blob: ac54b7eb92e84ea52b5724a9f0a217b1bcd2f445 [file] [log] [blame]
Marat Dukhan8d3c07e2020-01-02 01:20:59 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-sigmoid/neon-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2019 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/vunary.h>
16
17
Marat Dukhan4a24a582020-01-06 13:30:00 -080018void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr1recps1fma_x20(
Marat Dukhan8d3c07e2020-01-02 01:20:59 -080019 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23{
24 assert(n % sizeof(float) == 0);
25
26 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
Marat Dukhan4a24a582020-01-06 13:30:00 -080031 const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
Marat Dukhan8d3c07e2020-01-02 01:20:59 -080032 const float32x4_t vone = vmovq_n_f32(1.0f);
33
34 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
39
40 for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45 const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46
47 // General structure of the algorithm:
48 // / exp(x) / (1 + exp(x)) if x <= 0
49 // f[x] :=
50 // \ 1 - f[-x] if x >= 0
51 //
52 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
53 // then replace result with 1 - f[z] if x >= 0.
54 const float32x4_t vz0123 = vabsq_f32(vx0123);
55 const float32x4_t vz4567 = vabsq_f32(vx4567);
56 const float32x4_t vz89AB = vabsq_f32(vx89AB);
57 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
58 const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
59
60 // Compute reduced argument n := round(-z / log(2)).
61 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
62 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
64 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
65 // anyway. We fixup the result for such inputs at the very end of the algorithm.
66 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e);
67 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e);
68 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e);
69 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e);
70 float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e);
71
72 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
73 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
74 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
75 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
76 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
77 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
78 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
79
80 // Subtract the large number back to get final n := round(-z / log(2)).
81 vn0123 = vsubq_f32(vn0123, vmagic_bias);
82 vn4567 = vsubq_f32(vn4567, vmagic_bias);
83 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
84 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
85 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
86
87 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
Marat Dukhan4a24a582020-01-06 13:30:00 -080088 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2);
89 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2);
90 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2);
91 float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2);
92 float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2);
Marat Dukhan8d3c07e2020-01-02 01:20:59 -080093
94 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
95 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
96 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
97 float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
98 float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
99 float32x4_t vpGHIJ = vfmaq_f32(vc4, vc5, vtGHIJ);
100
101 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
102 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
103 vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
104 vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
105 vpGHIJ = vfmaq_f32(vc3, vpGHIJ, vtGHIJ);
106
107 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
108 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
109 vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
110 vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
111 vpGHIJ = vfmaq_f32(vc2, vpGHIJ, vtGHIJ);
112
113 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
114 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
115 vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
116 vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
117 vpGHIJ = vfmaq_f32(vc1, vpGHIJ, vtGHIJ);
118
119 // Reconstruct the exp(-z) value:
120 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
121 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
122 // = s + (t * s) * p
123 vt0123 = vmulq_f32(vt0123, vs0123);
124 vt4567 = vmulq_f32(vt4567, vs4567);
125 vt89AB = vmulq_f32(vt89AB, vs89AB);
126 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
127 vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
128
129 float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123);
130 float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567);
131 float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
132 float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
133 float32x4_t veGHIJ = vfmaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
134
135 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
136 float32x4_t vd0123 = vaddq_f32(ve0123, vone);
137 float32x4_t vd4567 = vaddq_f32(ve4567, vone);
138 float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
139 float32x4_t vdCDEF = vaddq_f32(veCDEF, vone);
140 float32x4_t vdGHIJ = vaddq_f32(veGHIJ, vone);
141
142 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
143 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
144 // Thus the reciprocal of the denominator never overflows.
145 float32x4_t vr0123 = vrecpeq_f32(vd0123);
146 float32x4_t vr4567 = vrecpeq_f32(vd4567);
147 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
148 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
149 float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
150
151 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
152 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
153 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
154 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
155 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
156
157 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
158 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
159 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
160 vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
161 vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ));
162
163 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
164 float32x4_t vf0123 = vmulq_f32(ve0123, vr0123);
165 float32x4_t vf4567 = vmulq_f32(ve4567, vr4567);
166 float32x4_t vf89AB = vmulq_f32(ve89AB, vr89AB);
167 float32x4_t vfCDEF = vmulq_f32(veCDEF, vrCDEF);
168 float32x4_t vfGHIJ = vmulq_f32(veGHIJ, vrGHIJ);
169
170 // For inputs below denormal cutoff, replace output with +0.0f.
171 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
172 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
173 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
174 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
175 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
176 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
177
178 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
179 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
180 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
181 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
182 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
183 const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
184
185 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
186 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
187 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
188 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
189 vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
190
191 vst1q_f32(y, vf0123); y += 4;
192 vst1q_f32(y, vf4567); y += 4;
193 vst1q_f32(y, vf89AB); y += 4;
194 vst1q_f32(y, vfCDEF); y += 4;
195 vst1q_f32(y, vfGHIJ); y += 4;
196 }
197 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
198 const float32x4_t vx = vld1q_f32(x); x += 4;
199
200 // General structure of the algorithm:
201 // / exp(x) / (1 + exp(x)) if x <= 0
202 // f[x] :=
203 // \ 1 - f[-x] if x >= 0
204 //
205 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
206 // then replace result with 1 - f[z] if x <= 0.
207 const float32x4_t vz = vabsq_f32(vx);
208
209 // Compute reduced argument n := round(-z / log(2)).
210 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
211 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
212 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
213 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
214 // anyway. We fixup the result for such inputs at the very end of the algorithm.
215 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
216
217 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
218 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
219 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
220
221 // Subtract the large number back to get final n := round(-z / log(2)).
222 vn = vsubq_f32(vn, vmagic_bias);
223
224 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
Marat Dukhan4a24a582020-01-06 13:30:00 -0800225 float32x4_t vt = vfmaq_f32(vz, vn, vln2);
Marat Dukhan8d3c07e2020-01-02 01:20:59 -0800226
227 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
228 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
229 vp = vfmaq_f32(vc3, vp, vt);
230 vp = vfmaq_f32(vc2, vp, vt);
231 vp = vfmaq_f32(vc1, vp, vt);
232
233 // Reconstruct the exp(-z) value:
234 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
235 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
236 // = s + (t * s) * p
237 vt = vmulq_f32(vt, vs);
238 float32x4_t ve = vfmaq_f32(vs, vp, vt);
239
240 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
241 float32x4_t vd = vaddq_f32(ve, vone);
242
243 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
244 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
245 // Thus the reciprocal of the denominator never overflows.
246 float32x4_t vr = vrecpeq_f32(vd);
247
248 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
249
250 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
251
252 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
253 float32x4_t vf = vmulq_f32(ve, vr);
254
255 // For inputs below denormal cutoff, replace output with +0.0f.
256 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
257 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
258
259 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
Marat Dukhan26cda6d2020-01-09 13:54:32 -0800260 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
Marat Dukhan8d3c07e2020-01-02 01:20:59 -0800261 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
262
263 vst1q_f32(y, vf); y += 4;
264 }
265 if XNN_UNLIKELY(n != 0) {
266 const float32x4_t vx = vld1q_f32(x);
267
268 // General structure of the algorithm:
269 // / exp(x) / (1 + exp(x)) if x <= 0
270 // f[x] :=
271 // \ 1 - f[-x] if x >= 0
272 //
273 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
274 // then replace result with 1 - f[z] if x <= 0.
275 const float32x4_t vz = vabsq_f32(vx);
276
277 // Compute reduced argument n := round(-z / log(2)).
278 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
279 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
280 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
281 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
282 // anyway. We fixup the result for such inputs at the very end of the algorithm.
283 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
284
285 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
286 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
287 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
288
289 // Subtract the large number back to get final n := round(-z / log(2)).
290 vn = vsubq_f32(vn, vmagic_bias);
291
292 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
Marat Dukhan4a24a582020-01-06 13:30:00 -0800293 float32x4_t vt = vfmaq_f32(vz, vn, vln2);
Marat Dukhan8d3c07e2020-01-02 01:20:59 -0800294
295 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
296 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
297 vp = vfmaq_f32(vc3, vp, vt);
298 vp = vfmaq_f32(vc2, vp, vt);
299 vp = vfmaq_f32(vc1, vp, vt);
300
301 // Reconstruct the exp(-z) value:
302 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
303 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
304 // = s + (t * s) * p
305 vt = vmulq_f32(vt, vs);
306 float32x4_t ve = vfmaq_f32(vs, vp, vt);
307
308 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
309 float32x4_t vd = vaddq_f32(ve, vone);
310
311 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
312 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
313 // Thus the reciprocal of the denominator never overflows.
314 float32x4_t vr = vrecpeq_f32(vd);
315
316 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
317
318 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
319
320 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
321 float32x4_t vf = vmulq_f32(ve, vr);
322
323 // For inputs below denormal cutoff, replace output with +0.0f.
324 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
325 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
326
327 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
328 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
329 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
330
331 float32x2_t vf_lo = vget_low_f32(vf);
332 if (n & (2 * sizeof(float))) {
333 vst1_f32(y, vf_lo); y += 2;
334 vf_lo = vget_high_f32(vf);
335 }
336 if (n & (1 * sizeof(float))) {
337 vst1_lane_f32(y, vf_lo, 0);
338 }
339 }
340}