blob: 91666ceee311d5d45cd80dc4e1ad7bfa429122f2 [file] [log] [blame]
XNNPACK Teamb455b122019-09-27 18:10:33 -07001// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#pragma once
7
8#include <gtest/gtest.h>
9
10#include <algorithm>
11#include <cassert>
12#include <cmath>
13#include <cstddef>
14#include <cstdlib>
15#include <functional>
16#include <limits>
17#include <random>
18#include <vector>
19
20#include <xnnpack/AlignedAllocator.h>
21#include <xnnpack/pack.h>
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -070022#include <xnnpack/params-init.h>
Frank Barcharde0601b52019-10-25 17:43:34 -070023#include <xnnpack/params.h>
XNNPACK Teamb455b122019-09-27 18:10:33 -070024#include <xnnpack.h>
25
26
27class ConvHWC2SpCHWMicrokernelTester {
28public:
29 enum class Variant {
30 Native,
31 Scalar,
32 };
33
34 inline ConvHWC2SpCHWMicrokernelTester& output_channels_tile(uint32_t output_channels_tile) {
35 this->output_channels_tile_ = output_channels_tile;
36 return *this;
37 }
38
39 inline uint32_t output_channels_tile() const {
40 return this->output_channels_tile_;
41 }
42
43 inline ConvHWC2SpCHWMicrokernelTester& padding(uint32_t padding) {
44 this->padding_top_ = padding;
45 this->padding_right_ = padding;
46 this->padding_bottom_ = padding;
47 this->padding_left_ = padding;
48 return *this;
49 }
50
51 inline ConvHWC2SpCHWMicrokernelTester& padding_height(uint32_t padding_height) {
52 this->padding_top_ = padding_height;
53 this->padding_bottom_ = padding_height;
54 return *this;
55 }
56
57 inline ConvHWC2SpCHWMicrokernelTester& padding_width(uint32_t padding_width) {
58 this->padding_right_ = padding_width;
59 this->padding_left_ = padding_width;
60 return *this;
61 }
62
63 inline ConvHWC2SpCHWMicrokernelTester& padding_top(uint32_t padding_top) {
64 this->padding_top_ = padding_top;
65 return *this;
66 }
67
68 inline uint32_t padding_top() const {
69 return this->padding_top_;
70 }
71
72 inline ConvHWC2SpCHWMicrokernelTester& padding_right(uint32_t padding_right) {
73 this->padding_right_ = padding_right;
74 return *this;
75 }
76
77 inline uint32_t padding_right() const {
78 return this->padding_right_;
79 }
80
81 inline ConvHWC2SpCHWMicrokernelTester& padding_bottom(uint32_t padding_bottom) {
82 this->padding_bottom_ = padding_bottom;
83 return *this;
84 }
85
86 inline uint32_t padding_bottom() const {
87 return this->padding_bottom_;
88 }
89
90 inline ConvHWC2SpCHWMicrokernelTester& padding_left(uint32_t padding_left) {
91 this->padding_left_ = padding_left;
92 return *this;
93 }
94
95 inline uint32_t padding_left() const {
96 return this->padding_left_;
97 }
98
99 inline ConvHWC2SpCHWMicrokernelTester& input_size(uint32_t input_height, uint32_t input_width) {
100 assert(input_height >= 1);
101 assert(input_width >= 1);
102 this->input_height_ = input_height;
103 this->input_width_ = input_width;
104 return *this;
105 }
106
107 inline ConvHWC2SpCHWMicrokernelTester& input_height(uint32_t input_height) {
108 assert(input_height >= 1);
109 this->input_height_ = input_height;
110 return *this;
111 }
112
113 inline uint32_t input_height() const {
114 return this->input_height_;
115 }
116
117 inline ConvHWC2SpCHWMicrokernelTester& input_width(uint32_t input_width) {
118 assert(input_width >= 1);
119 this->input_width_ = input_width;
120 return *this;
121 }
122
123 inline uint32_t input_width() const {
124 return this->input_width_;
125 }
126
127 inline ConvHWC2SpCHWMicrokernelTester& input_channels(size_t input_channels) {
128 assert(input_channels >= 1);
129 this->input_channels_ = input_channels;
130 return *this;
131 }
132
133 inline size_t input_channels() const {
134 return this->input_channels_;
135 }
136
137 inline ConvHWC2SpCHWMicrokernelTester& output_channels(size_t output_channels) {
138 assert(output_channels >= 1);
139 this->output_channels_ = output_channels;
140 return *this;
141 }
142
143 inline size_t output_channels() const {
144 return this->output_channels_;
145 }
146
147 inline size_t packed_output_channels() const {
148 return output_channels() % output_channels_tile() == 0 ? output_channels() : output_channels() / output_channels_tile() * output_channels_tile() + output_channels_tile();
149 }
150
151 inline ConvHWC2SpCHWMicrokernelTester& batch_size(size_t batch_size) {
152 assert(batch_size >= 1);
153 this->batch_size_ = batch_size;
154 return *this;
155 }
156
157 inline size_t batch_size() const {
158 return this->batch_size_;
159 }
160
161 inline ConvHWC2SpCHWMicrokernelTester& kernel_size(uint32_t kernel_size) {
162 assert(kernel_size >= 1);
163 this->kernel_height_ = kernel_size;
164 this->kernel_width_ = kernel_size;
165 return *this;
166 }
167
168 inline ConvHWC2SpCHWMicrokernelTester& kernel_height(uint32_t kernel_height) {
169 assert(kernel_height >= 1);
170 this->kernel_height_ = kernel_height;
171 return *this;
172 }
173
174 inline uint32_t kernel_height() const {
175 return this->kernel_height_;
176 }
177
178 inline ConvHWC2SpCHWMicrokernelTester& kernel_width(uint32_t kernel_width) {
179 assert(kernel_width >= 1);
180 this->kernel_width_ = kernel_width;
181 return *this;
182 }
183
184 inline uint32_t kernel_width() const {
185 return this->kernel_width_;
186 }
187
188 inline ConvHWC2SpCHWMicrokernelTester& subsampling(uint32_t subsampling) {
189 assert(subsampling >= 1);
190 this->subsampling_height_ = subsampling;
191 this->subsampling_width_ = subsampling;
192 return *this;
193 }
194
195 inline ConvHWC2SpCHWMicrokernelTester& subsampling_height(uint32_t subsampling_height) {
196 assert(subsampling_height >= 1);
197 this->subsampling_height_ = subsampling_height;
198 return *this;
199 }
200
201 inline uint32_t subsampling_height() const {
202 return this->subsampling_height_;
203 }
204
205 inline ConvHWC2SpCHWMicrokernelTester& subsampling_width(uint32_t subsampling_width) {
206 assert(subsampling_width >= 1);
207 this->subsampling_width_ = subsampling_width;
208 return *this;
209 }
210
211 inline uint32_t subsampling_width() const {
212 return this->subsampling_width_;
213 }
214
215 inline ConvHWC2SpCHWMicrokernelTester& output_y_start(uint32_t output_y_start) {
216 this->output_y_start_ = output_y_start;
217 return *this;
218 }
219
220 inline uint32_t output_y_start() const {
221 return this->output_y_start_;
222 }
223
224 inline ConvHWC2SpCHWMicrokernelTester& output_y_end(uint32_t output_y_end) {
225 this->output_y_end_ = output_y_end;
226 return *this;
227 }
228
229 inline uint32_t output_y_end() const {
230 if (this->output_y_end_ == std::numeric_limits<uint32_t>::max()) {
231 return output_height();
232 } else {
233 return this->output_y_end_;
234 }
235 }
236
237 inline size_t input_pixel_stride() const {
238 return input_channels();
239 }
240
241 inline size_t output_pixel_stride() const {
242 return output_channels();
243 }
244
245 inline size_t output_height() const {
246 const size_t padded_input_height = padding_top() + input_height() + padding_bottom();
Marat Dukhan441e2212019-12-04 18:30:49 -0800247 if (padded_input_height < kernel_height()) {
248 return 0;
XNNPACK Teamb455b122019-09-27 18:10:33 -0700249 } else {
250 return (padded_input_height - kernel_height()) / subsampling_height() + 1;
251 }
252 }
253
254 inline size_t output_width() const {
255 const size_t padded_input_width = padding_left() + input_width() + padding_right();
Marat Dukhan441e2212019-12-04 18:30:49 -0800256 if (padded_input_width < kernel_width()) {
257 return 0;
XNNPACK Teamb455b122019-09-27 18:10:33 -0700258 } else {
259 return (padded_input_width - kernel_width()) / subsampling_width() + 1;
260 }
261 }
262
263 inline ConvHWC2SpCHWMicrokernelTester& qmin(uint8_t qmin) {
264 this->qmin_ = qmin;
265 return *this;
266 }
267
268 inline uint8_t qmin() const {
269 return this->qmin_;
270 }
271
272 inline ConvHWC2SpCHWMicrokernelTester& qmax(uint8_t qmax) {
273 this->qmax_ = qmax;
274 return *this;
275 }
276
277 inline uint8_t qmax() const {
278 return this->qmax_;
279 }
280
281 inline ConvHWC2SpCHWMicrokernelTester& iterations(size_t iterations) {
282 this->iterations_ = iterations;
283 return *this;
284 }
285
286 inline size_t iterations() const {
287 return this->iterations_;
288 }
289
290 void Test(xnn_f32_conv_hwc2spchw_ukernel_function conv, Variant variant = Variant::Native) const {
291 ASSERT_LT(output_y_start(), output_height());
292 ASSERT_LE(output_y_end(), output_height());
293 ASSERT_GT(output_y_end(), output_y_start());
Marat Dukhan441e2212019-12-04 18:30:49 -0800294 ASSERT_GE(output_width(), 1);
295 ASSERT_GE(output_height(), 1);
XNNPACK Teamb455b122019-09-27 18:10:33 -0700296
297 std::random_device random_device;
298 auto rng = std::mt19937(random_device());
299 auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng);
300
301 std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
302 batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels()));
303 std::vector<float> zero(XNN_EXTRA_BYTES / sizeof(float) + input_width() * input_channels());
304 std::vector<float> kernel(output_channels() * kernel_height() * kernel_width() * input_channels());
305 std::vector<float> bias(output_channels());
306 std::vector<float> output(batch_size() * output_channels() * output_height() * output_width());
307 std::vector<float> output_ref(batch_size() * output_channels() * output_height() * output_width());
Marat Dukhan9594db02019-12-05 14:32:37 -0800308 std::vector<float, AlignedAllocator<float, 64>> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels());
XNNPACK Teamb455b122019-09-27 18:10:33 -0700309
310 for (size_t iteration = 0; iteration < iterations(); iteration++) {
311 std::generate(input.begin(), input.end(), std::ref(f32rng));
312 std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
313 std::generate(bias.begin(), bias.end(), std::ref(f32rng));
314 std::fill(output.begin(), output.end(), nanf(""));
315 std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
316
317 xnn_pack_f32_dconv_oki_w(
318 output_channels(),
319 input_channels(),
320 output_channels_tile(),
321 kernel_height(), kernel_width(),
322 kernel.data(), bias.data(), packed_weights.data());
323
324 // Compute reference results, without clamping.
325 for (size_t i = 0; i < batch_size(); i++) {
326 for (size_t oy = 0; oy < output_height(); oy++) {
327 for (size_t ox = 0; ox < output_width(); ox++) {
328 for (size_t oc = 0; oc < output_channels(); oc++) {
329 float acc = bias[oc];
330 for (size_t ky = 0; ky < kernel_height(); ky++) {
331 const size_t iy = oy * subsampling_height() + ky - padding_top();
332 if (iy < input_height()) {
333 for (size_t kx = 0; kx < kernel_width(); kx++) {
334 const size_t ix = ox * subsampling_width() + kx - padding_left();
335 if (ix < input_width()) {
336 for (size_t ic = 0; ic < input_channels(); ic++) {
337 acc +=
338 input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic] *
339 kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic];
340 }
341 }
342 }
343 }
344 }
345 output_ref[((i * output_channels() + oc) * output_height() + oy) * output_width() + ox] = acc;
346 }
347 }
348 }
349 }
350
351 // Compute clamping parameters.
352 const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
353 const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
354
355 const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
356 const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
357
358 // Clamp reference results.
359 for (float& value : output_ref) {
360 value = std::max(std::min(value, output_max), output_min);
361 }
362
363 // Prepare output parameters.
364 xnn_f32_output_params output_params = { };
365 switch (variant) {
366 case Variant::Native:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700367 output_params = xnn_init_f32_output_params(output_min, output_max);
XNNPACK Teamb455b122019-09-27 18:10:33 -0700368 break;
369 case Variant::Scalar:
Marat Dukhaneeaa7bd2019-10-25 17:31:25 -0700370 output_params = xnn_init_scalar_f32_output_params(output_min, output_max);
XNNPACK Teamb455b122019-09-27 18:10:33 -0700371 break;
372 }
373
374 // Call optimized micro-kernel.
375 conv(
376 input_height(), input_width(),
377 output_y_start(), output_y_end(),
378 input.data(), zero.data(), packed_weights.data(), output.data(),
379 padding_top(), output_channels(),
380 output_width() * sizeof(float),
381 output_height() * output_width() * sizeof(float),
382 &output_params);
383
384 // Verify results.
385 for (size_t i = 0; i < batch_size(); i++) {
386 for (size_t y = output_y_start(); y < output_y_end(); y++) {
387 for (size_t x = 0; x < output_width(); x++) {
388 for (size_t c = 0; c < output_channels(); c++) {
389 ASSERT_GE(output[((i * output_channels() + c) * output_height() + y) * output_width() + x], output_min)
390 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
391 ASSERT_LE(output[((i * output_channels() + c) * output_height() + y) * output_width() + x], output_max)
392 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
393 ASSERT_NEAR(
394 output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x],
395 output[((i * output_channels() + c) * output_height() + y) * output_width() + x],
396 1.0e-4 * std::abs(output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x]))
397 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
398 }
399 }
400 }
401 }
402 }
403 }
404
405 private:
406 uint32_t padding_top_{0};
407 uint32_t padding_right_{0};
408 uint32_t padding_bottom_{0};
409 uint32_t padding_left_{0};
410 size_t input_height_{1};
411 size_t input_width_{1};
412 size_t input_channels_{1};
413 size_t output_channels_{1};
414 uint32_t output_channels_tile_{1};
415 size_t batch_size_{1};
416 uint32_t kernel_height_{1};
417 uint32_t kernel_width_{1};
418 uint32_t subsampling_height_{1};
419 uint32_t subsampling_width_{1};
420 uint32_t output_y_start_{0};
421 uint32_t output_y_end_{std::numeric_limits<uint32_t>::max()};
422 uint8_t qmin_{0};
423 uint8_t qmax_{255};
424 size_t iterations_{1};
425};