blob: 908a38e8f69c43fce82c07c84168f0371c714a00 [file] [log] [blame]
XNNPACK Teamb455b122019-09-27 18:10:33 -07001// Copyright (c) Facebook, Inc. and its affiliates.
2// All rights reserved.
3//
4// This source code is licensed under the BSD-style license found in the
5// LICENSE file in the root directory of this source tree.
6
7#include <algorithm>
8#include <cmath>
9#include <functional>
10#include <random>
11#include <vector>
12
13#include <xnnpack.h>
14
15#include <benchmark/benchmark.h>
Frank Barchardbb4c18b2019-09-30 11:05:52 -070016#include "bench/utils.h"
Marat Dukhanc3b9e862019-11-17 13:18:54 -080017#ifdef BENCHMARK_TENSORFLOW_LITE
18#include "flatbuffers/include/flatbuffers/flatbuffers.h"
19#include "tensorflow/lite/interpreter.h"
20#include "tensorflow/lite/kernels/register.h"
21#include "tensorflow/lite/model.h"
22#include "tensorflow/lite/schema/schema_generated.h"
23#include "tensorflow/lite/version.h"
24#endif // BENCHMARK_TENSORFLOW_LITE
XNNPACK Teamb455b122019-09-27 18:10:33 -070025
26
Marat Dukhanc3b9e862019-11-17 13:18:54 -080027static void xnnpack_sigmoid_q8(benchmark::State& state) {
28 const size_t batch_size = state.range(0);
29 const size_t channels = state.range(1);
XNNPACK Teamb455b122019-09-27 18:10:33 -070030
31 std::random_device random_device;
32 auto rng = std::mt19937(random_device());
33 auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
34
35 std::vector<uint8_t> input(batch_size * channels);
36 std::vector<uint8_t> output(batch_size * channels);
37 std::generate(input.begin(), input.end(), std::ref(u8rng));
38 std::fill(output.begin(), output.end(), 0xA5);
39
Marat Dukhan04f03be2019-11-19 12:36:47 -080040 xnn_status status = xnn_initialize(nullptr /* allocator */);
XNNPACK Teamb455b122019-09-27 18:10:33 -070041 if (status != xnn_status_success) {
42 state.SkipWithError("failed to initialize XNNPACK");
43 return;
44 }
45
46 xnn_operator_t sigmoid_op = nullptr;
47 status = xnn_create_sigmoid_nc_q8(
48 channels, channels /* input stride */, channels /* output stride */,
49 127 /* input zero point */, 1.0f /* input scale */,
50 0 /* output zero point */, 1.0f / 256.0f /* output scale */,
51 0 /* output min */, 255 /* output max */,
52 0 /* flags */, &sigmoid_op);
53 if (status != xnn_status_success || sigmoid_op == nullptr) {
54 state.SkipWithError("failed to create Sigmoid operator");
55 return;
56 }
57
58 status = xnn_setup_sigmoid_nc_q8(
59 sigmoid_op,
60 batch_size,
61 input.data(), output.data(),
62 nullptr /* thread pool */);
63 if (status != xnn_status_success) {
64 state.SkipWithError("failed to setup Sigmoid operator");
65 return;
66 }
67
68 for (auto _ : state) {
69 status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */);
70 if (status != xnn_status_success) {
71 state.SkipWithError("failed to run Sigmoid operator");
72 return;
73 }
74 }
75
76 status = xnn_delete_operator(sigmoid_op);
77 if (status != xnn_status_success) {
78 state.SkipWithError("failed to delete Sigmoid operator");
79 return;
80 }
81
Frank Barchardbb4c18b2019-09-30 11:05:52 -070082 state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
83
XNNPACK Teamb455b122019-09-27 18:10:33 -070084 const size_t elements_per_iteration = batch_size * channels;
85 state.counters["elements"] =
86 benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
87
88 const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t);
89 state.counters["bytes"] =
90 benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
91}
92
Marat Dukhanc3b9e862019-11-17 13:18:54 -080093static void xnnpack_sigmoid_f32(benchmark::State& state) {
94 const size_t batch_size = state.range(0);
95 const size_t channels = state.range(1);
Marat Dukhan346a9e52019-11-15 09:06:30 -080096
97 std::random_device random_device;
98 auto rng = std::mt19937(random_device());
Marat Dukhanc3b9e862019-11-17 13:18:54 -080099 auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), rng);
Marat Dukhan346a9e52019-11-15 09:06:30 -0800100
101 std::vector<float> input(batch_size * channels);
102 std::vector<float> output(batch_size * channels);
103 std::generate(input.begin(), input.end(), std::ref(f32rng));
104 std::fill(output.begin(), output.end(), std::nanf(""));
105
Marat Dukhan04f03be2019-11-19 12:36:47 -0800106 xnn_status status = xnn_initialize(nullptr /* allocator */);
Marat Dukhan346a9e52019-11-15 09:06:30 -0800107 if (status != xnn_status_success) {
108 state.SkipWithError("failed to initialize XNNPACK");
109 return;
110 }
111
112 xnn_operator_t sigmoid_op = nullptr;
113 status = xnn_create_sigmoid_nc_f32(
114 channels, channels /* input stride */, channels /* output stride */,
115 0 /* flags */, &sigmoid_op);
116 if (status != xnn_status_success || sigmoid_op == nullptr) {
117 state.SkipWithError("failed to create Sigmoid operator");
118 return;
119 }
120
121 status = xnn_setup_sigmoid_nc_f32(
122 sigmoid_op,
123 batch_size,
124 input.data(), output.data(),
125 nullptr /* thread pool */);
126 if (status != xnn_status_success) {
127 state.SkipWithError("failed to setup Sigmoid operator");
128 return;
129 }
130
131 for (auto _ : state) {
132 status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */);
133 if (status != xnn_status_success) {
134 state.SkipWithError("failed to run Sigmoid operator");
135 return;
136 }
137 }
138
139 status = xnn_delete_operator(sigmoid_op);
140 if (status != xnn_status_success) {
141 state.SkipWithError("failed to delete Sigmoid operator");
142 return;
143 }
144
145 state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
146
147 const size_t elements_per_iteration = batch_size * channels;
148 state.counters["elements"] =
149 benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
150
151 const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
152 state.counters["bytes"] =
153 benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
154}
155
Marat Dukhanc3b9e862019-11-17 13:18:54 -0800156#ifdef BENCHMARK_TENSORFLOW_LITE
157static void tflite_sigmoid_f32(benchmark::State& state) {
158 const size_t batch_size = state.range(0);
159 const size_t channels = state.range(1);
160
161 std::random_device random_device;
162 auto rng = std::mt19937(random_device());
163 auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), rng);
164
165 flatbuffers::FlatBufferBuilder builder;
166 flatbuffers::Offset<tflite::OperatorCode> operator_code =
167 CreateOperatorCode(builder, tflite::BuiltinOperator_LOGISTIC);
168
169 flatbuffers::Offset<tflite::Buffer> buffers[1] = {
170 tflite::CreateBuffer(builder, builder.CreateVector({})),
171 };
172
173 const int32_t input_shape[4] = {
174 static_cast<int32_t>(batch_size),
175 static_cast<int32_t>(1 /* height */),
176 static_cast<int32_t>(1 /* width */),
177 static_cast<int32_t>(channels)
178 };
179 const int32_t output_shape[4] = {
180 static_cast<int32_t>(batch_size),
181 static_cast<int32_t>(1 /* height */),
182 static_cast<int32_t>(1 /* width */),
183 static_cast<int32_t>(channels)
184 };
185
186 flatbuffers::Offset<tflite::Tensor> tensors[2] = {
187 tflite::CreateTensor(builder,
188 builder.CreateVector<int32_t>(input_shape, 4),
189 tflite::TensorType_FLOAT32),
190 tflite::CreateTensor(builder,
191 builder.CreateVector<int32_t>(output_shape, 4),
192 tflite::TensorType_FLOAT32),
193 };
194
195 const int32_t op_inputs[1] = { 0 };
196 const int32_t op_outputs[1] = { 1 };
197 flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
198 builder,
199 0 /* opcode_index */,
200 builder.CreateVector<int32_t>(op_inputs, 1),
201 builder.CreateVector<int32_t>(op_outputs, 1));
202
203 const int32_t graph_inputs[1] = { 0 };
204 const int32_t graph_outputs[1] = { 1 };
205 flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
206 builder,
207 builder.CreateVector(tensors, 2),
208 builder.CreateVector<int32_t>(graph_inputs, 1),
209 builder.CreateVector<int32_t>(graph_outputs, 1),
210 builder.CreateVector(&op, 1));
211
212 flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Sigmoid model");
213
214 flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
215 TFLITE_SCHEMA_VERSION,
216 builder.CreateVector(&operator_code, 1),
217 builder.CreateVector(&subgraph, 1),
218 description,
219 builder.CreateVector(buffers, 1));
220
221 builder.Finish(model_buffer);
222
223 const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
224 tflite::ops::builtin::BuiltinOpResolver resolver;
225 tflite::InterpreterBuilder interpreterBuilder(model, resolver);
226 std::unique_ptr<tflite::Interpreter> interpreter;
227 if (interpreterBuilder(&interpreter) != kTfLiteOk) {
228 state.SkipWithError("failed to create TFLite interpreter");
229 return;
230 }
231 if (interpreter == nullptr) {
232 state.SkipWithError("TFLite interpreter is null");
233 return;
234 }
235 interpreter->SetNumThreads(1);
236
237 if (interpreter->AllocateTensors() != kTfLiteOk) {
238 state.SkipWithError("failed to allocate tensors");
239 return;
240 }
241
242 std::generate(
243 interpreter->typed_tensor<float>(0),
244 interpreter->typed_tensor<float>(0) + batch_size * channels,
245 std::ref(f32rng));
246
247 for (auto _ : state) {
248 if (interpreter->Invoke() != kTfLiteOk) {
249 state.SkipWithError("failed to invoke TFLite interpreter");
250 return;
251 }
252 }
253
254 state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
255
256 const size_t elements_per_iteration = batch_size * channels;
257 state.counters["elements"] =
258 benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
259
260 const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
261 state.counters["bytes"] =
262 benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
263
264 interpreter.reset();
265}
266#endif // BENCHMARK_TENSORFLOW_LITE
267
XNNPACK Teamb455b122019-09-27 18:10:33 -0700268static void CharacteristicArguments(benchmark::internal::Benchmark* b)
269{
270 b->ArgNames({"N", "C"});
271
272 int32_t c = 16;
273 for (int32_t n = 224; n >= 7; n /= 2) {
274 b->Args({n * n, c});
275 c *= 2;
276 }
277}
278
Marat Dukhanc3b9e862019-11-17 13:18:54 -0800279BENCHMARK(xnnpack_sigmoid_q8)->Apply(CharacteristicArguments)->UseRealTime();
280BENCHMARK(xnnpack_sigmoid_f32)->Apply(CharacteristicArguments)->UseRealTime();
281
282#ifdef BENCHMARK_TENSORFLOW_LITE
283 BENCHMARK(tflite_sigmoid_f32)->Apply(CharacteristicArguments)->UseRealTime();
284#endif // BENCHMARK_TENSORFLOW_LITE
XNNPACK Teamb455b122019-09-27 18:10:33 -0700285
286#ifndef XNNPACK_BENCHMARK_NO_MAIN
287BENCHMARK_MAIN();
288#endif