blob: 408bc07ec2563fd5bd19d8af4c105cdb25d50bd6 [file] [log] [blame]
Marat Dukhan36173d22020-10-15 17:14:26 -07001// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#include <assert.h>
7#include <stddef.h>
8
9#include <immintrin.h>
10
11#include <xnnpack/common.h>
12#include <xnnpack/math-stubs.h>
13
14
15// Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63
16extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64];
17
18void xnn_math_f32_sigmoid__avx2_rr2_lut64_p2_gather_nr2fma(
19 size_t n,
20 const float* input,
21 float* output)
22{
23 assert(n % (8 * sizeof(float)) == 0);
24
25 // Floating-point mask with only the sign bit set
26 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
27 // Large number such that ulp(magic bias) == exp2(-6)
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p17f);
29 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f);
30 // Mask for the lowest 6 bits
31 const __m256 vindex_mask = _mm256_castsi256_ps(_mm256_set1_epi32(INT32_C(0x3F)));
32 const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
33 const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
34 // Coefficient of polynomial approximation of exp(t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128]
35 const __m256 vc2 = _mm256_set1_ps(0x1.FFFF0Ap-2f);
36 const __m256 vone = _mm256_set1_ps(1.0f);
37 // The smallest x for which sigmoidf(x) is normalized.
38 // This number is also the smallest x for which expf(x) is normalized.
39 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
40
41 for (; n != 0; n -= 8 * sizeof(float)) {
42 const __m256 vx = _mm256_loadu_ps(input);
43
44 // General structure of the algorithm:
45 //
46 // / exp(x) / (1 + exp(x)) if x <= 0
47 // f[x] :=
48 // \ 1 - f[-x] if x >= 0
49 //
50 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0.
51 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
52
53 // Compute reduced argument n := round(z / log(2), 6).
54 // We do it by adding a large number (magic bias), which cause rounding of the result to 6 fractional bits, then
55 // subtracing the large number back. The addition is combined with multiplication by log2e into a single FMA
56 // instruction. The trick with adding large number is valid only within certain bounds (|z / log(2)| <= 2**16, i.e.
57 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
58 // (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
59 // very end of the algorithm.
60 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
61
62 // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(z) is normalized,
63 // i.e. -87.33642 <= z <= 0. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s
64 // in two steps:
65 // 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in
66 // the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
67 // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
68 // number, because for -87.33642 <= z <= 0 (inputs for which sigmoidf(z) is normalized) we have
69 // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126.
70 //
71 // Shift bits 6:14 into 23:31 (position of floating-point exponent).
72 __m256i ve = _mm256_slli_epi32(_mm256_castps_si256(vn), 17);
73
Marat Dukhanb3fa13c2020-11-21 12:51:55 -080074 // Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n).
Marat Dukhan36173d22020-10-15 17:14:26 -070075 const __m256i vidx = _mm256_castps_si256(_mm256_and_ps(vn, vindex_mask));
76 const __m256i vl = _mm256_i32gather_epi32((const int*) xnn_table_exp2minus_k_over_64, vidx, sizeof(float));
77 // Adjust exponent of the value l fetched from the table to get the final s value.
78 const __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ve));
79
80 // Subtract the large number back to get the final n := round(z / log(2), 6) as a floating-point number.
81 vn = _mm256_sub_ps(vn, vmagic_bias);
82
83 // Compute reduced argument t := z - n * log(2).
84 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
85 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vz);
86 vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
87
88 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
89 // P(t) = 1 + t * (1 + t * c2) = 1 + (t + t * (t * c2)) = 1 + p
90 __m256 vp = _mm256_mul_ps(vt, vc2);
91 vp = _mm256_fmadd_ps(vt, vp, vt);
92
93 // Reconstruct the exp(z) value:
94 // e = s * (1 + t * (1 + t * c2))
95 // = s * (1 + p)
96 // = s + s * p
97 const __m256 vy = _mm256_fmadd_ps(vs, vp, vs);
98
99 // Denominator of the sigmoid fraction: 1.0 + exp(z)
100 const __m256 vd = _mm256_add_ps(vy, vone);
101
102 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
103 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
104 // Thus the reciprocal of the denominator never overflows.
105 __m256 vr = _mm256_rcp_ps(vd);
106 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
107 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
108
109 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
110 __m256 vf = _mm256_mul_ps(vy, vr);
111
112 // For inputs below denormal cutoff, replace output with +0.0f.
113 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
114 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
115
116 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
117 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
118
119 _mm256_storeu_ps(output, vf);
120
121 input += 8;
122 output += 8;
123 }
124}