Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 1 | // Auto-generated file. Do not edit! |
| 2 | // Template: src/f32-sigmoid/neon-lut64-p2.c.in |
| 3 | // Generator: tools/xngen |
| 4 | // |
| 5 | // Copyright 2019 Google LLC |
| 6 | // |
| 7 | // This source code is licensed under the BSD-style license found in the |
| 8 | // LICENSE file in the root directory of this source tree. |
| 9 | |
| 10 | #include <assert.h> |
| 11 | |
| 12 | #include <arm_neon.h> |
| 13 | |
| 14 | #include <xnnpack/common.h> |
| 15 | #include <xnnpack/vunary.h> |
| 16 | |
| 17 | |
| 18 | extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64]; |
| 19 | |
Marat Dukhan | 4a24a58 | 2020-01-06 13:30:00 -0800 | [diff] [blame] | 20 | void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x4( |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 21 | size_t n, |
| 22 | const float* x, |
| 23 | float* y, |
Marat Dukhan | b2217dd | 2020-05-28 17:30:28 -0700 | [diff] [blame] | 24 | const void* params) XNN_DISABLE_TSAN |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 25 | { |
| 26 | assert(n % sizeof(float) == 0); |
| 27 | |
| 28 | const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f); |
| 29 | // The largest z for which sigmoidf(-z) is normalized. |
| 30 | // This number is also the largest z for which expf(-z) is normalized. |
| 31 | const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f); |
| 32 | const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f); |
Marat Dukhan | 4a24a58 | 2020-01-06 13:30:00 -0800 | [diff] [blame] | 33 | const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f); |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 34 | const float32x4_t vone = vmovq_n_f32(1.0f); |
| 35 | |
| 36 | const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f); |
| 37 | |
| 38 | const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); |
| 39 | |
| 40 | for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { |
| 41 | const float32x4_t vx = vld1q_f32(x); x += 4; |
| 42 | |
| 43 | // General structure of the algorithm: |
| 44 | // / exp(x) / (1 + exp(x)) if x <= 0 |
Marat Dukhan | ef4ce31 | 2020-09-10 12:29:08 -0700 | [diff] [blame^] | 45 | // f[x] := |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 46 | // \ 1 - f[-x] if x >= 0 |
| 47 | // |
| 48 | // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), |
| 49 | // then replace result with 1 - f[-z] if x >= 0. |
| 50 | const float32x4_t vz = vabsq_f32(vx); |
| 51 | |
| 52 | // Compute reduced argument n := round(-z * 64 / log(2)). |
| 53 | // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing |
| 54 | // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. |
| 55 | // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. |
| 56 | // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] |
| 57 | // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the |
| 58 | // very end of the algorithm. |
| 59 | float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64); |
| 60 | |
| 61 | // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is |
| 62 | // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = |
| 63 | // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: |
| 64 | // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the |
| 65 | // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. |
| 66 | // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized |
| 67 | // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, |
| 68 | // and thus the adjusted exponent is not lower than -126. |
| 69 | // |
| 70 | // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). |
| 71 | const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); |
| 72 | |
| 73 | // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). |
| 74 | const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); |
| 75 | const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); |
| 76 | const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); |
| 77 | float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); |
| 78 | float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); |
| 79 | vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); |
| 80 | vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); |
| 81 | const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); |
| 82 | // Adjust exponent of the value l fetched from the table to get the final s value. |
| 83 | const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); |
| 84 | |
| 85 | // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. |
| 86 | vn = vsubq_f32(vn, vmagic_bias); |
| 87 | |
| 88 | // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. |
Marat Dukhan | 4a24a58 | 2020-01-06 13:30:00 -0800 | [diff] [blame] | 89 | float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64); |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 90 | |
| 91 | // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. |
| 92 | // P1(t) = 1 + t * (-1 + t * c2) |
| 93 | float32x4_t vp = vmulq_f32(vt, vc2); |
| 94 | vp = vfmsq_f32(vt, vp, vt); |
| 95 | |
| 96 | // Reconstruct the exp(-z) value: |
| 97 | // f = s * (1 + t * (-1 + t * c2)) |
| 98 | // = s * (1 - t + t * (t * c2)) |
| 99 | // = s - s * (t - t * (t * c2)) |
| 100 | // = s - s * p |
| 101 | const float32x4_t vy = vfmsq_f32(vs, vs, vp); |
| 102 | |
| 103 | // Denominator of the sigmoid fraction: 1.0 + exp(-z) |
| 104 | const float32x4_t vd = vaddq_f32(vy, vone); |
| 105 | |
| 106 | // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. |
| 107 | // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| 108 | // Thus the reciprocal of the denominator never overflows. |
| 109 | float32x4_t vr = vrecpeq_f32(vd); |
| 110 | |
| 111 | vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); |
| 112 | |
| 113 | vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); |
| 114 | |
| 115 | // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) |
| 116 | float32x4_t vf = vmulq_f32(vy, vr); |
| 117 | |
| 118 | // For inputs below denormal cutoff, replace output with +0.0f. |
| 119 | // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| 120 | vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); |
| 121 | |
| 122 | // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) |
Marat Dukhan | 26cda6d | 2020-01-09 13:54:32 -0800 | [diff] [blame] | 123 | const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 124 | vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); |
| 125 | |
| 126 | vst1q_f32(y, vf); y += 4; |
| 127 | } |
| 128 | if XNN_UNLIKELY(n != 0) { |
| 129 | const float32x4_t vx = vld1q_f32(x); |
| 130 | |
| 131 | // General structure of the algorithm: |
| 132 | // / exp(x) / (1 + exp(x)) if x <= 0 |
Marat Dukhan | ef4ce31 | 2020-09-10 12:29:08 -0700 | [diff] [blame^] | 133 | // f[x] := |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 134 | // \ 1 - f[-x] if x >= 0 |
| 135 | // |
| 136 | // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), |
| 137 | // then replace result with 1 - f[-z] if x >= 0. |
| 138 | const float32x4_t vz = vabsq_f32(vx); |
| 139 | |
| 140 | // Compute reduced argument n := round(-z * 64 / log(2)). |
| 141 | // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing |
| 142 | // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. |
| 143 | // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. |
| 144 | // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] |
| 145 | // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the |
| 146 | // very end of the algorithm. |
| 147 | float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64); |
| 148 | |
| 149 | // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is |
| 150 | // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = |
| 151 | // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: |
| 152 | // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the |
| 153 | // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. |
| 154 | // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized |
| 155 | // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, |
| 156 | // and thus the adjusted exponent is not lower than -126. |
| 157 | // |
| 158 | // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). |
| 159 | const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); |
| 160 | |
| 161 | // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). |
| 162 | const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); |
| 163 | const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); |
| 164 | const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); |
| 165 | float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); |
| 166 | float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); |
| 167 | vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); |
| 168 | vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); |
| 169 | const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); |
| 170 | // Adjust exponent of the value l fetched from the table to get the final s value. |
| 171 | const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); |
| 172 | |
| 173 | // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. |
| 174 | vn = vsubq_f32(vn, vmagic_bias); |
| 175 | |
| 176 | // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. |
Marat Dukhan | 4a24a58 | 2020-01-06 13:30:00 -0800 | [diff] [blame] | 177 | float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64); |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 178 | |
| 179 | // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. |
| 180 | // P1(t) = 1 + t * (-1 + t * c2) |
| 181 | float32x4_t vp = vmulq_f32(vt, vc2); |
| 182 | vp = vfmsq_f32(vt, vp, vt); |
| 183 | |
| 184 | // Reconstruct the exp(-z) value: |
| 185 | // f = s * (1 + t * (-1 + t * c2)) |
| 186 | // = s * (1 - t + t * (t * c2)) |
| 187 | // = s - s * (t - t * (t * c2)) |
| 188 | // = s - s * p |
| 189 | const float32x4_t vy = vfmsq_f32(vs, vs, vp); |
| 190 | |
| 191 | // Denominator of the sigmoid fraction: 1.0 + exp(-z) |
| 192 | const float32x4_t vd = vaddq_f32(vy, vone); |
| 193 | |
| 194 | // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. |
| 195 | // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| 196 | // Thus the reciprocal of the denominator never overflows. |
| 197 | float32x4_t vr = vrecpeq_f32(vd); |
| 198 | |
| 199 | vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); |
| 200 | |
| 201 | vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); |
| 202 | |
| 203 | // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) |
| 204 | float32x4_t vf = vmulq_f32(vy, vr); |
| 205 | |
| 206 | // For inputs below denormal cutoff, replace output with +0.0f. |
| 207 | // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| 208 | vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); |
| 209 | |
| 210 | // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) |
Marat Dukhan | 26cda6d | 2020-01-09 13:54:32 -0800 | [diff] [blame] | 211 | const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); |
Marat Dukhan | 68b3b45 | 2020-01-02 10:11:15 -0800 | [diff] [blame] | 212 | vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); |
| 213 | |
| 214 | float32x2_t vf_lo = vget_low_f32(vf); |
| 215 | if (n & (2 * sizeof(float))) { |
| 216 | vst1_f32(y, vf_lo); y += 2; |
| 217 | vf_lo = vget_high_f32(vf); |
| 218 | } |
| 219 | if (n & (1 * sizeof(float))) { |
| 220 | vst1_lane_f32(y, vf_lo, 0); |
| 221 | } |
| 222 | } |
| 223 | } |