blob: 254f449ef54f76beba9f68fe7245144c6d33946f [file] [log] [blame]
Marat Dukhan68b3b452020-01-02 10:11:15 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-sigmoid/neon-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2019 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/vunary.h>
16
17
18extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
Marat Dukhan4a24a582020-01-06 13:30:00 -080020void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x4(
Marat Dukhan68b3b452020-01-02 10:11:15 -080021 size_t n,
22 const float* x,
23 float* y,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070024 const void* params) XNN_DISABLE_TSAN
Marat Dukhan68b3b452020-01-02 10:11:15 -080025{
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
Marat Dukhan4a24a582020-01-06 13:30:00 -080033 const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
Marat Dukhan68b3b452020-01-02 10:11:15 -080034 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
41 const float32x4_t vx = vld1q_f32(x); x += 4;
42
43 // General structure of the algorithm:
44 // / exp(x) / (1 + exp(x)) if x <= 0
Marat Dukhanef4ce312020-09-10 12:29:08 -070045 // f[x] :=
Marat Dukhan68b3b452020-01-02 10:11:15 -080046 // \ 1 - f[-x] if x >= 0
47 //
48 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
49 // then replace result with 1 - f[-z] if x >= 0.
50 const float32x4_t vz = vabsq_f32(vx);
51
52 // Compute reduced argument n := round(-z * 64 / log(2)).
53 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
54 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
55 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
56 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
57 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
58 // very end of the algorithm.
59 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
60
61 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
62 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
63 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
64 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
65 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
66 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
67 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
68 // and thus the adjusted exponent is not lower than -126.
69 //
70 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
71 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
72
73 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
74 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
75 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
76 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
77 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
78 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
79 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
80 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
81 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
82 // Adjust exponent of the value l fetched from the table to get the final s value.
83 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
84
85 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
86 vn = vsubq_f32(vn, vmagic_bias);
87
88 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
Marat Dukhan4a24a582020-01-06 13:30:00 -080089 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
Marat Dukhan68b3b452020-01-02 10:11:15 -080090
91 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
92 // P1(t) = 1 + t * (-1 + t * c2)
93 float32x4_t vp = vmulq_f32(vt, vc2);
94 vp = vfmsq_f32(vt, vp, vt);
95
96 // Reconstruct the exp(-z) value:
97 // f = s * (1 + t * (-1 + t * c2))
98 // = s * (1 - t + t * (t * c2))
99 // = s - s * (t - t * (t * c2))
100 // = s - s * p
101 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
102
103 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
104 const float32x4_t vd = vaddq_f32(vy, vone);
105
106 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
107 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
108 // Thus the reciprocal of the denominator never overflows.
109 float32x4_t vr = vrecpeq_f32(vd);
110
111 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
112
113 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
114
115 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
116 float32x4_t vf = vmulq_f32(vy, vr);
117
118 // For inputs below denormal cutoff, replace output with +0.0f.
119 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
120 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
121
122 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
Marat Dukhan26cda6d2020-01-09 13:54:32 -0800123 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
Marat Dukhan68b3b452020-01-02 10:11:15 -0800124 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
125
126 vst1q_f32(y, vf); y += 4;
127 }
128 if XNN_UNLIKELY(n != 0) {
129 const float32x4_t vx = vld1q_f32(x);
130
131 // General structure of the algorithm:
132 // / exp(x) / (1 + exp(x)) if x <= 0
Marat Dukhanef4ce312020-09-10 12:29:08 -0700133 // f[x] :=
Marat Dukhan68b3b452020-01-02 10:11:15 -0800134 // \ 1 - f[-x] if x >= 0
135 //
136 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
137 // then replace result with 1 - f[-z] if x >= 0.
138 const float32x4_t vz = vabsq_f32(vx);
139
140 // Compute reduced argument n := round(-z * 64 / log(2)).
141 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
142 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
143 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
144 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
145 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
146 // very end of the algorithm.
147 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
148
149 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
150 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
151 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
152 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
153 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
154 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
155 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
156 // and thus the adjusted exponent is not lower than -126.
157 //
158 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
159 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
160
161 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
162 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
163 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
164 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
165 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
166 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
167 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
168 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
169 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
170 // Adjust exponent of the value l fetched from the table to get the final s value.
171 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
172
173 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
174 vn = vsubq_f32(vn, vmagic_bias);
175
176 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
Marat Dukhan4a24a582020-01-06 13:30:00 -0800177 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
Marat Dukhan68b3b452020-01-02 10:11:15 -0800178
179 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
180 // P1(t) = 1 + t * (-1 + t * c2)
181 float32x4_t vp = vmulq_f32(vt, vc2);
182 vp = vfmsq_f32(vt, vp, vt);
183
184 // Reconstruct the exp(-z) value:
185 // f = s * (1 + t * (-1 + t * c2))
186 // = s * (1 - t + t * (t * c2))
187 // = s - s * (t - t * (t * c2))
188 // = s - s * p
189 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
190
191 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
192 const float32x4_t vd = vaddq_f32(vy, vone);
193
194 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
195 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
196 // Thus the reciprocal of the denominator never overflows.
197 float32x4_t vr = vrecpeq_f32(vd);
198
199 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
200
201 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
202
203 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
204 float32x4_t vf = vmulq_f32(vy, vr);
205
206 // For inputs below denormal cutoff, replace output with +0.0f.
207 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
208 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
209
210 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
Marat Dukhan26cda6d2020-01-09 13:54:32 -0800211 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
Marat Dukhan68b3b452020-01-02 10:11:15 -0800212 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
213
214 float32x2_t vf_lo = vget_low_f32(vf);
215 if (n & (2 * sizeof(float))) {
216 vst1_f32(y, vf_lo); y += 2;
217 vf_lo = vget_high_f32(vf);
218 }
219 if (n & (1 * sizeof(float))) {
220 vst1_lane_f32(y, vf_lo, 0);
221 }
222 }
223}