gemmlowp_sse2.remainder_threshold[3] = (int32_t) remainder_threshold; |
| 94 | params->gemmlowp_sse2.shift[0] = (uint64_t) (uint32_t) shift; |
| 95 | params->gemmlowp_sse2.shift[1] = (uint64_t) (uint32_t) shift; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 96 | for (uint32_t i = 0; i < 8; i++) { |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 97 | params->gemmlowp_sse2.output_zero_point[i] = (int16_t) (uint16_t) output_zero_point; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 98 | } |
| 99 | for (uint32_t i = 0; i < 16; i++) { |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 100 | params->gemmlowp_sse2.output_min[i] = output_min; |
| 101 | params->gemmlowp_sse2.output_max[i] = output_max; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 102 | } |
| 103 | } |
Marat Dukhan | ef47f8d | 2021-07-02 15:08:32 -0700 | [diff] [blame^] | 104 | |
| 105 | void xnn_init_qu8_conv_minmax_fp32_sse2_params( |
| 106 | union xnn_qu8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 107 | uint8_t kernel_zero_point, |
| 108 | float scale, |
| 109 | uint8_t output_zero_point, |
| 110 | uint8_t output_min, |
| 111 | uint8_t output_max) |
| 112 | { |
| 113 | for (uint32_t i = 0; i < 4; i++) { |
| 114 | params->fp32_sse2.scale[i] = scale; |
| 115 | } |
| 116 | for (uint32_t i = 0; i < 8; i++) { |
| 117 | params->fp32_sse2.kernel_zero_point[i] = (int16_t) (uint16_t) kernel_zero_point; |
| 118 | params->fp32_sse2.output_zero_point[i] = (int16_t) (uint16_t) output_zero_point; |
| 119 | } |
| 120 | for (uint32_t i = 0; i < 16; i++) { |
| 121 | params->fp32_sse2.output_min[i] = output_min; |
| 122 | params->fp32_sse2.output_max[i] = output_max; |
| 123 | } |
| 124 | } |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 125 | #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 126 | |
| 127 | #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 128 | void xnn_init_qu8_conv_minmax_gemmlowp_neon_params( |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 129 | union xnn_qu8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 130 | uint8_t kernel_zero_point, |
| 131 | float scale, |
| 132 | uint8_t output_zero_point, |
| 133 | uint8_t output_min, |
| 134 | uint8_t output_max) |
| 135 | { |
| 136 | // Compute requantization parameters. |
| 137 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 138 | |
| 139 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 140 | const int32_t multiplier = (int32_t) (((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 141 | assert(multiplier >= INT32_C(0x40000000)); |
| 142 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 143 | |
| 144 | // Shift is in [0, 31] range. |
| 145 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 146 | assert(shift >= 0); |
| 147 | assert(shift < 32); |
| 148 | |
Marat Dukhan | c698c11 | 2021-07-01 18:52:10 -0700 | [diff] [blame] | 149 | params->gemmlowp_neon.kernel_zero_point = (int32_t) (uint32_t) kernel_zero_point; |
| 150 | params->gemmlowp_neon.multiplier = multiplier; |
| 151 | params->gemmlowp_neon.right_shift = -shift; |
| 152 | params->gemmlowp_neon.output_zero_point = (int16_t) (uint16_t) output_zero_point; |
| 153 | params->gemmlowp_neon.output_min = output_min; |
| 154 | params->gemmlowp_neon.output_max = output_max; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 155 | } |
| 156 | #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 157 | |
| 158 | void xnn_init_qs8_conv_minmax_gemmlowp_scalar_params( |
| 159 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 160 | float scale, |
| 161 | int8_t output_zero_point, |
| 162 | int8_t output_min, |
| 163 | int8_t output_max) |
| 164 | { |
| 165 | // Compute requantization parameters |
| 166 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 167 | |
| 168 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| 169 | const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| 170 | assert(multiplier >= INT32_C(0x40000000)); |
| 171 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 172 | |
| 173 | // Shift is in [0, 31] range. |
| 174 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 175 | assert(shift >= 0); |
| 176 | assert(shift < 32); |
| 177 | |
| 178 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 179 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 180 | |
| 181 | params->gemmlowp_scalar.multiplier = multiplier; |
| 182 | params->gemmlowp_scalar.remainder_mask = (int32_t) remainder_mask; |
| 183 | params->gemmlowp_scalar.remainder_threshold = (int32_t) remainder_threshold; |
| 184 | params->gemmlowp_scalar.shift = (uint32_t) shift; |
| 185 | params->gemmlowp_scalar.output_min_less_zero_point = (int32_t) output_min - (int32_t) output_zero_point; |
| 186 | params->gemmlowp_scalar.output_max_less_zero_point = (int32_t) output_max - (int32_t) output_zero_point; |
| 187 | params->gemmlowp_scalar.output_zero_point = (int32_t) output_zero_point; |
| 188 | } |
| 189 | |
| 190 | void xnn_init_qs8_conv_minmax_fp32_scalar_lrint_params( |
| 191 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 192 | float scale, |
| 193 | int8_t output_zero_point, |
| 194 | int8_t output_min, |
| 195 | int8_t output_max) |
| 196 | { |
| 197 | params->fp32_scalar_lrint.scale = scale; |
| 198 | params->fp32_scalar_lrint.output_min_less_zero_point = (long) ((int32_t) output_min - (int32_t) output_zero_point); |
| 199 | params->fp32_scalar_lrint.output_max_less_zero_point = (long) ((int32_t) output_max - (int32_t) output_zero_point); |
| 200 | params->fp32_scalar_lrint.output_zero_point = (int32_t) output_zero_point; |
| 201 | } |
| 202 | |
| 203 | void xnn_init_qs8_conv_minmax_fp32_scalar_magic_params( |
| 204 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 205 | float scale, |
| 206 | int8_t output_zero_point, |
| 207 | int8_t output_min, |
| 208 | int8_t output_max) |
| 209 | { |
| 210 | params->fp32_scalar_magic.scale = scale; |
| 211 | params->fp32_scalar_magic.output_min_less_zero_point = (float) ((int32_t) output_min - (int32_t) output_zero_point); |
| 212 | params->fp32_scalar_magic.output_max_less_zero_point = (float) ((int32_t) output_max - (int32_t) output_zero_point); |
| 213 | params->fp32_scalar_magic.magic_bias = 12582912.0f; |
| 214 | params->fp32_scalar_magic.magic_bias_less_output_zero_point = INT32_C(0x4B400000) - (int32_t) output_zero_point; |
| 215 | } |
| 216 | |
| 217 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 218 | void xnn_init_qs8_conv_minmax_gemmlowp_sse2_params( |
| 219 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 220 | float scale, |
| 221 | int8_t output_zero_point, |
| 222 | int8_t output_min, |
| 223 | int8_t output_max) |
| 224 | { |
| 225 | // Compute requantization parameters. |
| 226 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 227 | |
| 228 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| 229 | const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| 230 | assert(multiplier >= INT32_C(0x40000000)); |
| 231 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 232 | |
| 233 | // Shift is in [0, 31] range. |
| 234 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 235 | assert(shift >= 0); |
| 236 | assert(shift < 32); |
| 237 | |
| 238 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 239 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 240 | params->gemmlowp_sse2.multiplier[0] = multiplier; |
| 241 | params->gemmlowp_sse2.multiplier[1] = multiplier; |
| 242 | params->gemmlowp_sse2.multiplier[2] = multiplier; |
| 243 | params->gemmlowp_sse2.multiplier[3] = multiplier; |
| 244 | params->gemmlowp_sse2.rounding[0] = UINT64_C(0x40000000); |
| 245 | params->gemmlowp_sse2.rounding[1] = UINT64_C(0x40000000); |
| 246 | params->gemmlowp_sse2.remainder_mask[0] = (int32_t) remainder_mask; |
| 247 | params->gemmlowp_sse2.remainder_mask[1] = (int32_t) remainder_mask; |
| 248 | params->gemmlowp_sse2.remainder_mask[2] = (int32_t) remainder_mask; |
| 249 | params->gemmlowp_sse2.remainder_mask[3] = (int32_t) remainder_mask; |
| 250 | params->gemmlowp_sse2.remainder_threshold[0] = (int32_t) remainder_threshold; |
| 251 | params->gemmlowp_sse2.remainder_threshold[1] = (int32_t) remainder_threshold; |
| 252 | params->gemmlowp_sse2.remainder_threshold[2] = (int32_t) remainder_threshold; |
| 253 | params->gemmlowp_sse2.remainder_threshold[3] = (int32_t) remainder_threshold; |
| 254 | params->gemmlowp_sse2.shift[0] = (uint64_t) (uint32_t) shift; |
| 255 | params->gemmlowp_sse2.shift[1] = (uint64_t) (uint32_t) shift; |
| 256 | for (uint32_t i = 0; i < 8; i++) { |
| 257 | params->gemmlowp_sse2.output_zero_point[i] = (int16_t) output_zero_point; |
| 258 | params->gemmlowp_sse2.output_min[i] = (int16_t) output_min; |
| 259 | params->gemmlowp_sse2.output_max[i] = (int16_t) output_max; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | void xnn_init_qs8_conv_minmax_gemmlowp_sse4_params( |
| 264 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 265 | float scale, |
| 266 | int8_t output_zero_point, |
| 267 | int8_t output_min, |
| 268 | int8_t output_max) |
| 269 | { |
| 270 | // Compute requantization parameters. |
| 271 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 272 | |
| 273 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| 274 | const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| 275 | assert(multiplier >= INT32_C(0x40000000)); |
| 276 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 277 | |
| 278 | // Shift is in [0, 31] range. |
| 279 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 280 | assert(shift >= 0); |
| 281 | assert(shift < 32); |
| 282 | |
| 283 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 284 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 285 | params->gemmlowp_sse4.multiplier[0] = multiplier; |
| 286 | params->gemmlowp_sse4.multiplier[1] = multiplier; |
| 287 | params->gemmlowp_sse4.multiplier[2] = multiplier; |
| 288 | params->gemmlowp_sse4.multiplier[3] = multiplier; |
| 289 | params->gemmlowp_sse4.rounding[0] = UINT64_C(0x40000000); |
| 290 | params->gemmlowp_sse4.rounding[1] = UINT64_C(0x40000000); |
| 291 | params->gemmlowp_sse4.remainder_mask[0] = (int32_t) remainder_mask; |
| 292 | params->gemmlowp_sse4.remainder_mask[1] = (int32_t) remainder_mask; |
| 293 | params->gemmlowp_sse4.remainder_mask[2] = (int32_t) remainder_mask; |
| 294 | params->gemmlowp_sse4.remainder_mask[3] = (int32_t) remainder_mask; |
| 295 | params->gemmlowp_sse4.remainder_threshold[0] = (int32_t) remainder_threshold; |
| 296 | params->gemmlowp_sse4.remainder_threshold[1] = (int32_t) remainder_threshold; |
| 297 | params->gemmlowp_sse4.remainder_threshold[2] = (int32_t) remainder_threshold; |
| 298 | params->gemmlowp_sse4.remainder_threshold[3] = (int32_t) remainder_threshold; |
| 299 | params->gemmlowp_sse4.shift[0] = (uint64_t) (uint32_t) shift; |
| 300 | params->gemmlowp_sse4.shift[1] = (uint64_t) (uint32_t) shift; |
| 301 | for (uint32_t i = 0; i < 8; i++) { |
| 302 | params->gemmlowp_sse4.output_zero_point[i] = (int16_t) output_zero_point; |
| 303 | } |
| 304 | for (uint32_t i = 0; i < 16; i++) { |
| 305 | params->gemmlowp_sse4.output_min[i] = output_min; |
| 306 | params->gemmlowp_sse4.output_max[i] = output_max; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | void xnn_init_qs8_conv_minmax_gemmlowp_avx2_params( |
| 311 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 312 | float scale, |
| 313 | int8_t output_zero_point, |
| 314 | int8_t output_min, |
| 315 | int8_t output_max) |
| 316 | { |
| 317 | // Compute requantization parameters. |
| 318 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 319 | |
| 320 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| 321 | const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| 322 | assert(multiplier >= INT32_C(0x40000000)); |
| 323 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 324 | |
| 325 | // Shift is in [0, 31] range. |
| 326 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 327 | assert(shift >= 0); |
| 328 | assert(shift < 32); |
| 329 | |
| 330 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 331 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 332 | for (uint32_t i = 0; i < 8; i++) { |
| 333 | params->gemmlowp_avx2.multiplier[i] = multiplier; |
| 334 | } |
| 335 | params->gemmlowp_avx2.rounding[0] = UINT64_C(0x40000000); |
| 336 | params->gemmlowp_avx2.rounding[1] = UINT64_C(0x40000000); |
| 337 | params->gemmlowp_avx2.rounding[2] = UINT64_C(0x40000000); |
| 338 | params->gemmlowp_avx2.rounding[3] = UINT64_C(0x40000000); |
| 339 | for (uint32_t i = 0; i < 8; i++) { |
| 340 | params->gemmlowp_avx2.remainder_mask[i] = (int32_t) remainder_mask; |
| 341 | params->gemmlowp_avx2.remainder_threshold[i] = (int32_t) remainder_threshold; |
| 342 | } |
| 343 | params->gemmlowp_avx2.shift[0] = (uint64_t) (uint32_t) shift; |
| 344 | params->gemmlowp_avx2.shift[1] = (uint64_t) (uint32_t) shift; |
| 345 | params->gemmlowp_avx2.shift[2] = (uint64_t) (uint32_t) shift; |
| 346 | params->gemmlowp_avx2.shift[3] = (uint64_t) (uint32_t) shift; |
| 347 | for (uint32_t i = 0; i < 16; i++) { |
| 348 | params->gemmlowp_avx2.output_zero_point[i] = (int16_t) output_zero_point; |
| 349 | } |
| 350 | for (uint32_t i = 0; i < 32; i++) { |
| 351 | params->gemmlowp_avx2.output_min[i] = output_min; |
| 352 | params->gemmlowp_avx2.output_max[i] = output_max; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | void xnn_init_qs8_conv_minmax_gemmlowp_avx512_params( |
| 357 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 358 | float scale, |
| 359 | int8_t output_zero_point, |
| 360 | int8_t output_min, |
| 361 | int8_t output_max) |
| 362 | { |
| 363 | // Compute requantization parameters. |
| 364 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 365 | |
| 366 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| 367 | const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| 368 | assert(multiplier >= INT32_C(0x40000000)); |
| 369 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 370 | |
| 371 | // Shift is in [0, 31] range. |
| 372 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 373 | assert(shift >= 0); |
| 374 | assert(shift < 32); |
| 375 | |
| 376 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 377 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 378 | params->gemmlowp_avx512.multiplier = (int64_t) multiplier; |
| 379 | params->gemmlowp_avx512.rounding = UINT64_C(0x40000000); |
| 380 | params->gemmlowp_avx512.remainder_mask = (int32_t) remainder_mask; |
| 381 | params->gemmlowp_avx512.remainder_threshold = (int32_t) remainder_threshold; |
| 382 | params->gemmlowp_avx512.shift = (uint64_t) (uint32_t) shift; |
| 383 | for (uint32_t i = 0; i < 32; i++) { |
| 384 | params->gemmlowp_avx512.output_zero_point[i] = (int16_t) output_zero_point; |
| 385 | } |
| 386 | for (uint32_t i = 0; i < 64; i++) { |
| 387 | params->gemmlowp_avx512.output_min[i] = output_min; |
| 388 | params->gemmlowp_avx512.output_max[i] = output_max; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | void xnn_init_qs8_conv_minmax_fp32_sse2_params( |
| 393 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 394 | float scale, |
| 395 | int8_t output_zero_point, |
| 396 | int8_t output_min, |
| 397 | int8_t output_max) |
| 398 | { |
| 399 | for (uint32_t i = 0; i < 4; i++) { |
| 400 | params->fp32_sse2.scale[i] = scale; |
| 401 | } |
| 402 | for (uint32_t i = 0; i < 8; i++) { |
| 403 | params->fp32_sse2.output_zero_point[i] = (int16_t) output_zero_point; |
| 404 | params->fp32_sse2.output_min[i] = (int16_t) output_min; |
| 405 | params->fp32_sse2.output_max[i] = (int16_t) output_max; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | void xnn_init_qs8_conv_minmax_fp32_sse4_params( |
| 410 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 411 | float scale, |
| 412 | int8_t output_zero_point, |
| 413 | int8_t output_min, |
| 414 | int8_t output_max) |
| 415 | { |
| 416 | for (uint32_t i = 0; i < 4; i++) { |
| 417 | params->fp32_sse4.scale[i] = scale; |
| 418 | } |
| 419 | for (uint32_t i = 0; i < 8; i++) { |
| 420 | params->fp32_sse4.output_zero_point[i] = (int16_t) output_zero_point; |
| 421 | } |
| 422 | for (uint32_t i = 0; i < 16; i++) { |
| 423 | params->fp32_sse4.output_min[i] = output_min; |
| 424 | params->fp32_sse4.output_max[i] = output_max; |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | void xnn_init_qs8_conv_minmax_fp32_avx2_params( |
| 429 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 430 | float scale, |
| 431 | int8_t output_zero_point, |
| 432 | int8_t output_min, |
| 433 | int8_t output_max) |
| 434 | { |
| 435 | for (uint32_t i = 0; i < 8; i++) { |
| 436 | params->fp32_avx2.scale[i] = scale; |
| 437 | } |
| 438 | for (uint32_t i = 0; i < 16; i++) { |
| 439 | params->fp32_avx2.output_zero_point[i] = (int16_t) output_zero_point; |
| 440 | } |
| 441 | for (uint32_t i = 0; i < 32; i++) { |
| 442 | params->fp32_avx2.output_min[i] = output_min; |
| 443 | params->fp32_avx2.output_max[i] = output_max; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | void xnn_init_qs8_conv_minmax_fp32_avx512_params( |
| 448 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 449 | float scale, |
| 450 | int8_t output_zero_point, |
| 451 | int8_t output_min, |
| 452 | int8_t output_max) |
| 453 | { |
| 454 | for (uint32_t i = 0; i < 16; i++) { |
| 455 | params->fp32_avx512.scale[i] = scale; |
| 456 | } |
| 457 | for (uint32_t i = 0; i < 32; i++) { |
| 458 | params->fp32_avx512.output_zero_point[i] = (int16_t) output_zero_point; |
| 459 | } |
| 460 | for (uint32_t i = 0; i < 64; i++) { |
| 461 | params->fp32_avx512.output_min[i] = output_min; |
| 462 | params->fp32_avx512.output_max[i] = output_max; |
| 463 | } |
| 464 | } |
| 465 | #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 466 | |
| 467 | #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 468 | void xnn_init_qs8_conv_minmax_gemmlowp_neon_params( |
| 469 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 470 | float scale, |
| 471 | int8_t output_zero_point, |
| 472 | int8_t output_min, |
| 473 | int8_t output_max) |
| 474 | { |
| 475 | // Compute requantization parameters. |
| 476 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 477 | |
| 478 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| 479 | const int32_t multiplier = (int32_t) (((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| 480 | assert(multiplier >= INT32_C(0x40000000)); |
| 481 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 482 | |
| 483 | // Shift is in [0, 31] range. |
| 484 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 485 | assert(shift >= 0); |
| 486 | assert(shift < 32); |
| 487 | |
| 488 | params->gemmlowp_neon.multiplier = multiplier; |
| 489 | params->gemmlowp_neon.right_shift = -shift; |
| 490 | params->gemmlowp_neon.output_zero_point = (int16_t) output_zero_point; |
| 491 | params->gemmlowp_neon.output_min = output_min; |
| 492 | params->gemmlowp_neon.output_max = output_max; |
| 493 | } |
| 494 | |
| 495 | void xnn_init_qs8_conv_minmax_fp32_neon_params( |
| 496 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 497 | float scale, |
| 498 | int8_t output_zero_point, |
| 499 | int8_t output_min, |
| 500 | int8_t output_max) |
| 501 | { |
| 502 | params->fp32_neon.scale = scale; |
| 503 | params->fp32_neon.output_min_less_zero_point = (float) ((int32_t) output_min - (int32_t) output_zero_point); |
| 504 | params->fp32_neon.output_max_less_zero_point = (float) ((int32_t) output_max - (int32_t) output_zero_point); |
| 505 | params->fp32_neon.magic_bias = 12582912.0f; |
| 506 | params->fp32_neon.magic_bias_less_zero_point = INT32_C(0x4B400000) - (int32_t) output_zero_point; |
| 507 | } |
| 508 | |
| 509 | void xnn_init_qs8_conv_minmax_fp32_neonv8_params( |
| 510 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 511 | float scale, |
| 512 | int8_t output_zero_point, |
| 513 | int8_t output_min, |
| 514 | int8_t output_max) |
| 515 | { |
| 516 | params->fp32_neonv8.scale = scale; |
| 517 | params->fp32_neonv8.output_zero_point = (int16_t) output_zero_point; |
| 518 | params->fp32_neonv8.output_min = output_min; |
| 519 | params->fp32_neonv8.output_max = output_max; |
| 520 | } |
| 521 | #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 522 | |
| 523 | #if XNN_ARCH_WASMSIMD |
| 524 | void xnn_init_qs8_conv_minmax_gemmlowp_wasmsimd_params( |
| 525 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 526 | float scale, |
| 527 | int8_t output_zero_point, |
| 528 | int8_t output_min, |
| 529 | int8_t output_max) |
| 530 | { |
| 531 | // Compute requantization parameters. |
| 532 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 533 | |
| 534 | // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| 535 | const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| 536 | assert(multiplier >= INT32_C(0x40000000)); |
| 537 | assert(multiplier <= INT32_C(0x7FFFFF80)); |
| 538 | |
| 539 | // Shift is in [0, 31] range. |
| 540 | const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| 541 | assert(shift >= 0); |
| 542 | assert(shift < 32); |
| 543 | |
| 544 | const int64_t twice_multiplier = INT64_C(2) * (int64_t) multiplier; |
| 545 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 546 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 547 | params->gemmlowp_wasmsimd.multiplier[0] = twice_multiplier; |
| 548 | params->gemmlowp_wasmsimd.multiplier[1] = twice_multiplier; |
| 549 | params->gemmlowp_wasmsimd.rounding[0] = INT64_C(0x80000000); |
| 550 | params->gemmlowp_wasmsimd.rounding[1] = INT64_C(0x80000000); |
| 551 | params->gemmlowp_wasmsimd.remainder_mask[0] = (int32_t) remainder_mask; |
| 552 | params->gemmlowp_wasmsimd.remainder_mask[1] = (int32_t) remainder_mask; |
| 553 | params->gemmlowp_wasmsimd.remainder_mask[2] = (int32_t) remainder_mask; |
| 554 | params->gemmlowp_wasmsimd.remainder_mask[3] = (int32_t) remainder_mask; |
| 555 | params->gemmlowp_wasmsimd.remainder_threshold[0] = (int32_t) remainder_threshold; |
| 556 | params->gemmlowp_wasmsimd.remainder_threshold[1] = (int32_t) remainder_threshold; |
| 557 | params->gemmlowp_wasmsimd.remainder_threshold[2] = (int32_t) remainder_threshold; |
| 558 | params->gemmlowp_wasmsimd.remainder_threshold[3] = (int32_t) remainder_threshold; |
| 559 | params->gemmlowp_wasmsimd.shift = shift; |
| 560 | for (uint32_t i = 0; i < 8; i++) { |
| 561 | params->gemmlowp_wasmsimd.output_zero_point[i] = (int16_t) output_zero_point; |
| 562 | } |
| 563 | for (uint32_t i = 0; i < 16; i++) { |
| 564 | params->gemmlowp_wasmsimd.output_min[i] = output_min; |
| 565 | params->gemmlowp_wasmsimd.output_max[i] = output_max; |
| 566 | } |
| 567 | } |
Marat Dukhan | 4741e41 | 2021-06-30 13:38:06 -0700 | [diff] [blame] | 568 | |
| 569 | void xnn_init_qs8_conv_minmax_fp32_wasmsimd_params( |
| 570 | union xnn_qs8_conv_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 571 | float scale, |
| 572 | int8_t output_zero_point, |
| 573 | int8_t output_min, |
| 574 | int8_t output_max) |
| 575 | { |
| 576 | for (uint32_t i = 0; i < 4; i++) { |
| 577 | params->fp32_wasmsimd.scale[i] = scale; |
| 578 | params->fp32_wasmsimd.output_min_less_zero_point[i] = (float) ((int32_t) output_min - (int32_t) output_zero_point); |
| 579 | params->fp32_wasmsimd.output_max_less_zero_point[i] = (float) ((int32_t) output_max - (int32_t) output_zero_point); |
| 580 | params->fp32_wasmsimd.magic_bias[i] = 12582912.0f; |
| 581 | params->fp32_wasmsimd.magic_bias_less_output_zero_point[i] = INT32_C(0x4B400000) - (int32_t) output_zero_point; |
| 582 | } |
| 583 | } |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 584 | #endif // XNN_ARCH_WASMSIMD |
| 585 | |
| 586 | void xnn_init_qc8_scale_fp32_params( |
| 587 | size_t channels, |
| 588 | size_t channels_tile, |
| 589 | size_t stride, |
| 590 | const float scale[XNN_MIN_ELEMENTS(1)], |
| 591 | void* packed_w) |
| 592 | { |
| 593 | for (size_t tile_start = 0; tile_start < channels; tile_start += channels_tile) { |
| 594 | const size_t tile_size = min(channels - tile_start, channels_tile); |
| 595 | for (size_t tile_offset = 0; tile_offset < tile_size; tile_offset++) { |
| 596 | ((float*) packed_w)[tile_offset] = scale[tile_start + tile_offset]; |
| 597 | } |
| 598 | packed_w = (void*) ((uintptr_t) packed_w + stride); |
| 599 | } |
| 600 | } |
| 601 | |
Marat Dukhan | d602154 | 2021-06-30 09:04:20 -0700 | [diff] [blame] | 602 | void xnn_init_qs8_minmax_scalar_lrint_params( |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 603 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 604 | int8_t output_zero_point, |
| 605 | int8_t output_min, |
| 606 | int8_t output_max) |
| 607 | { |
Marat Dukhan | d602154 | 2021-06-30 09:04:20 -0700 | [diff] [blame] | 608 | params->scalar_lrint.output_min_less_zero_point = (long) ((int32_t) output_min - (int32_t) output_zero_point); |
| 609 | params->scalar_lrint.output_max_less_zero_point = (long) ((int32_t) output_max - (int32_t) output_zero_point); |
| 610 | params->scalar_lrint.output_zero_point = (int32_t) output_zero_point; |
| 611 | } |
| 612 | |
| 613 | void xnn_init_qs8_minmax_scalar_magic_params( |
| 614 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 615 | int8_t output_zero_point, |
| 616 | int8_t output_min, |
| 617 | int8_t output_max) |
| 618 | { |
| 619 | params->scalar_magic.output_min_less_zero_point = (float) ((int32_t) output_min - (int32_t) output_zero_point); |
| 620 | params->scalar_magic.output_max_less_zero_point = (float) ((int32_t) output_max - (int32_t) output_zero_point); |
| 621 | params->scalar_magic.magic_bias = 12582912.0f; |
| 622 | params->scalar_magic.magic_bias_less_output_zero_point = INT32_C(0x4B400000) - (int32_t) output_zero_point; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 623 | } |
| 624 | |
| 625 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 626 | void xnn_init_qs8_minmax_sse2_params( |
| 627 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 628 | int8_t output_zero_point, |
| 629 | int8_t output_min, |
| 630 | int8_t output_max) |
| 631 | { |
| 632 | for (uint32_t i = 0; i < 8; i++) { |
| 633 | params->sse2.output_zero_point[i] = (int16_t) output_zero_point; |
| 634 | params->sse2.output_min[i] = (int16_t) output_min; |
| 635 | params->sse2.output_max[i] = (int16_t) output_max; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | void xnn_init_qs8_minmax_sse4_params( |
| 640 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 641 | int8_t output_zero_point, |
| 642 | int8_t output_min, |
| 643 | int8_t output_max) |
| 644 | { |
| 645 | for (uint32_t i = 0; i < 8; i++) { |
| 646 | params->sse4.output_zero_point[i] = (int16_t) output_zero_point; |
| 647 | } |
| 648 | for (uint32_t i = 0; i < 16; i++) { |
| 649 | params->sse4.output_min[i] = output_min; |
| 650 | params->sse4.output_max[i] = output_max; |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | void xnn_init_qs8_minmax_avx2_params( |
| 655 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 656 | int8_t output_zero_point, |
| 657 | int8_t output_min, |
| 658 | int8_t output_max) |
| 659 | { |
| 660 | for (uint32_t i = 0; i < 16; i++) { |
| 661 | params->avx2.output_zero_point[i] = (int16_t) output_zero_point; |
| 662 | } |
| 663 | for (uint32_t i = 0; i < 32; i++) { |
| 664 | params->avx2.output_min[i] = output_min; |
| 665 | params->avx2.output_max[i] = output_max; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | void xnn_init_qs8_minmax_avx512_params( |
| 670 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 671 | int8_t output_zero_point, |
| 672 | int8_t output_min, |
| 673 | int8_t output_max) |
| 674 | { |
| 675 | for (uint32_t i = 0; i < 32; i++) { |
| 676 | params->avx512.output_zero_point[i] = (int16_t) output_zero_point; |
| 677 | } |
| 678 | for (uint32_t i = 0; i < 64; i++) { |
| 679 | params->avx512.output_min[i] = output_min; |
| 680 | params->avx512.output_max[i] = output_max; |
| 681 | } |
| 682 | } |
| 683 | #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 684 | |
| 685 | #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 686 | void xnn_init_qs8_minmax_neon_params( |
| 687 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 688 | int8_t output_zero_point, |
| 689 | int8_t output_min, |
| 690 | int8_t output_max) |
| 691 | { |
| 692 | params->neon.output_zero_point = (int16_t) output_zero_point; |
| 693 | params->neon.output_min = output_min; |
| 694 | params->neon.output_max = output_max; |
| 695 | } |
| 696 | |
| 697 | void xnn_init_qs8_minmax_neon_fp32_params( |
| 698 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 699 | int8_t output_zero_point, |
| 700 | int8_t output_min, |
| 701 | int8_t output_max) |
| 702 | { |
| 703 | params->neon_fp32.output_min_less_zero_point = (float) ((int32_t) output_min - (int32_t) output_zero_point); |
| 704 | params->neon_fp32.output_max_less_zero_point = (float) ((int32_t) output_max - (int32_t) output_zero_point); |
| 705 | params->neon_fp32.magic_bias = 12582912.0f; |
| 706 | params->neon_fp32.magic_bias_less_zero_point = INT32_C(0x4B400000) - (int32_t) output_zero_point; |
| 707 | } |
| 708 | #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 709 | |
| 710 | #if XNN_ARCH_WASMSIMD |
| 711 | void xnn_init_qs8_minmax_wasmsimd_params( |
| 712 | union xnn_qs8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 713 | int8_t output_zero_point, |
| 714 | int8_t output_min, |
| 715 | int8_t output_max) |
| 716 | { |
Marat Dukhan | 47c1220 | 2021-06-30 15:09:34 -0700 | [diff] [blame] | 717 | for (uint32_t i = 0; i < 4; i++) { |
| 718 | params->wasmsimd.output_min_less_zero_point[i] = (float) ((int32_t) output_min - (int32_t) output_zero_point); |
| 719 | params->wasmsimd.output_max_less_zero_point[i] = (float) ((int32_t) output_max - (int32_t) output_zero_point); |
| 720 | params->wasmsimd.magic_bias[i] = 12582912.0f; |
| 721 | params->wasmsimd.magic_bias_less_output_zero_point[i] = INT32_C(0x4B400000) - (int32_t) output_zero_point; |
Marat Dukhan | fcfdd2d | 2021-06-29 18:57:02 -0700 | [diff] [blame] | 722 | } |
| 723 | } |
| 724 | #endif // XNN_ARCH_WASMSIMD |
| 725 | |
| 726 | void xnn_init_qu8_avgpool_params( |
| 727 | union xnn_qu8_avgpool_params params[XNN_MIN_ELEMENTS(1)], |
| 728 | int32_t bias, |
| 729 | float scale, |
| 730 | uint8_t output_zero_point, |
| 731 | uint8_t output_min, |
| 732 | uint8_t output_max) |
| 733 | { |
| 734 | // Compute requantization parameters. |
| 735 | assert(scale >= 0x1.0p-32f); |
| 736 | assert(scale < 256.0f); |
| 737 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 738 | |
| 739 | // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| 740 | const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| 741 | assert(multiplier >= INT32_C(0x00800000)); |
| 742 | assert(multiplier <= INT32_C(0x00FFFFFF)); |
| 743 | |
| 744 | // Shift is in [16, 55] range. |
| 745 | const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| 746 | assert(shift >= 16); |
| 747 | assert(shift < 64); |
| 748 | |
| 749 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 750 | const uint32_t right_shift = (uint32_t) shift; |
| 751 | const uint64_t rounding = UINT64_C(1) << (right_shift - 1); |
| 752 | params->sse2.bias[0] = bias; |
| 753 | params->sse2.bias[1] = bias; |
| 754 | params->sse2.bias[2] = bias; |
| 755 | params->sse2.bias[3] = bias; |
| 756 | params->sse2.multiplier[0] = (uint32_t) multiplier; |
| 757 | params->sse2.multiplier[1] = (uint32_t) multiplier; |
| 758 | params->sse2.multiplier[2] = (uint32_t) multiplier; |
| 759 | params->sse2.multiplier[3] = (uint32_t) multiplier; |
| 760 | params->sse2.rounding[0] = rounding; |
| 761 | params->sse2.rounding[1] = rounding; |
| 762 | params->sse2.right_shift[0] = (uint64_t) right_shift; |
| 763 | params->sse2.right_shift[1] = (uint64_t) right_shift; |
| 764 | for (uint32_t i = 0; i < 8; i++) { |
| 765 | params->sse2.output_zero_point[i] = (int16_t) (uint16_t) output_zero_point; |
| 766 | } |
| 767 | for (uint32_t i = 0; i < 16; i++) { |
| 768 | params->sse2.output_min[i] = output_min; |
| 769 | params->sse2.output_max[i] = output_max; |
| 770 | } |
| 771 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 772 | params->neon.bias = bias; |
| 773 | params->neon.multiplier = multiplier; |
| 774 | params->neon.left_shift = (int64_t) -shift; |
| 775 | params->neon.output_zero_point = (int16_t) (uint16_t) output_zero_point; |
| 776 | params->neon.output_min = output_min; |
| 777 | params->neon.output_max = output_max; |
| 778 | #else |
| 779 | const uint32_t right_shift = (uint32_t) shift; |
| 780 | const int64_t rounding = INT64_C(1) << (right_shift - 1); |
| 781 | params->scalar.bias = bias; |
| 782 | params->scalar.multiplier = multiplier; |
| 783 | params->scalar.rounding = rounding; |
| 784 | params->scalar.right_shift = right_shift; |
| 785 | params->scalar.output_min_less_zero_point = |
| 786 | (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; |
| 787 | params->scalar.output_max_less_zero_point = |
| 788 | (int32_t) (uint32_t) output_max - (int32_t) (uint32_t) output_zero_point; |
| 789 | params->scalar.output_zero_point = (int32_t) (uint32_t) output_zero_point; |
| 790 | #endif |
| 791 | } |
| 792 | |
| 793 | void xnn_init_scalar_qu8_avgpool_params( |
| 794 | union xnn_qu8_avgpool_params params[XNN_MIN_ELEMENTS(1)], |
| 795 | int32_t bias, |
| 796 | float scale, |
| 797 | uint8_t output_zero_point, |
| 798 | uint8_t output_min, |
| 799 | uint8_t output_max) |
| 800 | { |
| 801 | // Compute requantization parameters. |
| 802 | assert(scale >= 0x1.0p-32f); |
| 803 | assert(scale < 256.0f); |
| 804 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 805 | |
| 806 | // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| 807 | const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| 808 | assert(multiplier >= INT32_C(0x00800000)); |
| 809 | assert(multiplier <= INT32_C(0x00FFFFFF)); |
| 810 | |
| 811 | // Shift is in [16, 55] range. |
| 812 | const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| 813 | assert(shift >= 16); |
| 814 | assert(shift < 64); |
| 815 | |
| 816 | const uint32_t right_shift = (uint32_t) shift; |
| 817 | const int64_t rounding = INT64_C(1) << (right_shift - 1); |
| 818 | params->scalar.bias = bias; |
| 819 | params->scalar.rounding = rounding; |
| 820 | params->scalar.multiplier = multiplier; |
| 821 | params->scalar.right_shift = right_shift; |
| 822 | params->scalar.output_min_less_zero_point = |
| 823 | (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; |
| 824 | params->scalar.output_max_less_zero_point = |
| 825 | (int32_t) (uint32_t) output_max - (int32_t) (uint32_t) output_zero_point; |
| 826 | params->scalar.output_zero_point = (int32_t) (uint32_t) output_zero_point; |
| 827 | } |
| 828 | |
| 829 | void xnn_update_qu8_avgpool_params( |
| 830 | union xnn_qu8_avgpool_params* params, |
| 831 | int32_t bias, |
| 832 | float scale) |
| 833 | { |
| 834 | // Compute requantization parameters. |
| 835 | assert(scale >= 0x1.0p-32f); |
| 836 | assert(scale < 256.0f); |
| 837 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 838 | |
| 839 | // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| 840 | const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| 841 | assert(multiplier >= INT32_C(0x00800000)); |
| 842 | assert(multiplier <= INT32_C(0x00FFFFFF)); |
| 843 | |
| 844 | // Shift is in [16, 55] range. |
| 845 | const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| 846 | assert(shift >= 16); |
| 847 | assert(shift < 64); |
| 848 | |
| 849 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 850 | const uint64_t rounding = UINT64_C(1) << ((uint32_t) shift - 1); |
| 851 | params->sse2.bias[0] = bias; |
| 852 | params->sse2.bias[1] = bias; |
| 853 | params->sse2.bias[2] = bias; |
| 854 | params->sse2.bias[3] = bias; |
| 855 | params->sse2.multiplier[0] = (uint32_t) multiplier; |
| 856 | params->sse2.multiplier[1] = (uint32_t) multiplier; |
| 857 | params->sse2.multiplier[2] = (uint32_t) multiplier; |
| 858 | params->sse2.multiplier[3] = (uint32_t) multiplier; |
| 859 | params->sse2.rounding[0] = rounding; |
| 860 | params->sse2.rounding[1] = rounding; |
| 861 | params->sse2.right_shift[0] = (uint64_t) (uint32_t) shift; |
| 862 | params->sse2.right_shift[1] = (uint64_t) (uint32_t) shift; |
| 863 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 864 | params->neon.bias = bias; |
| 865 | params->neon.multiplier = multiplier; |
| 866 | params->neon.left_shift = (int64_t) -shift; |
| 867 | #else |
| 868 | const int64_t rounding = INT64_C(1) << ((uint32_t) shift - 1); |
| 869 | params->scalar.bias = bias; |
| 870 | params->scalar.multiplier = multiplier; |
| 871 | params->scalar.rounding = rounding; |
| 872 | params->scalar.right_shift = (uint32_t) shift; |
| 873 | #endif |
| 874 | } |
| 875 | |
| 876 | void xnn_init_qs8_avgpool_params( |
| 877 | union xnn_qs8_avgpool_params params[XNN_MIN_ELEMENTS(1)], |
| 878 | int32_t bias, |
| 879 | float scale, |
| 880 | int8_t output_zero_point, |
| 881 | int8_t output_min, |
| 882 | int8_t output_max) |
| 883 | { |
| 884 | // Compute requantization parameters. |
| 885 | assert(scale >= 0x1.0p-32f); |
| 886 | assert(scale < 256.0f); |
| 887 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 888 | |
| 889 | // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| 890 | const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| 891 | assert(multiplier >= INT32_C(0x00800000)); |
| 892 | assert(multiplier <= INT32_C(0x00FFFFFF)); |
| 893 | |
| 894 | // Shift is in [16, 55] range. |
| 895 | const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| 896 | assert(shift >= 16); |
| 897 | assert(shift < 64); |
| 898 | |
| 899 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 900 | const uint64_t rounding = UINT64_C(1) << ((uint32_t) shift - 1); |
| 901 | params->sse2.bias[0] = bias; |
| 902 | params->sse2.bias[1] = bias; |
| 903 | params->sse2.bias[2] = bias; |
| 904 | params->sse2.bias[3] = bias; |
| 905 | params->sse2.multiplier[0] = (uint32_t) multiplier; |
| 906 | params->sse2.multiplier[1] = (uint32_t) multiplier; |
| 907 | params->sse2.multiplier[2] = (uint32_t) multiplier; |
| 908 | params->sse2.multiplier[3] = (uint32_t) multiplier; |
| 909 | params->sse2.rounding[0] = rounding; |
| 910 | params->sse2.rounding[1] = rounding; |
| 911 | params->sse2.shift[0] = (uint64_t) (uint32_t) shift; |
| 912 | params->sse2.shift[1] = (uint64_t) (uint32_t) shift; |
| 913 | for (uint32_t i = 0; i < 8; i++) { |
| 914 | params->sse2.output_zero_point[i] = (int16_t) output_zero_point; |
| 915 | params->sse2.output_min[i] = (int16_t) output_min; |
| 916 | params->sse2.output_max[i] = (int16_t) output_max; |
| 917 | } |
| 918 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 919 | params->neon.bias = bias; |
| 920 | params->neon.multiplier = multiplier; |
| 921 | params->neon.left_shift = (int64_t) -shift; |
| 922 | params->neon.output_zero_point = (int16_t) output_zero_point; |
| 923 | params->neon.output_min = output_min; |
| 924 | params->neon.output_max = output_max; |
| 925 | #elif XNN_ARCH_WASMSIMD |
| 926 | const int64_t rounding = INT64_C(1) << ((uint32_t) shift - 1); |
| 927 | params->wasmsimd.bias[0] = bias; |
| 928 | params->wasmsimd.bias[1] = bias; |
| 929 | params->wasmsimd.bias[2] = bias; |
| 930 | params->wasmsimd.bias[3] = bias; |
| 931 | params->wasmsimd.multiplier[0] = (int64_t) multiplier; |
| 932 | params->wasmsimd.multiplier[1] = (int64_t) multiplier; |
| 933 | params->wasmsimd.rounding[0] = rounding; |
| 934 | params->wasmsimd.rounding[1] = rounding; |
| 935 | params->wasmsimd.shift = shift; |
| 936 | for (uint32_t i = 0; i < 8; i++) { |
| 937 | params->wasmsimd.output_zero_point[i] = (int16_t) output_zero_point; |
| 938 | } |
| 939 | for (uint32_t i = 0; i < 16; i++) { |
| 940 | params->wasmsimd.output_min[i] = output_min; |
| 941 | params->wasmsimd.output_max[i] = output_max; |
| 942 | } |
| 943 | #else |
| 944 | const int64_t rounding = INT64_C(1) << ((uint32_t) shift - 1); |
| 945 | params->scalar.bias = bias; |
| 946 | params->scalar.multiplier = multiplier; |
| 947 | params->scalar.rounding = rounding; |
| 948 | params->scalar.shift = (uint32_t) shift; |
| 949 | params->scalar.output_min_less_zero_point = (int32_t) output_min - (int32_t) output_zero_point; |
| 950 | params->scalar.output_max_less_zero_point = (int32_t) output_max - (int32_t) output_zero_point; |
| 951 | params->scalar.output_zero_point = (int32_t) output_zero_point; |
| 952 | #endif |
| 953 | } |
| 954 | |
| 955 | void xnn_init_scalar_qs8_avgpool_params( |
| 956 | union xnn_qs8_avgpool_params params[XNN_MIN_ELEMENTS(1)], |
| 957 | int32_t bias, |
| 958 | float scale, |
| 959 | int8_t output_zero_point, |
| 960 | int8_t output_min, |
| 961 | int8_t output_max) |
| 962 | { |
| 963 | // Compute requantization parameters. |
| 964 | assert(scale >= 0x1.0p-32f); |
| 965 | assert(scale < 256.0f); |
| 966 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 967 | |
| 968 | // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| 969 | const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| 970 | assert(multiplier >= INT32_C(0x00800000)); |
| 971 | assert(multiplier <= INT32_C(0x00FFFFFF)); |
| 972 | |
| 973 | // Shift is in [16, 55] range. |
| 974 | const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| 975 | assert(shift >= 16); |
| 976 | assert(shift < 64); |
| 977 | |
| 978 | const int64_t rounding = INT64_C(1) << ((uint32_t) shift - 1); |
| 979 | params->scalar.bias = bias; |
| 980 | params->scalar.rounding = rounding; |
| 981 | params->scalar.multiplier = multiplier; |
| 982 | params->scalar.shift = shift; |
| 983 | params->scalar.output_min_less_zero_point = (int32_t) output_min - (int32_t) output_zero_point; |
| 984 | params->scalar.output_max_less_zero_point = (int32_t) output_max - (int32_t) output_zero_point; |
| 985 | params->scalar.output_zero_point = (int32_t) output_zero_point; |
| 986 | } |
| 987 | |
| 988 | void xnn_update_qs8_avgpool_params( |
| 989 | union xnn_qs8_avgpool_params* params, |
| 990 | int32_t bias, |
| 991 | float scale) |
| 992 | { |
| 993 | // Compute requantization parameters. |
| 994 | assert(scale >= 0x1.0p-32f); |
| 995 | assert(scale < 256.0f); |
| 996 | const uint32_t scale_bits = fp32_to_bits(scale); |
| 997 | |
| 998 | // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| 999 | const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| 1000 | assert(multiplier >= INT32_C(0x00800000)); |
| 1001 | assert(multiplier <= INT32_C(0x00FFFFFF)); |
| 1002 | |
| 1003 | // Shift is in [16, 55] range. |
| 1004 | const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| 1005 | assert(shift >= 16); |
| 1006 | assert(shift < 64); |
| 1007 | |
| 1008 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1009 | const uint64_t rounding = UINT64_C(1) << ((uint32_t) shift - 1); |
| 1010 | params->sse2.bias[0] = bias; |
| 1011 | params->sse2.bias[1] = bias; |
| 1012 | params->sse2.bias[2] = bias; |
| 1013 | params->sse2.bias[3] = bias; |
| 1014 | params->sse2.multiplier[0] = (uint32_t) multiplier; |
| 1015 | params->sse2.multiplier[1] = (uint32_t) multiplier; |
| 1016 | params->sse2.multiplier[2] = (uint32_t) multiplier; |
| 1017 | params->sse2.multiplier[3] = (uint32_t) multiplier; |
| 1018 | params->sse2.rounding[0] = rounding; |
| 1019 | params->sse2.rounding[1] = rounding; |
| 1020 | params->sse2.shift[0] = (uint64_t) (uint32_t) shift; |
| 1021 | params->sse2.shift[1] = (uint64_t) (uint32_t) shift; |
| 1022 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 1023 | params->neon.bias = bias; |
| 1024 | params->neon.multiplier = multiplier; |
| 1025 | params->neon.left_shift = (int64_t) -shift; |
| 1026 | #elif XNN_ARCH_WASMSIMD |
| 1027 | const int64_t rounding = INT64_C(1) << ((uint32_t) shift - 1); |
| 1028 | params->wasmsimd.bias[0] = bias; |
| 1029 | params->wasmsimd.bias[1] = bias; |
| 1030 | params->wasmsimd.bias[2] = bias; |
| 1031 | params->wasmsimd.bias[3] = bias; |
| 1032 | params->wasmsimd.multiplier[0] = (int64_t) multiplier; |
| 1033 | params->wasmsimd.multiplier[1] = (int64_t) multiplier; |
| 1034 | params->wasmsimd.rounding[0] = rounding; |
| 1035 | params->wasmsimd.rounding[1] = rounding; |
| 1036 | params->wasmsimd.shift = shift; |
| 1037 | #else |
| 1038 | const int64_t rounding = INT64_C(1) << ((uint32_t) shift - 1); |
| 1039 | params->scalar.bias = bias; |
| 1040 | params->scalar.multiplier = multiplier; |
| 1041 | params->scalar.rounding = rounding; |
| 1042 | params->scalar.shift = (uint32_t) shift; |
| 1043 | #endif |
| 1044 | } |
| 1045 | |
| 1046 | void xnn_update_f16_scaleminmax_params( |
| 1047 | struct xnn_f16_scaleminmax_params* params, |
| 1048 | uint16_t scale) |
| 1049 | { |
| 1050 | params->scale = scale; |
| 1051 | } |
| 1052 | |
| 1053 | void xnn_update_f32_scaleminmax_params( |
| 1054 | union xnn_f32_scaleminmax_params* params, |
| 1055 | float scale) |
| 1056 | { |
| 1057 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1058 | for (uint32_t i = 0; i < 4; i++) { |
| 1059 | params->sse2.scale[i] = scale; |
| 1060 | } |
| 1061 | #else |
| 1062 | params->scalar.scale = scale; |
| 1063 | #endif |
| 1064 | } |
| 1065 | |
| 1066 | void xnn_init_f16_scaleminmax_params( |
| 1067 | struct xnn_f16_scaleminmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1068 | uint16_t scale, |
| 1069 | uint16_t min, |
| 1070 | uint16_t max) |
| 1071 | { |
| 1072 | params->scale = scale; |
| 1073 | params->min = min; |
| 1074 | params->max = max; |
| 1075 | params->pad = 0; // unused. |
| 1076 | } |
| 1077 | |
| 1078 | void xnn_init_f32_scaleminmax_params( |
| 1079 | union xnn_f32_scaleminmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1080 | float scale, |
| 1081 | float min, |
| 1082 | float max) |
| 1083 | { |
| 1084 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1085 | for (uint32_t i = 0; i < 4; i++) { |
| 1086 | params->sse2.scale[i] = scale; |
| 1087 | params->sse2.min[i] = min; |
| 1088 | params->sse2.max[i] = max; |
| 1089 | } |
| 1090 | #else |
| 1091 | params->scalar.scale = scale; |
| 1092 | params->scalar.min = min; |
| 1093 | params->scalar.max = max; |
| 1094 | #endif |
| 1095 | } |
| 1096 | |
| 1097 | void xnn_init_f32_gavgpool_params( |
| 1098 | union xnn_f32_gavgpool_params params[XNN_MIN_ELEMENTS(1)], |
| 1099 | float multiplier, |
| 1100 | float output_min, |
| 1101 | float output_max, |
| 1102 | uint32_t width) |
| 1103 | { |
| 1104 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1105 | for (uint32_t i = 0; i < 4; i++) { |
| 1106 | params->sse.multiplier[i] = multiplier; |
| 1107 | params->sse.output_min[i] = output_min; |
| 1108 | params->sse.output_max[i] = output_max; |
| 1109 | } |
| 1110 | |
| 1111 | const uint32_t w = (width - 1) & 3; |
| 1112 | params->sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1113 | params->sse.mask[1] = -(uint32_t) (w >= 1); |
| 1114 | params->sse.mask[2] = -(uint32_t) (w >= 2); |
| 1115 | params->sse.mask[3] = -(uint32_t) (w >= 3); |
| 1116 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 1117 | params->neon.multiplier = multiplier; |
| 1118 | params->neon.output_min = output_min; |
| 1119 | params->neon.output_max = output_max; |
| 1120 | |
| 1121 | const uint32_t w = (width - 1) & 3; |
| 1122 | params->neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1123 | params->neon.mask[1] = -(uint32_t) (w >= 1); |
| 1124 | params->neon.mask[2] = -(uint32_t) (w >= 2); |
| 1125 | params->neon.mask[3] = -(uint32_t) (w >= 3); |
| 1126 | #else |
| 1127 | params->scalar.multiplier = multiplier; |
| 1128 | params->scalar.output_min = output_min; |
| 1129 | params->scalar.output_max = output_max; |
| 1130 | |
| 1131 | const uint32_t w = (width - 1) & 3; |
| 1132 | params->scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1133 | params->scalar.mask[1] = -(int32_t) (w >= 1); |
| 1134 | params->scalar.mask[2] = -(int32_t) (w >= 2); |
| 1135 | params->scalar.mask[3] = -(int32_t) (w >= 3); |
| 1136 | #endif |
| 1137 | } |
| 1138 | |
| 1139 | void xnn_update_f32_gavgpool_params( |
| 1140 | union xnn_f32_gavgpool_params* params, |
| 1141 | float multiplier, |
| 1142 | uint32_t width) |
| 1143 | { |
| 1144 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1145 | for (uint32_t i = 0; i < 4; i++) { |
| 1146 | params->sse.multiplier[i] = multiplier; |
| 1147 | } |
| 1148 | |
| 1149 | const uint32_t w = (width - 1) & 3; |
| 1150 | params->sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1151 | params->sse.mask[1] = -(uint32_t) (w >= 1); |
| 1152 | params->sse.mask[2] = -(uint32_t) (w >= 2); |
| 1153 | params->sse.mask[3] = -(uint32_t) (w >= 3); |
| 1154 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 1155 | params->neon.multiplier = multiplier; |
| 1156 | |
| 1157 | const uint32_t w = (width - 1) & 3; |
| 1158 | params->neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1159 | params->neon.mask[1] = -(uint32_t) (w >= 1); |
| 1160 | params->neon.mask[2] = -(uint32_t) (w >= 2); |
| 1161 | params->neon.mask[3] = -(uint32_t) (w >= 3); |
| 1162 | #else |
| 1163 | params->scalar.multiplier = multiplier; |
| 1164 | |
| 1165 | const uint32_t w = (width - 1) & 3; |
| 1166 | params->scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1167 | params->scalar.mask[1] = -(int32_t) (w >= 1); |
| 1168 | params->scalar.mask[2] = -(int32_t) (w >= 2); |
| 1169 | params->scalar.mask[3] = -(int32_t) (w >= 3); |
| 1170 | #endif |
| 1171 | } |
| 1172 | |
| 1173 | void xnn_init_scalar_f32_scaleminmax_params( |
| 1174 | union xnn_f32_scaleminmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1175 | float scale, |
| 1176 | float min, |
| 1177 | float max) |
| 1178 | { |
| 1179 | params->scalar.scale = scale; |
| 1180 | params->scalar.min = min; |
| 1181 | params->scalar.max = max; |
| 1182 | } |
| 1183 | |
| 1184 | void xnn_init_scalar_f32_gavgpool_params( |
| 1185 | union xnn_f32_gavgpool_params params[XNN_MIN_ELEMENTS(1)], |
| 1186 | float multiplier, |
| 1187 | float output_min, |
| 1188 | float output_max, |
| 1189 | uint32_t width) |
| 1190 | { |
| 1191 | params->scalar.multiplier = multiplier; |
| 1192 | params->scalar.output_min = output_min; |
| 1193 | params->scalar.output_max = output_max; |
| 1194 | |
| 1195 | const uint32_t w = (width - 1) & 3; |
| 1196 | params->scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1197 | params->scalar.mask[1] = -(int32_t) (w >= 1); |
| 1198 | params->scalar.mask[2] = -(int32_t) (w >= 2); |
| 1199 | params->scalar.mask[3] = -(int32_t) (w >= 3); |
| 1200 | } |
| 1201 | |
| 1202 | void xnn_init_f16_minmax_params( |
| 1203 | struct xnn_f16_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1204 | uint16_t min, |
| 1205 | uint16_t max) |
| 1206 | { |
| 1207 | params->min = min; |
| 1208 | params->max = max; |
| 1209 | } |
| 1210 | |
| 1211 | void xnn_init_f32_minmax_params( |
| 1212 | union xnn_f32_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1213 | float output_min, |
| 1214 | float output_max) |
| 1215 | { |
| 1216 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1217 | for (uint32_t i = 0; i < 4; i++) { |
| 1218 | params->sse.min[i] = output_min; |
| 1219 | params->sse.max[i] = output_max; |
| 1220 | } |
| 1221 | #else |
| 1222 | params->scalar.min = output_min; |
| 1223 | params->scalar.max = output_max; |
| 1224 | #endif |
| 1225 | } |
| 1226 | |
| 1227 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1228 | void xnn_init_f32_minmax_sse_params( |
| 1229 | union xnn_f32_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1230 | float output_min, |
| 1231 | float output_max) |
| 1232 | { |
| 1233 | for (uint32_t i = 0; i < 4; i++) { |
| 1234 | params->sse.min[i] = output_min; |
| 1235 | params->sse.max[i] = output_max; |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | void xnn_init_f32_minmax_avx_params( |
| 1240 | union xnn_f32_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1241 | float output_min, |
| 1242 | float output_max) |
| 1243 | { |
| 1244 | for (uint32_t i = 0; i < 8; i++) { |
| 1245 | params->avx.min[i] = output_min; |
| 1246 | params->avx.max[i] = output_max; |
| 1247 | } |
| 1248 | } |
| 1249 | #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1250 | |
| 1251 | void xnn_init_f32_minmax_scalar_params( |
| 1252 | union xnn_f32_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1253 | float output_min, |
| 1254 | float output_max) |
| 1255 | { |
| 1256 | params->scalar.min = output_min; |
| 1257 | params->scalar.max = output_max; |
| 1258 | } |
| 1259 | |
| 1260 | void xnn_init_f16_hswish_params( |
| 1261 | struct xnn_f16_hswish_params params[XNN_MIN_ELEMENTS(1)]) |
| 1262 | { |
| 1263 | params->sixth = UINT16_C(0x3155); |
| 1264 | params->three = UINT16_C(0x4200); |
| 1265 | params->six = UINT16_C(0x4600); |
| 1266 | } |
| 1267 | |
| 1268 | void xnn_init_f32_hswish_params( |
| 1269 | union xnn_f32_hswish_params params[XNN_MIN_ELEMENTS(1)]) |
| 1270 | { |
| 1271 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1272 | for (uint32_t i = 0; i < 4; i++) { |
| 1273 | params->sse.sixth[i] = 0x1.555556p-3f; |
| 1274 | params->sse.half[i] = 0.5f; |
| 1275 | params->sse.one[i] = 1.0f; |
| 1276 | } |
| 1277 | #else |
| 1278 | params->scalar.sixth = 0x1.555556p-3f; |
| 1279 | params->scalar.three = 3.0f; |
| 1280 | params->scalar.six = 6.0f; |
| 1281 | #endif |
| 1282 | } |
| 1283 | |
| 1284 | void xnn_init_scalar_f32_hswish_params( |
| 1285 | union xnn_f32_hswish_params params[XNN_MIN_ELEMENTS(1)]) |
| 1286 | { |
| 1287 | params->scalar.sixth = 0x1.555556p-3f; |
| 1288 | params->scalar.three = 3.0f; |
| 1289 | params->scalar.six = 6.0f; |
| 1290 | } |
| 1291 | |
| 1292 | void xnn_init_f32_abs_params( |
| 1293 | union xnn_f32_abs_params params[XNN_MIN_ELEMENTS(1)]) |
| 1294 | { |
| 1295 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1296 | for (uint32_t i = 0; i < 4; i++) { |
| 1297 | params->sse.nonsign_mask[i] = math_nonsign_mask_f32(); |
| 1298 | } |
| 1299 | #elif XNN_ARCH_WASMSIMD |
| 1300 | params->wasmsimd.nonsign_mask = math_nonsign_mask_f32(); |
| 1301 | #endif |
| 1302 | } |
| 1303 | |
| 1304 | void xnn_init_scalar_f32_abs_params( |
| 1305 | union xnn_f32_abs_params params[XNN_MIN_ELEMENTS(1)]) |
| 1306 | { |
| 1307 | } |
| 1308 | |
| 1309 | void xnn_init_f32_neg_params( |
| 1310 | union xnn_f32_neg_params params[XNN_MIN_ELEMENTS(1)]) |
| 1311 | { |
| 1312 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1313 | for (uint32_t i = 0; i < 4; i++) { |
| 1314 | params->sse.sign_mask[i] = -0.0f; |
| 1315 | } |
| 1316 | #elif XNN_ARCH_WASMSIMD |
| 1317 | params->wasmsimd.sign_mask = -0.0f; |
| 1318 | #endif |
| 1319 | } |
| 1320 | |
| 1321 | void xnn_init_scalar_f32_neg_params( |
| 1322 | union xnn_f32_neg_params params[XNN_MIN_ELEMENTS(1)]) |
| 1323 | { |
| 1324 | } |
| 1325 | |
| 1326 | void xnn_init_f32_rnd_params( |
| 1327 | union xnn_f32_rnd_params params[XNN_MIN_ELEMENTS(1)]) |
| 1328 | { |
| 1329 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1330 | for (uint32_t i = 0; i < 4; i++) { |
| 1331 | params->sse2.sign_mask[i] = -0.0f; |
| 1332 | } |
| 1333 | for (uint32_t i = 0; i < 4; i++) { |
| 1334 | params->sse2.one[i] = 1.0f; |
| 1335 | } |
| 1336 | #endif |
| 1337 | } |
| 1338 | |
| 1339 | void xnn_init_scalar_f32_rnd_params( |
| 1340 | union xnn_f32_rnd_params params[XNN_MIN_ELEMENTS(1)]) |
| 1341 | { |
| 1342 | } |
| 1343 | |
| 1344 | void xnn_init_f32_elu_params( |
| 1345 | union xnn_f32_elu_params params[XNN_MIN_ELEMENTS(1)], |
| 1346 | float prescale, |
| 1347 | float alpha, |
| 1348 | float beta) |
| 1349 | { |
| 1350 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1351 | for (uint32_t i = 0; i < 4; i++) { |
| 1352 | params->sse.prescale[i] = prescale; |
| 1353 | params->sse.alpha[i] = alpha; |
| 1354 | params->sse.beta[i] = beta; |
| 1355 | } |
| 1356 | #else |
| 1357 | params->scalar.prescale = prescale; |
| 1358 | params->scalar.alpha = alpha; |
| 1359 | params->scalar.beta = beta; |
| 1360 | #endif |
| 1361 | } |
| 1362 | |
| 1363 | void xnn_init_scalar_f32_elu_params( |
| 1364 | union xnn_f32_elu_params params[XNN_MIN_ELEMENTS(1)], |
| 1365 | float prescale, |
| 1366 | float alpha, |
| 1367 | float beta) |
| 1368 | { |
| 1369 | params->scalar.prescale = prescale; |
| 1370 | params->scalar.alpha = alpha; |
| 1371 | params->scalar.beta = beta; |
| 1372 | } |
| 1373 | |
| 1374 | void xnn_init_f32_lrelu_params( |
| 1375 | union xnn_f32_lrelu_params params[XNN_MIN_ELEMENTS(1)], |
| 1376 | float slope) |
| 1377 | { |
| 1378 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1379 | for (uint32_t i = 0; i < 4; i++) { |
| 1380 | params->sse.slope[i] = slope; |
| 1381 | } |
| 1382 | #else |
| 1383 | params->scalar.slope = slope; |
| 1384 | #endif |
| 1385 | } |
| 1386 | |
| 1387 | void xnn_init_scalar_f32_lrelu_params( |
| 1388 | union xnn_f32_lrelu_params params[XNN_MIN_ELEMENTS(1)], |
| 1389 | float slope) |
| 1390 | { |
| 1391 | params->scalar.slope = slope; |
| 1392 | } |
| 1393 | |
| 1394 | void xnn_init_f32_sqrt_params( |
| 1395 | union xnn_f32_sqrt_params params[XNN_MIN_ELEMENTS(1)]) |
| 1396 | { |
| 1397 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1398 | params->fma.half = 0.5f; |
| 1399 | #endif |
| 1400 | } |
| 1401 | |
| 1402 | void xnn_init_scalar_f32_sqrt_params( |
| 1403 | union xnn_f32_sqrt_params params[XNN_MIN_ELEMENTS(1)]) |
| 1404 | { |
| 1405 | } |
| 1406 | |
| 1407 | void xnn_init_f32_chw_params( |
| 1408 | union xnn_f32_chw_params params[XNN_MIN_ELEMENTS(1)], |
| 1409 | uint32_t width, |
| 1410 | float output_min, |
| 1411 | float output_max) |
| 1412 | { |
| 1413 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1414 | for (uint32_t i = 0; i < 4; i++) { |
| 1415 | params->sse.min[i] = output_min; |
| 1416 | params->sse.max[i] = output_max; |
| 1417 | } |
| 1418 | |
| 1419 | const uint32_t w4 = (width - 1) & 3; |
| 1420 | params->sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1421 | params->sse.mask[1] = -(uint32_t) (w4 >= 1); |
| 1422 | params->sse.mask[2] = -(uint32_t) (w4 >= 2); |
| 1423 | params->sse.mask[3] = -(uint32_t) (w4 >= 3); |
| 1424 | |
| 1425 | const uint32_t w8 = (width - 1) & 7; |
| 1426 | params->sse.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| 1427 | params->sse.mask_even[1] = -(uint32_t) (w8 >= 2); |
| 1428 | params->sse.mask_even[2] = -(uint32_t) (w8 >= 4); |
| 1429 | params->sse.mask_even[3] = -(uint32_t) (w8 >= 6); |
| 1430 | params->sse.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| 1431 | params->sse.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| 1432 | params->sse.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| 1433 | params->sse.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| 1434 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 1435 | params->neon.min = output_min; |
| 1436 | params->neon.max = output_max; |
| 1437 | |
| 1438 | const uint32_t w4 = (width - 1) & 3; |
| 1439 | params->neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1440 | params->neon.mask[1] = -(uint32_t) (w4 >= 1); |
| 1441 | params->neon.mask[2] = -(uint32_t) (w4 >= 2); |
| 1442 | params->neon.mask[3] = -(uint32_t) (w4 >= 3); |
| 1443 | |
| 1444 | const uint32_t w8 = (width - 1) & 7; |
| 1445 | params->neon.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| 1446 | params->neon.mask_even[1] = -(uint32_t) (w8 >= 2); |
| 1447 | params->neon.mask_even[2] = -(uint32_t) (w8 >= 4); |
| 1448 | params->neon.mask_even[3] = -(uint32_t) (w8 >= 6); |
| 1449 | params->neon.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| 1450 | params->neon.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| 1451 | params->neon.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| 1452 | params->neon.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| 1453 | #else |
| 1454 | params->scalar.min = output_min; |
| 1455 | params->scalar.max = output_max; |
| 1456 | |
| 1457 | const uint32_t w4 = (width - 1) & 3; |
| 1458 | params->scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1459 | params->scalar.mask[1] = -(uint32_t) (w4 >= 1); |
| 1460 | params->scalar.mask[2] = -(uint32_t) (w4 >= 2); |
| 1461 | params->scalar.mask[3] = -(uint32_t) (w4 >= 3); |
| 1462 | |
| 1463 | const uint32_t w8 = (width - 1) & 7; |
| 1464 | params->scalar.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| 1465 | params->scalar.mask_even[1] = -(uint32_t) (w8 >= 2); |
| 1466 | params->scalar.mask_even[2] = -(uint32_t) (w8 >= 4); |
| 1467 | params->scalar.mask_even[3] = -(uint32_t) (w8 >= 6); |
| 1468 | params->scalar.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| 1469 | params->scalar.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| 1470 | params->scalar.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| 1471 | params->scalar.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| 1472 | #endif |
| 1473 | } |
| 1474 | |
| 1475 | void xnn_update_f32_chw_params( |
| 1476 | union xnn_f32_chw_params* params, |
| 1477 | uint32_t width) |
| 1478 | { |
| 1479 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1480 | const uint32_t w4 = (width - 1) & 3; |
| 1481 | params->sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1482 | params->sse.mask[1] = -(uint32_t) (w4 >= 1); |
| 1483 | params->sse.mask[2] = -(uint32_t) (w4 >= 2); |
| 1484 | params->sse.mask[3] = -(uint32_t) (w4 >= 3); |
| 1485 | |
| 1486 | const uint32_t w8 = (width - 1) & 7; |
| 1487 | params->sse.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| 1488 | params->sse.mask_even[1] = -(uint32_t) (w8 >= 2); |
| 1489 | params->sse.mask_even[2] = -(uint32_t) (w8 >= 4); |
| 1490 | params->sse.mask_even[3] = -(uint32_t) (w8 >= 6); |
| 1491 | params->sse.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| 1492 | params->sse.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| 1493 | params->sse.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| 1494 | params->sse.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| 1495 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 1496 | const uint32_t w4 = (width - 1) & 3; |
| 1497 | params->neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1498 | params->neon.mask[1] = -(uint32_t) (w4 >= 1); |
| 1499 | params->neon.mask[2] = -(uint32_t) (w4 >= 2); |
| 1500 | params->neon.mask[3] = -(uint32_t) (w4 >= 3); |
| 1501 | |
| 1502 | const uint32_t w8 = (width - 1) & 7; |
| 1503 | params->neon.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| 1504 | params->neon.mask_even[1] = -(uint32_t) (w8 >= 2); |
| 1505 | params->neon.mask_even[2] = -(uint32_t) (w8 >= 4); |
| 1506 | params->neon.mask_even[3] = -(uint32_t) (w8 >= 6); |
| 1507 | params->neon.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| 1508 | params->neon.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| 1509 | params->neon.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| 1510 | params->neon.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| 1511 | #else |
| 1512 | const uint32_t w4 = (width - 1) & 3; |
| 1513 | params->scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1514 | params->scalar.mask[1] = -(uint32_t) (w4 >= 1); |
| 1515 | params->scalar.mask[2] = -(uint32_t) (w4 >= 2); |
| 1516 | params->scalar.mask[3] = -(uint32_t) (w4 >= 3); |
| 1517 | |
| 1518 | const uint32_t w8 = (width - 1) & 7; |
| 1519 | params->scalar.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| 1520 | params->scalar.mask_even[1] = -(uint32_t) (w8 >= 2); |
| 1521 | params->scalar.mask_even[2] = -(uint32_t) (w8 >= 4); |
| 1522 | params->scalar.mask_even[3] = -(uint32_t) (w8 >= 6); |
| 1523 | params->scalar.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| 1524 | params->scalar.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| 1525 | params->scalar.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| 1526 | params->scalar.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| 1527 | #endif |
| 1528 | } |
| 1529 | |
| 1530 | void xnn_init_scalar_f32_chw_params( |
| 1531 | union xnn_f32_chw_params params[XNN_MIN_ELEMENTS(1)], |
| 1532 | uint32_t width, |
| 1533 | float output_min, |
| 1534 | float output_max) |
| 1535 | { |
| 1536 | params->scalar.min = output_min; |
| 1537 | params->scalar.max = output_max; |
| 1538 | |
| 1539 | const uint32_t w4 = (width - 1) & 3; |
| 1540 | params->scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| 1541 | params->scalar.mask[1] = -(uint32_t) (w4 >= 1); |
| 1542 | params->scalar.mask[2] = -(uint32_t) (w4 >= 2); |
| 1543 | params->scalar.mask[3] = -(uint32_t) (w4 >= 3); |
| 1544 | |
| 1545 | const uint32_t w8 = (width - 1) & 7; |
| 1546 | params->scalar.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| 1547 | params->scalar.mask_even[1] = -(uint32_t) (w8 >= 2); |
| 1548 | params->scalar.mask_even[2] = -(uint32_t) (w8 >= 4); |
| 1549 | params->scalar.mask_even[3] = -(uint32_t) (w8 >= 6); |
| 1550 | params->scalar.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| 1551 | params->scalar.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| 1552 | params->scalar.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| 1553 | params->scalar.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| 1554 | } |
| 1555 | |
| 1556 | void xnn_init_u8_minmax_params( |
| 1557 | union xnn_u8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1558 | uint8_t output_min, |
| 1559 | uint8_t output_max) |
| 1560 | { |
| 1561 | assert(output_min < output_max); |
| 1562 | |
| 1563 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1564 | for (uint32_t i = 0; i < 16; i++) { |
| 1565 | params->sse2.min[i] = output_min; |
| 1566 | params->sse2.max[i] = output_max; |
| 1567 | } |
| 1568 | #else |
| 1569 | params->scalar.min = output_min; |
| 1570 | params->scalar.max = output_max; |
| 1571 | #endif |
| 1572 | } |
| 1573 | |
| 1574 | void xnn_init_scalar_u8_minmax_params( |
| 1575 | union xnn_u8_minmax_params params[XNN_MIN_ELEMENTS(1)], |
| 1576 | uint8_t output_min, |
| 1577 | uint8_t output_max) |
| 1578 | { |
| 1579 | assert(output_min < output_max); |
| 1580 | |
| 1581 | params->scalar.min = (int32_t) (uint32_t) output_min; |
| 1582 | params->scalar.max = (int32_t) (uint32_t) output_max; |
| 1583 | } |
| 1584 | |
| 1585 | void xnn_init_qu8_add_params( |
| 1586 | union xnn_qu8_add_params params[XNN_MIN_ELEMENTS(1)], |
| 1587 | uint8_t a_zero_point, |
| 1588 | uint8_t b_zero_point, |
| 1589 | uint8_t output_zero_point, |
| 1590 | float a_output_scale, |
| 1591 | float b_output_scale, |
| 1592 | uint8_t output_min, |
| 1593 | uint8_t output_max) |
| 1594 | { |
| 1595 | assert(a_output_scale >= 0x1.0p-14f); |
| 1596 | assert(b_output_scale >= 0x1.0p-14f); |
| 1597 | assert(a_output_scale < 0x1.0p+8f); |
| 1598 | assert(b_output_scale < 0x1.0p+8f); |
| 1599 | |
| 1600 | // Compute requantization parameters. |
| 1601 | const float max_output_scale = math_max_f32(a_output_scale, b_output_scale); |
| 1602 | assert(max_output_scale >= 0x1.0p-14f); |
| 1603 | assert(max_output_scale < 0x1.0p+8f); |
| 1604 | const uint32_t max_scale_bits = fp32_to_bits(max_output_scale); |
| 1605 | const int32_t max_scale_exponent = (int32_t) (max_scale_bits >> 23) - 127; |
| 1606 | // Shift is in [13, 31] range. |
| 1607 | const uint32_t shift = (uint32_t) (21 - max_scale_exponent); |
| 1608 | assert(shift < 32); |
| 1609 | assert(shift >= 13); |
| 1610 | |
| 1611 | const float scale_multiplier = fp32_from_bits((uint32_t) (21 - max_scale_exponent + 127) << 23); |
| 1612 | |
| 1613 | // Multipliers are in [0, 2**22) range, largest multiplier is in [2**21, 2**22) range. |
| 1614 | const uint32_t a_multiplier = (uint32_t) (int32_t) lrintf(a_output_scale * scale_multiplier); |
| 1615 | const uint32_t b_multiplier = (uint32_t) (int32_t) lrintf(b_output_scale * scale_multiplier); |
| 1616 | assert((a_multiplier > b_multiplier ? a_multiplier : b_multiplier) >= UINT32_C(0x00200000)); |
| 1617 | assert(a_multiplier < UINT32_C(0x00400000)); |
| 1618 | assert(b_multiplier < UINT32_C(0x00400000)); |
| 1619 | |
| 1620 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1621 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 1622 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 1623 | const int32_t zero_point_product = |
| 1624 | (int32_t) -(a_multiplier * (uint32_t) a_zero_point + b_multiplier * (uint32_t) b_zero_point); |
| 1625 | for (uint32_t i = 0; i < 4; i++) { |
| 1626 | params->sse2.zero_point_product[i] = zero_point_product; |
| 1627 | } |
| 1628 | for (uint32_t i = 0; i < 8; i++) { |
| 1629 | params->sse2.y_zero_point[i] = (int16_t) (uint16_t) output_zero_point; |
| 1630 | } |
| 1631 | for (uint32_t i = 0; i < 8; i++) { |
| 1632 | params->sse2.a_multiplier_lo[i] = (uint16_t) (uint32_t) a_multiplier; |
| 1633 | params->sse2.a_multiplier_hi[i] = (uint16_t) ((uint32_t) a_multiplier >> 16); |
| 1634 | params->sse2.b_multiplier_lo[i] = (uint16_t) (uint32_t) b_multiplier; |
| 1635 | params->sse2.b_multiplier_hi[i] = (uint16_t) ((uint32_t) b_multiplier >> 16); |
| 1636 | } |
| 1637 | params->sse2.a_multiplier = a_multiplier; |
| 1638 | params->sse2.b_multiplier = b_multiplier; |
| 1639 | for (uint32_t i = 0; i < 4; i++) { |
| 1640 | params->sse2.remainder_mask[i] = remainder_mask; |
| 1641 | params->sse2.remainder_threshold[i] = remainder_threshold; |
| 1642 | } |
| 1643 | params->sse2.shift = shift; |
| 1644 | for (uint32_t i = 0; i < 16; i++) { |
| 1645 | params->sse2.y_min[i] = output_min; |
| 1646 | params->sse2.y_max[i] = output_max; |
| 1647 | } |
| 1648 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 1649 | params->neon.a_zero_point = a_zero_point; |
| 1650 | params->neon.b_zero_point = b_zero_point; |
| 1651 | params->neon.y_zero_point = (int16_t) (uint16_t) output_zero_point; |
| 1652 | params->neon.a_multiplier = (int32_t) a_multiplier; |
| 1653 | params->neon.b_multiplier = (int32_t) b_multiplier; |
| 1654 | params->neon.right_shift = (int32_t) -shift; |
| 1655 | params->neon.y_min = output_min; |
| 1656 | params->neon.y_max = output_max; |
| 1657 | #else |
| 1658 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 1659 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 1660 | params->scalar.zero_point_product = |
| 1661 | (int32_t) -(a_multiplier * (uint32_t) a_zero_point + b_multiplier * (uint32_t) b_zero_point); |
| 1662 | params->scalar.a_multiplier = a_multiplier; |
| 1663 | params->scalar.b_multiplier = b_multiplier; |
| 1664 | params->scalar.remainder_mask = (int32_t) remainder_mask; |
| 1665 | params->scalar.remainder_threshold = (int32_t) remainder_threshold; |
| 1666 | params->scalar.shift = shift; |
| 1667 | params->scalar.y_zero_point = (int32_t) (uint32_t) output_zero_point; |
| 1668 | params->scalar.y_min = (int32_t) (uint32_t) output_min; |
| 1669 | params->scalar.y_max = (int32_t) (uint32_t) output_max; |
| 1670 | #endif |
| 1671 | } |
| 1672 | |
| 1673 | void xnn_init_scalar_qu8_add_params( |
| 1674 | union xnn_qu8_add_params params[XNN_MIN_ELEMENTS(1)], |
| 1675 | uint8_t a_zero_point, |
| 1676 | uint8_t b_zero_point, |
| 1677 | uint8_t output_zero_point, |
| 1678 | float a_output_scale, |
| 1679 | float b_output_scale, |
| 1680 | uint8_t output_min, |
| 1681 | uint8_t output_max) |
| 1682 | { |
| 1683 | assert(a_output_scale >= 0x1.0p-10f); |
| 1684 | assert(b_output_scale >= 0x1.0p-10f); |
| 1685 | assert(a_output_scale < 0x1.0p+8f); |
| 1686 | assert(b_output_scale < 0x1.0p+8f); |
| 1687 | |
| 1688 | // Compute requantization parameters. |
| 1689 | const float max_output_scale = math_max_f32(a_output_scale, b_output_scale); |
| 1690 | assert(max_output_scale >= 0x1.0p-10f); |
| 1691 | assert(max_output_scale < 0x1.0p+8f); |
| 1692 | const uint32_t max_scale_bits = fp32_to_bits(max_output_scale); |
| 1693 | const int32_t max_scale_exponent = (int32_t) (max_scale_bits >> 23) - 127; |
| 1694 | // Shift is in [13, 31] range. |
| 1695 | const uint32_t shift = (uint32_t) (21 - max_scale_exponent); |
| 1696 | assert(shift < 32); |
| 1697 | assert(shift >= 13); |
| 1698 | |
| 1699 | // Multipliers are in [0, 2**22) range, largest multiplier is in [2**21, 2**22) range. |
| 1700 | const uint32_t a_multiplier = (uint32_t) (int32_t) lrintf(fp32_from_bits(fp32_to_bits(a_output_scale) + (shift << 23))); |
| 1701 | const uint32_t b_multiplier = (uint32_t) (int32_t) lrintf(fp32_from_bits(fp32_to_bits(b_output_scale) + (shift << 23))); |
| 1702 | assert((a_multiplier > b_multiplier ? a_multiplier : b_multiplier) >= UINT32_C(0x00200000)); |
| 1703 | assert(a_multiplier < UINT32_C(0x00400000)); |
| 1704 | assert(b_multiplier < UINT32_C(0x00400000)); |
| 1705 | |
| 1706 | const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| 1707 | const uint32_t remainder_threshold = remainder_mask >> 1; |
| 1708 | params->scalar.zero_point_product = |
| 1709 | (int32_t) -(a_multiplier * (uint32_t) a_zero_point + b_multiplier * (uint32_t) b_zero_point); |
| 1710 | params->scalar.a_multiplier = a_multiplier; |
| 1711 | params->scalar.b_multiplier = b_multiplier; |
| 1712 | params->scalar.remainder_mask = (int32_t) remainder_mask; |
| 1713 | params->scalar.remainder_threshold = (int32_t) remainder_threshold; |
| 1714 | params->scalar.shift = shift; |
| 1715 | params->scalar.y_zero_point = (int32_t) (uint32_t) output_zero_point; |
| 1716 | params->scalar.y_min = (int32_t) (uint32_t) output_min; |
| 1717 | params->scalar.y_max = (int32_t) (uint32_t) output_max; |
| 1718 | } |
| 1719 | |
| 1720 | void xnn_init_qs8_add_params( |
| 1721 | union xnn_qs8_add_params params[XNN_MIN_ELEMENTS(1)], |
| 1722 | int8_t x_zero_point, |
| 1723 | int8_t y_zero_point, |
| 1724 | int8_t output_zero_point, |
| 1725 | float x_output_scale, |
| 1726 | float y_output_scale, |
| 1727 | int8_t output_min, |
| 1728 | int8_t output_max) |
| 1729 | { |
| 1730 | assert(x_output_scale >= 0x1.0p-14f); |
| 1731 | assert(y_output_scale >= 0x1.0p-14f); |
| 1732 | assert(x_output_scale < 0x1.0p+8f); |
| 1733 | assert(y_output_scale < 0x1.0p+8f); |
| 1734 | |
| 1735 | // Compute requantization parameters. |
| 1736 | const float max_output_scale = math_max_f32(x_output_scale, y_output_scale); |
| 1737 | assert(max_output_scale >= 0x1.0p-14f); |
| 1738 | assert(max_output_scale < 0x1.0p+8f); |
| 1739 | const uint32_t max_scale_bits = fp32_to_bits(max_output_scale); |
| 1740 | const int32_t max_scale_exponent = (int32_t) (max_scale_bits >> 23) - 127; |
| 1741 | // Shift is in [13, 31] range. |
| 1742 | const uint32_t shift = (uint32_t) (21 - max_scale_exponent); |
| 1743 | assert(shift < 32); |
| 1744 | assert(shift >= 13); |
| 1745 | |
| 1746 | const float scale_multiplier = fp32_from_bits((uint32_t) (21 - max_scale_exponent + 127) << 23); |
| 1747 | |
| 1748 | // Multipliers are in [0, 2**22) range, largest multiplier is in [2**21, 2**22) range. |
| 1749 | const int32_t x_multiplier = (int32_t) lrintf(x_output_scale * scale_multiplier); |
| 1750 | const int32_t y_multiplier = (int32_t) lrintf(y_output_scale * scale_multiplier); |
| 1751 | assert((x_multiplier > y_multiplier ? x_multiplier : y_multiplier) >= INT32_C(0x00200000)); |
| 1752 | assert(x_multiplier < INT32_C(0x00400000)); |
| 1753 | assert(y_multiplier < INT32_C(0x00400000)); |
| 1754 | |
| 1755 | #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| 1756 | const int32_t remainder_mask = (INT32_C(1) << shift) - INT32_C(1); |
| 1757 | const int32_t remainder_threshold = (int32_t) ((uint32_t) remainder_mask >> 1); |
| 1758 | const int32_t zero_point_product = |
| 1759 | (int32_t) -(x_multiplier * (int32_t) x_zero_point + y_multiplier * (int32_t) y_zero_point); |
| 1760 | for (uint32_t i = 0; i < 4; i++) { |
| 1761 | params->sse2.zero_point_product[i] = zero_point_product; |
| 1762 | } |
| 1763 | const uint16_t x_multiplier_lo = (uint16_t) x_multiplier; |
| 1764 | const uint16_t x_multiplier_hi = (uint16_t) ((uint32_t) x_multiplier >> 16); |
| 1765 | const uint16_t y_multiplier_lo = (uint16_t) y_multiplier; |
| 1766 | const uint16_t y_multiplier_hi = (uint16_t) ((uint32_t) y_multiplier >> 16); |
| 1767 | for (uint32_t i = 0; i < 8; i++) { |
| 1768 | params->sse2.x_multiplier_lo[i] = x_multiplier_lo; |
| 1769 | params->sse2.x_multiplier_hi[i] = x_multiplier_hi; |
| 1770 | params->sse2.y_multiplier_lo[i] = y_multiplier_lo; |
| 1771 | params->sse2.y_multiplier_hi[i] = y_multiplier_hi; |
| 1772 | } |
| 1773 | params->sse2.shift = shift; |
| 1774 | for (uint32_t i = 0; i < 4; i++) { |
| 1775 | params->sse2.x_multiplier[i] = x_multiplier; |
| 1776 | params->sse2.y_multiplier[i] = y_multiplier; |
| 1777 | params->sse2.remainder_mask[i] = remainder_mask; |
| 1778 | params->sse2.remainder_threshold[i] = remainder_threshold; |
| 1779 | } |
| 1780 | for (uint32_t i = 0; i < 8; i++) { |
| 1781 | params->sse2.output_zero_point[i] = (int16_t) output_zero_point; |
| 1782 | params->sse2.output_min[i] = (int16_t) output_min; |
| 1783 | params->sse2.output_max[i] = (int16_t) output_max; |
| 1784 | } |
| 1785 | #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| 1786 | params->neon.x_zero_point = x_zero_point; |
| 1787 | params->neon.y_zero_point = y_zero_point; |
| 1788 | params->neon.x_multiplier = (int32_t) x_multiplier; |
| 1789 | params->neon.y_multiplier = (int32_t) y_multiplier; |
| 1790 | params->neon.right_shift = (int32_t) -shift; |
| 1791 | params->neon.output_zero_point = (int16_t) output_zero_point; |
| 1792 | params->neon.output_min = output_min; |
| 1793 | params->neon.output_max = output_max; |
| 1794 | #elif XNN_ARCH_WASMSIMD |
| 1795 | const int32_t remainder_mask = (INT32_C(1) << shift) - INT32_C(1); |
| 1796 | const int32_t remainder_threshold = (int32_t) ((uint32_t) remainder_mask >> 1); |
| 1797 | const int32_t zero_point_product = |
| 1798 | (int32_t) -(x_multiplier * (int32_t) x_zero_point + y_multiplier * (int32_t) y_zero_point); |
| 1799 | for (uint32_t i = 0; i < 4; i++) { |
| 1800 | params->wasmsimd.zero_point_product[i] = zero_point_product; |
| 1801 | params->wasmsimd.x_multiplier[i] = x_multiplier; |
| 1802 | params->wasmsimd.y_multiplier[i] = y_multiplier; |
| 1803 | params->wasmsimd.remainder_mask[i] = remainder_mask; |
| 1804 | params->wasmsimd.remainder_threshold[i] = remainder_threshold; |
| 1805 | } |
| 1806 | params->wasmsimd.shift = shift; |
| 1807 | for (uint32_t i = 0; i < 8; i++) { |
| 1808 | params->wasmsimd.output_zero_point[i] = (int16_t) output_zero_point; |
| 1809 | } |
| 1810 | for (uint32_t i = 0; i < 16; i++) { |
| 1811 | params->wasmsimd.output_min[i] = output_min; |
| 1812 | params->wasmsimd.output_max[i] = output_max; |
| 1813 | } |
| 1814 | #else |
| 1815 | const int32_t remainder_mask = (INT32_C(1) << shift) - INT32_C(1); |
| 1816 | const int32_t remainder_threshold = (int32_t) ((uint32_t) remainder_mask >> 1); |
| 1817 | params->scalar.zero_point_product = |
| 1818 | (int32_t) -(x_multiplier * (int32_t) x_zero_point + y_multiplier * (int32_t) y_zero_point); |
| 1819 | params->scalar.x_multiplier = x_multiplier; |
| 1820 | params->scalar.y_multiplier = y_multiplier; |
| 1821 | params->scalar.remainder_mask = (int32_t) remainder_mask; |
| 1822 | params->scalar.remainder_threshold = (int32_t) remainder_threshold; |
| 1823 | params->scalar.shift = (int32_t) shift; |
| 1824 | params->scalar.output_zero_point = (int32_t) output_zero_point; |
| 1825 | params->scalar.output_min = (int32_t) output_min; |
| 1826 | params->scalar.output_max = (int32_t) output_max; |
| 1827 | #endif |
| 1828 | } |
| 1829 | |
| 1830 | void xnn_init_scalar_qs8_add_params( |
| 1831 | union xnn_qs8_add_params params[XNN_MIN_ELEMENTS(1)], |
| 1832 | int8_t x_zero_point, |
| 1833 | int8_t y_zero_point, |
| 1834 | int8_t output_zero_point, |
| 1835 | float x_output_scale, |
| 1836 | float y_output_scale, |
| 1837 | int8_t output_min, |
| 1838 | int8_t output_max) |
| 1839 | { |
| 1840 | assert(x_output_scale >= 0x1.0p-10f); |
| 1841 | assert(y_output_scale >= 0x1.0p-10f); |
| 1842 | assert(x_output_scale < 0x1.0p+8f); |
| 1843 | assert(y_output_scale < 0x1.0p+8f); |
| 1844 | |
| 1845 | // Compute requantization parameters. |
| 1846 | const float max_output_scale = math_max_f32(x_output_scale, y_output_scale); |
| 1847 | assert(max_output_scale >= 0x1.0p-10f); |
| 1848 | assert(max_output_scale < 0x1.0p+8f); |
| 1849 | const uint32_t max_scale_bits = fp32_to_bits(max_output_scale); |
| 1850 | const int32_t max_scale_exponent = (int32_t) (max_scale_bits >> 23) - 127; |
| 1851 | // Shift is in [13, 31] range. |
| 1852 | const uint32_t shift = (uint32_t) (21 - max_scale_exponent); |
| 1853 | assert(shift < 32); |
| 1854 | assert(shift >= 13); |
| 1855 | |
| 1856 | // Multipliers are in [0, 2**22) range, largest multiplier is in [2**21, 2**22) range. |
| 1857 | const int32_t x_multiplier = (int32_t) lrintf(fp32_from_bits(fp32_to_bits(x_output_scale) + (shift << 23))); |
| 1858 | const int32_t y_multiplier = (int32_t) lrintf(fp32_from_bits(fp32_to_bits(y_output_scale) + (shift << 23))); |
| 1859 | assert((x_multiplier > y_multiplier ? x_multiplier : y_multiplier) >= INT32_C(0x00200000)); |
| 1860 | assert(x_multiplier < INT32_C(0x00400000)); |
| 1861 | assert(y_multiplier < INT32_C(0x00400000)); |
| 1862 | |
| 1863 | const int32_t remainder_mask = (INT32_C(1) << shift) - INT32_C(1); |
| 1864 | const int32_t remainder_threshold = (int32_t) ((uint32_t) remainder_mask >> 1); |
| 1865 | params->scalar.zero_point_product = |
| 1866 | (int32_t) -(x_multiplier * (int32_t) x_zero_point + y_multiplier * (int32_t) y_zero_point); |
| 1867 | params->scalar.x_multiplier = x_multiplier; |
| 1868 | params->scalar.y_multiplier = y_multiplier; |
| 1869 | params->scalar.remainder_mask = (int32_t) remainder_mask; |
| 1870 | params->scalar.remainder_threshold = (int32_t) remainder_threshold; |
| 1871 | params->scalar.shift = shift; |
| 1872 | params->scalar.output_zero_point = (int32_t) output_zero_point; |
| 1873 | params->scalar.output_min = (int32_t) output_min; |
| 1874 | params->scalar.output_max = (int32_t) output_max; |
| 1875 | } |