blob: c81d2d055518410052d9254e50f226bc3552b23d [file] [log] [blame]
XNNPACK Teamb455b122019-09-27 18:10:33 -07001// Copyright (c) Facebook, Inc. and its affiliates.
2// All rights reserved.
3//
4// Copyright 2019 Google LLC
5//
6// This source code is licensed under the BSD-style license found in the
7// LICENSE file in the root directory of this source tree.
8
9#pragma once
10
11#include <gtest/gtest.h>
12
13#include <algorithm>
14#include <cassert>
15#include <cmath>
16#include <cstddef>
17#include <cstdlib>
18#include <functional>
19#include <random>
20#include <vector>
21
22#include <xnnpack.h>
23#include <xnnpack/AlignedAllocator.h>
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -070024#include <xnnpack/params-init.h>
XNNPACK Teamb455b122019-09-27 18:10:33 -070025#include <xnnpack/params.h>
26#include <xnnpack/requantization.h>
27
28
29class AvgPoolMicrokernelTester {
30 public:
31 enum class Variant {
32 Native,
33 Scalar,
34 };
35
36 inline AvgPoolMicrokernelTester& n(size_t n) {
37 assert(n != 0);
38 this->n_ = n;
39 return *this;
40 }
41
42 inline size_t n() const {
43 return this->n_;
44 }
45
46 inline AvgPoolMicrokernelTester& s(size_t s) {
47 assert(s != 0);
48 this->s_ = s;
49 return *this;
50 }
51
52 inline size_t s() const {
53 return this->s_;
54 }
55
56 inline AvgPoolMicrokernelTester& kh(size_t kh) {
57 assert(kh != 0);
58 this->kh_ = kh;
59 return *this;
60 }
61
62 inline size_t kh() const {
63 return this->kh_;
64 }
65
66 inline AvgPoolMicrokernelTester& kw(size_t kw) {
67 assert(kw != 0);
68 this->kw_ = kw;
69 return *this;
70 }
71
72 inline size_t kw() const {
73 return this->kw_;
74 }
75
76 inline size_t ks() const {
77 return kh() * kw();
78 }
79
80 inline size_t packed_ks() const {
81 if (ks() <= mr()) {
82 return mr();
83 } else {
84 return (ks() - mr()) % qr() == 0 ? ks() : ((ks() - mr()) / qr() + 1) * qr() + mr();
85 }
86 }
87
88 inline AvgPoolMicrokernelTester& mr(size_t mr) {
89 assert(mr != 0);
90 this->mr_ = mr;
91 return *this;
92 }
93
94 inline size_t mr() const {
95 return this->mr_;
96 }
97
98 inline AvgPoolMicrokernelTester& qr(size_t qr) {
99 assert(qr != 0);
100 this->qr_ = qr;
101 return *this;
102 }
103
104 inline size_t qr() const {
105 return this->qr_;
106 }
107
108 inline AvgPoolMicrokernelTester& kc(size_t kc) {
109 assert(kc != 0);
110 this->kc_ = kc;
111 return *this;
112 }
113
114 inline size_t kc() const {
115 return this->kc_;
116 }
117
118 inline AvgPoolMicrokernelTester& x_stride(size_t x_stride) {
119 assert(x_stride != 0);
120 this->x_stride_ = x_stride;
121 return *this;
122 }
123
124 inline size_t x_stride() const {
125 if (this->x_stride_ == 0) {
126 return kc();
127 } else {
128 assert(this->x_stride_ >= kc());
129 return this->x_stride_;
130 }
131 }
132
133 inline AvgPoolMicrokernelTester& y_stride(size_t y_stride) {
134 assert(y_stride != 0);
135 this->y_stride_ = y_stride;
136 return *this;
137 }
138
139 inline size_t y_stride() const {
140 if (this->y_stride_ == 0) {
141 return kc();
142 } else {
143 assert(this->y_stride_ >= kc());
144 return this->y_stride_;
145 }
146 }
147
148 inline AvgPoolMicrokernelTester& x_scale(float x_scale) {
149 assert(x_scale > 0.0f);
150 assert(std::isnormal(x_scale));
151 this->x_scale_ = x_scale;
152 return *this;
153 }
154
155 inline float x_scale() const {
156 return this->x_scale_;
157 }
158
159 inline AvgPoolMicrokernelTester& x_zero_point(uint8_t x_zero_point) {
160 this->x_zero_point_ = x_zero_point;
161 return *this;
162 }
163
164 inline uint8_t x_zero_point() const {
165 return this->x_zero_point_;
166 }
167
168 inline AvgPoolMicrokernelTester& y_scale(float y_scale) {
169 assert(y_scale > 0.0f);
170 assert(std::isnormal(y_scale));
171 this->y_scale_ = y_scale;
172 return *this;
173 }
174
175 inline float y_scale() const {
176 return this->y_scale_;
177 }
178
179 inline AvgPoolMicrokernelTester& y_zero_point(uint8_t y_zero_point) {
180 this->y_zero_point_ = y_zero_point;
181 return *this;
182 }
183
184 inline uint8_t y_zero_point() const {
185 return this->y_zero_point_;
186 }
187
188 inline AvgPoolMicrokernelTester& qmin(uint8_t qmin) {
189 this->qmin_ = qmin;
190 return *this;
191 }
192
193 inline uint8_t qmin() const {
194 return this->qmin_;
195 }
196
197 inline AvgPoolMicrokernelTester& qmax(uint8_t qmax) {
198 this->qmax_ = qmax;
199 return *this;
200 }
201
202 inline uint8_t qmax() const {
203 return this->qmax_;
204 }
205
206 inline AvgPoolMicrokernelTester& iterations(size_t iterations) {
207 this->iterations_ = iterations;
208 return *this;
209 }
210
211 inline size_t iterations() const {
212 return this->iterations_;
213 }
214
215 void Test(xnn_q8_avgpool_up_ukernel_function avgpool, Variant variant = Variant::Native) const {
216 std::random_device random_device;
217 auto rng = std::mt19937(random_device());
218 auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
219
Marat Dukhanbd8a9622019-12-06 01:05:35 -0800220 std::vector<const uint8_t*> indirect_x(packed_ks() + (n() - 1) * s() * kh());
XNNPACK Teamb455b122019-09-27 18:10:33 -0700221 std::vector<uint8_t> x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(uint8_t));
222
223 std::vector<uint8_t> zero(kc() + XNN_EXTRA_BYTES / sizeof(uint8_t));
224 std::vector<uint8_t> y((n() - 1) * y_stride() + kc());
225 std::vector<uint8_t> y_ref(n() * kc());
226 std::vector<float> y_fp(n() * kc());
227 std::vector<int32_t> y_acc(n() * kc());
228 for (size_t iteration = 0; iteration < iterations(); iteration++) {
229 std::generate(x.begin(), x.end(), std::ref(u8rng));
230 std::fill(y.begin(), y.end(), 0xA5);
231
232 for (size_t i = 0; i < indirect_x.size(); i++) {
233 indirect_x[i] = x.data() + i * x_stride();
234 }
235 std::shuffle(indirect_x.begin(), indirect_x.end(), rng);
236
237 // Prepare quantization parameters.
238 xnn_q8_avgpool_params quantization_params = { };
239 switch (variant) {
240 case Variant::Native:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700241 quantization_params = xnn_init_q8_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700242 -int32_t(x_zero_point()) * int32_t(ks()),
243 x_scale() / (y_scale() * float(ks())),
244 y_zero_point(), qmin(), qmax());
245 break;
246 case Variant::Scalar:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700247 quantization_params = xnn_init_scalar_q8_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700248 -int32_t(x_zero_point()) * int32_t(ks()),
249 x_scale() / (y_scale() * float(ks())),
250 y_zero_point(), qmin(), qmax());
251 break;
252 }
253 const xnn_q8_avgpool_params scalar_quantization_params =
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700254 xnn_init_scalar_q8_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700255 -int32_t(x_zero_point()) * int32_t(ks()),
256 x_scale() / (y_scale() * float(ks())),
257 y_zero_point(), qmin(), qmax());
258
259 // Compute reference results.
260 for (size_t i = 0; i < n(); i++) {
261 for (size_t k = 0; k < kc(); k++) {
262 int32_t acc = scalar_quantization_params.scalar.bias;
263 for (size_t j = 0; j < ks(); j++) {
264 acc += indirect_x[i * s() * kh() + j][k];
265 }
266 y_acc[i * kc() + k] = acc;
267 y_ref[i * kc() + k] = xnn_avgpool_quantize(acc, scalar_quantization_params);
268 y_fp[i * kc() + k] = float(acc) * (x_scale() / (y_scale() * float(ks()))) + float(y_zero_point());
269 y_fp[i * kc() + k] = std::min<float>(y_fp[i * kc() + k], float(qmax()));
270 y_fp[i * kc() + k] = std::max<float>(y_fp[i * kc() + k], float(qmin()));
271 }
272 }
273
274 // Call optimized micro-kernel.
275 avgpool(n(), ks(), kc(),
276 indirect_x.data(), zero.data(), y.data(),
277 kh() * s() * sizeof(void*),
278 (y_stride() - kc()) * sizeof(uint8_t),
279 &quantization_params);
280
281 // Verify results.
282 for (size_t i = 0; i < n(); i++) {
283 for (size_t k = 0; k < kc(); k++) {
284 ASSERT_LE(uint32_t(y[i * y_stride() + k]), uint32_t(qmax()))
285 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
286 ASSERT_GE(uint32_t(y[i * y_stride() + k]), uint32_t(qmin()))
287 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
288 ASSERT_NEAR(float(int32_t(y[i * y_stride() + k])), y_fp[i * kc() + k], 0.5f)
289 << "at pixel " << i << ", channel " << k << ", n = " << n()
290 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc()
291 << ", acc = " << y_acc[i * kc() + k];
292 ASSERT_EQ(uint32_t(y_ref[i * kc() + k]), uint32_t(y[i * y_stride() + k]))
293 << "at pixel " << i << ", channel " << k << ", n = " << n()
294 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc()
295 << ", acc = " << y_acc[i * kc() + k];
296 }
297 }
298 }
299 }
300
301 void Test(xnn_q8_avgpool_mp_ukernel_function avgpool, Variant variant = Variant::Native) const {
302 std::random_device random_device;
303 auto rng = std::mt19937(random_device());
304 auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
305
Marat Dukhanbd8a9622019-12-06 01:05:35 -0800306 std::vector<const uint8_t*> indirect_x(packed_ks() + (n() - 1) * s() * kh());
XNNPACK Teamb455b122019-09-27 18:10:33 -0700307 std::vector<uint8_t> x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(uint8_t));
Marat Dukhan9594db02019-12-05 14:32:37 -0800308 std::vector<int32_t, AlignedAllocator<int32_t, 64>> buf(kc() + XNN_EXTRA_BYTES / sizeof(uint8_t));
XNNPACK Teamb455b122019-09-27 18:10:33 -0700309
310 std::vector<uint8_t> zero(kc() + XNN_EXTRA_BYTES / sizeof(uint8_t));
311 std::vector<uint8_t> y((n() - 1) * y_stride() + kc());
312 std::vector<uint8_t> y_ref(n() * kc());
313 std::vector<float> y_fp(n() * kc());
314 std::vector<int32_t> y_acc(n() * kc());
315 for (size_t iteration = 0; iteration < iterations(); iteration++) {
316 std::generate(x.begin(), x.end(), std::ref(u8rng));
317 std::fill(y.begin(), y.end(), 0xA5);
318
319 for (size_t i = 0; i < indirect_x.size(); i++) {
320 indirect_x[i] = x.data() + i * x_stride();
321 }
322 std::shuffle(indirect_x.begin(), indirect_x.end(), rng);
323
324 // Prepare quantization parameters.
325 xnn_q8_avgpool_params quantization_params = { };
326 switch (variant) {
327 case Variant::Native:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700328 quantization_params = xnn_init_q8_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700329 -int32_t(x_zero_point()) * int32_t(ks()),
330 x_scale() / (y_scale() * float(ks())),
331 y_zero_point(), qmin(), qmax());
332 break;
333 case Variant::Scalar:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700334 quantization_params = xnn_init_scalar_q8_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700335 -int32_t(x_zero_point()) * int32_t(ks()),
336 x_scale() / (y_scale() * float(ks())),
337 y_zero_point(), qmin(), qmax());
338 break;
339 }
340 const xnn_q8_avgpool_params scalar_quantization_params =
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700341 xnn_init_scalar_q8_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700342 -int32_t(x_zero_point()) * int32_t(ks()),
343 x_scale() / (y_scale() * float(ks())),
344 y_zero_point(), qmin(), qmax());
345
346 // Compute reference results.
347 for (size_t i = 0; i < n(); i++) {
348 for (size_t k = 0; k < kc(); k++) {
349 int32_t acc = scalar_quantization_params.scalar.bias;
350 for (size_t j = 0; j < ks(); j++) {
351 acc += indirect_x[i * s() * kh() + j][k];
352 }
353 y_acc[i * kc() + k] = acc;
354 y_ref[i * kc() + k] = xnn_avgpool_quantize(acc, scalar_quantization_params);
355 y_fp[i * kc() + k] = float(acc) * (x_scale() / (y_scale() * float(ks()))) + float(y_zero_point());
356 y_fp[i * kc() + k] = std::min<float>(y_fp[i * kc() + k], float(qmax()));
357 y_fp[i * kc() + k] = std::max<float>(y_fp[i * kc() + k], float(qmin()));
358 }
359 }
360
361 // Call optimized micro-kernel.
362 avgpool(n(), ks(), kc(),
363 indirect_x.data(), zero.data(), buf.data(), y.data(),
364 (kh() * s() - (packed_ks() - qr())) * sizeof(void*),
365 (y_stride() - kc()) * sizeof(uint8_t),
366 &quantization_params);
367
368 // Verify results.
369 for (size_t i = 0; i < n(); i++) {
370 for (size_t k = 0; k < kc(); k++) {
371 ASSERT_LE(uint32_t(y[i * y_stride() + k]), uint32_t(qmax()))
372 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
373 ASSERT_GE(uint32_t(y[i * y_stride() + k]), uint32_t(qmin()))
374 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
375 ASSERT_NEAR(float(int32_t(y[i * y_stride() + k])), y_fp[i * kc() + k], 0.5f)
376 << "at pixel " << i << ", channel " << k << ", n = " << n()
377 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc()
378 << ", acc = " << y_acc[i * kc() + k];
379 ASSERT_EQ(uint32_t(y_ref[i * kc() + k]), uint32_t(y[i * y_stride() + k]))
380 << "at pixel " << i << ", channel " << k << ", n = " << n()
381 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc()
382 << ", acc = " << y_acc[i * kc() + k];
383 }
384 }
385 }
386 }
387
388 void Test(xnn_f32_avgpool_up_ukernel_function avgpool, Variant variant = Variant::Native) const {
389 std::random_device random_device;
390 auto rng = std::mt19937(random_device());
391 auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
392
Marat Dukhanbd8a9622019-12-06 01:05:35 -0800393 std::vector<const float*> indirect_x(packed_ks() + (n() - 1) * s() * kh());
XNNPACK Teamb455b122019-09-27 18:10:33 -0700394 std::vector<float> x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float));
395
396 std::vector<float> zero(kc() + XNN_EXTRA_BYTES / sizeof(float));
397 std::vector<float> y((n() - 1) * y_stride() + kc());
398 std::vector<float> y_ref(n() * kc());
399 for (size_t iteration = 0; iteration < iterations(); iteration++) {
400 std::generate(x.begin(), x.end(), std::ref(f32rng));
401 std::fill(y.begin(), y.end(), std::nanf(""));
402
403 for (size_t i = 0; i < indirect_x.size(); i++) {
404 indirect_x[i] = x.data() + i * x_stride();
405 }
406 std::shuffle(indirect_x.begin(), indirect_x.end(), rng);
407
408 // Compute reference results, without clamping.
409 for (size_t i = 0; i < n(); i++) {
410 for (size_t k = 0; k < kc(); k++) {
411 float acc = 0.0f;
412 for (size_t j = 0; j < ks(); j++) {
413 acc += indirect_x[i * s() * kh() + j][k];
414 }
415 y_ref[i * kc() + k] = acc / float(ks());
416 }
417 }
418
419 // Compute clamping parameters.
420 const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
421 const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
422 const float accumulated_range = accumulated_max - accumulated_min;
423 const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
424 const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
425
426 // Clamp reference results.
427 for (float& y_value : y_ref) {
428 y_value = std::max(std::min(y_value, y_max), y_min);
429 }
430
431 // Prepare output parameters.
432 xnn_f32_avgpool_params params = { };
433 switch (variant) {
434 case Variant::Native:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700435 params = xnn_init_f32_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700436 1.0f / float(ks()), y_min, y_max);
437 break;
438 case Variant::Scalar:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700439 params = xnn_init_scalar_f32_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700440 1.0f / float(ks()), y_min, y_max);
441 break;
442 }
443
444 // Call optimized micro-kernel.
445 avgpool(n(), ks(), kc(),
446 indirect_x.data(), zero.data(), y.data(),
447 kh() * s() * sizeof(void*),
448 (y_stride() - kc()) * sizeof(float),
449 &params);
450
451 // Verify results.
452 for (size_t i = 0; i < n(); i++) {
453 for (size_t k = 0; k < kc(); k++) {
454 ASSERT_LE(y[i * y_stride() + k], y_max)
455 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
456 ASSERT_GE(y[i * y_stride() + k], y_min)
457 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
458 ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6)
459 << "at pixel " << i << ", channel " << k << ", n = " << n()
460 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc();
461 }
462 }
463 }
464 }
465
466 void Test(xnn_f32_avgpool_mp_ukernel_function avgpool, Variant variant = Variant::Native) const {
467 std::random_device random_device;
468 auto rng = std::mt19937(random_device());
469 auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
470
Marat Dukhanbd8a9622019-12-06 01:05:35 -0800471 std::vector<const float*> indirect_x(packed_ks() + (n() - 1) * s() * kh());
XNNPACK Teamb455b122019-09-27 18:10:33 -0700472 std::vector<float> x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float));
Marat Dukhan9594db02019-12-05 14:32:37 -0800473 std::vector<float, AlignedAllocator<float, 64>> buf(kc() + XNN_EXTRA_BYTES / sizeof(float));
XNNPACK Teamb455b122019-09-27 18:10:33 -0700474
475 std::vector<float> zero(kc() + XNN_EXTRA_BYTES / sizeof(float));
476 std::vector<float> y((n() - 1) * y_stride() + kc());
477 std::vector<float> y_ref(n() * kc());
478 for (size_t iteration = 0; iteration < iterations(); iteration++) {
479 std::generate(x.begin(), x.end(), std::ref(f32rng));
480 std::fill(y.begin(), y.end(), std::nanf(""));
481
482 for (size_t i = 0; i < indirect_x.size(); i++) {
483 indirect_x[i] = x.data() + i * x_stride();
484 }
485 std::shuffle(indirect_x.begin(), indirect_x.end(), rng);
486
487 // Compute reference results, without clamping.
488 for (size_t i = 0; i < n(); i++) {
489 for (size_t k = 0; k < kc(); k++) {
490 float acc = 0.0f;
491 for (size_t j = 0; j < ks(); j++) {
492 acc += indirect_x[i * s() * kh() + j][k];
493 }
494 y_ref[i * kc() + k] = acc / float(ks());
495 }
496 }
497
498 // Compute clamping parameters.
499 const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
500 const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
501 const float accumulated_range = accumulated_max - accumulated_min;
502 const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
503 const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
504
505 // Clamp reference results.
506 for (float& y_value : y_ref) {
507 y_value = std::max(std::min(y_value, y_max), y_min);
508 }
509
510 // Prepare output parameters.
511 xnn_f32_avgpool_params params = { };
512 switch (variant) {
513 case Variant::Native:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700514 params = xnn_init_f32_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700515 1.0f / float(ks()), y_min, y_max);
516 break;
517 case Variant::Scalar:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700518 params = xnn_init_scalar_f32_avgpool_params(
XNNPACK Teamb455b122019-09-27 18:10:33 -0700519 1.0f / float(ks()), y_min, y_max);
520 break;
521 }
522
523 // Call optimized micro-kernel.
524 avgpool(n(), ks(), kc(),
525 indirect_x.data(), zero.data(), buf.data(), y.data(),
526 (kh() * s() - (packed_ks() - qr())) * sizeof(void*),
527 (y_stride() - kc()) * sizeof(float),
528 &params);
529
530 // Verify results.
531 for (size_t i = 0; i < n(); i++) {
532 for (size_t k = 0; k < kc(); k++) {
533 ASSERT_LE(y[i * y_stride() + k], y_max)
534 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
535 ASSERT_GE(y[i * y_stride() + k], y_min)
536 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
537 ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6)
538 << "at pixel " << i << ", channel " << k << ", n = " << n()
539 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc();
540 }
541 }
542 }
543 }
544
545 void Test(xnn_f32_pavgpool_up_ukernel_function pavgpool, Variant variant = Variant::Native) const {
546 std::random_device random_device;
547 auto rng = std::mt19937(random_device());
548 auto f32irng = std::bind(std::uniform_real_distribution<float>(), rng);
549 auto f32mrng = std::bind(std::uniform_real_distribution<float>(0.1f, 0.5f), rng);
550
Marat Dukhanbd8a9622019-12-06 01:05:35 -0800551 std::vector<const float*> indirect_x(packed_ks() + (n() - 1) * s() * kh());
XNNPACK Teamb455b122019-09-27 18:10:33 -0700552 std::vector<float> x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float));
553
554 std::vector<float> zero(kc() + XNN_EXTRA_BYTES / sizeof(float));
555 std::vector<float> m(kc() + XNN_EXTRA_BYTES / sizeof(float));
556 std::vector<float> y((n() - 1) * y_stride() + kc());
557 std::vector<float> y_ref(n() * kc());
558 for (size_t iteration = 0; iteration < iterations(); iteration++) {
559 std::generate(x.begin(), x.end(), std::ref(f32irng));
560 std::generate(m.begin(), m.end(), std::ref(f32mrng));
561 std::fill(y.begin(), y.end(), std::nanf(""));
562
563 for (size_t i = 0; i < indirect_x.size(); i++) {
564 indirect_x[i] = x.data() + i * x_stride();
565 }
566 std::shuffle(indirect_x.begin(), indirect_x.end(), rng);
567
568 // Compute reference results, without clamping.
569 for (size_t i = 0; i < n(); i++) {
570 for (size_t k = 0; k < kc(); k++) {
571 float acc = 0.0f;
572 for (size_t j = 0; j < ks(); j++) {
573 acc += indirect_x[i * s() * kh() + j][k];
574 }
575 y_ref[i * kc() + k] = acc * m[i];
576 }
577 }
578
579 // Compute clamping parameters.
580 const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
581 const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
582 const float accumulated_range = accumulated_max - accumulated_min;
583 const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
584 const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
585
586 // Clamp reference results.
587 for (float& y_value : y_ref) {
588 y_value = std::max(std::min(y_value, y_max), y_min);
589 }
590
591 // Prepare output parameters.
592 xnn_f32_output_params output_params = { };
593 switch (variant) {
594 case Variant::Native:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700595 output_params = xnn_init_f32_output_params(y_min, y_max);
XNNPACK Teamb455b122019-09-27 18:10:33 -0700596 break;
597 case Variant::Scalar:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700598 output_params = xnn_init_scalar_f32_output_params(y_min, y_max);
XNNPACK Teamb455b122019-09-27 18:10:33 -0700599 break;
600 }
601
602 // Call optimized micro-kernel.
603 pavgpool(n(), ks(), kc(),
604 indirect_x.data(), zero.data(), m.data(), y.data(),
605 kh() * s() * sizeof(void*),
606 (y_stride() - kc()) * sizeof(float),
607 &output_params);
608
609 // Verify results.
610 for (size_t i = 0; i < n(); i++) {
611 for (size_t k = 0; k < kc(); k++) {
612 ASSERT_LE(y[i * y_stride() + k], y_max)
613 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
614 ASSERT_GE(y[i * y_stride() + k], y_min)
615 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
616 ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6)
617 << "at pixel " << i << ", channel " << k << ", n = " << n()
618 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc();
619 }
620 }
621 }
622 }
623
624 void Test(xnn_f32_pavgpool_mp_ukernel_function pavgpool, Variant variant = Variant::Native) const {
625 std::random_device random_device;
626 auto rng = std::mt19937(random_device());
627 auto f32irng = std::bind(std::uniform_real_distribution<float>(), rng);
628 auto f32mrng = std::bind(std::uniform_real_distribution<float>(0.1f, 0.5f), rng);
629
Marat Dukhanbd8a9622019-12-06 01:05:35 -0800630 std::vector<const float*> indirect_x(packed_ks() + (n() - 1) * s() * kh());
XNNPACK Teamb455b122019-09-27 18:10:33 -0700631 std::vector<float> x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float));
Marat Dukhan9594db02019-12-05 14:32:37 -0800632 std::vector<float, AlignedAllocator<float, 64>> buf(kc() + XNN_EXTRA_BYTES / sizeof(float));
XNNPACK Teamb455b122019-09-27 18:10:33 -0700633
634 std::vector<float> zero(kc() + XNN_EXTRA_BYTES / sizeof(float));
635 std::vector<float> m(kc() + XNN_EXTRA_BYTES / sizeof(float));
636 std::vector<float> y((n() - 1) * y_stride() + kc());
637 std::vector<float> y_ref(n() * kc());
638 for (size_t iteration = 0; iteration < iterations(); iteration++) {
639 std::generate(x.begin(), x.end(), std::ref(f32irng));
640 std::generate(m.begin(), m.end(), std::ref(f32mrng));
641 std::fill(y.begin(), y.end(), std::nanf(""));
642
643 for (size_t i = 0; i < indirect_x.size(); i++) {
644 indirect_x[i] = x.data() + i * x_stride();
645 }
646 std::shuffle(indirect_x.begin(), indirect_x.end(), rng);
647
648 // Compute reference results, without clamping.
649 for (size_t i = 0; i < n(); i++) {
650 for (size_t k = 0; k < kc(); k++) {
651 float acc = 0.0f;
652 for (size_t j = 0; j < ks(); j++) {
653 acc += indirect_x[i * s() * kh() + j][k];
654 }
655 y_ref[i * kc() + k] = acc * m[i];
656 }
657 }
658
659 // Compute clamping parameters.
660 const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
661 const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
662 const float accumulated_range = accumulated_max - accumulated_min;
663 const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
664 const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
665
666 // Clamp reference results.
667 for (float& y_value : y_ref) {
668 y_value = std::max(std::min(y_value, y_max), y_min);
669 }
670
671 // Prepare output parameters.
672 xnn_f32_output_params output_params = { };
673 switch (variant) {
674 case Variant::Native:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700675 output_params = xnn_init_f32_output_params(y_min, y_max);
XNNPACK Teamb455b122019-09-27 18:10:33 -0700676 break;
677 case Variant::Scalar:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700678 output_params = xnn_init_scalar_f32_output_params(y_min, y_max);
XNNPACK Teamb455b122019-09-27 18:10:33 -0700679 break;
680 }
681
682 // Call optimized micro-kernel.
683 pavgpool(n(), ks(), kc(),
684 indirect_x.data(), zero.data(), m.data(), buf.data(), y.data(),
685 (kh() * s() - (packed_ks() - qr())) * sizeof(void*),
686 (y_stride() - kc()) * sizeof(float),
687 &output_params);
688
689 // Verify results.
690 for (size_t i = 0; i < n(); i++) {
691 for (size_t k = 0; k < kc(); k++) {
692 ASSERT_LE(y[i * y_stride() + k], y_max)
693 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
694 ASSERT_GE(y[i * y_stride() + k], y_min)
695 << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc();
696 ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6)
697 << "at pixel " << i << ", channel " << k << ", n = " << n()
698 << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc();
699 }
700 }
701 }
702 }
703
704 private:
705 size_t n_{1};
706 size_t s_{1};
707 size_t kh_{1};
708 size_t kw_{1};
709 size_t mr_{1};
710 size_t qr_{1};
711 size_t kc_{1};
712 size_t x_stride_{0};
713 size_t y_stride_{0};
714 float x_scale_{1.25f};
715 float y_scale_{0.75f};
716 uint8_t x_zero_point_{121};
717 uint8_t y_zero_point_{133};
718 uint8_t qmin_{0};
719 uint8_t qmax_{255};
720 size_t iterations_{15};
721};