blob: d54e3e801ce43d1868069c4f2ec717466a86804f [file] [log] [blame]
Marat Dukhana212eac2021-08-02 09:58:04 -07001// Copyright 2021 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#pragma once
7
8#include <gtest/gtest.h>
9
10#include <algorithm>
11#include <cassert>
12#include <cstddef>
13#include <cstdlib>
14#include <functional>
15#include <limits>
16#include <random>
17#include <vector>
18
19#include <xnnpack.h>
20#include <xnnpack/params-init.h>
21#include <xnnpack/params.h>
22#include <xnnpack/requantization.h>
23
24
25class VMulCMicrokernelTester {
26 public:
27 inline VMulCMicrokernelTester& batch_size(size_t batch_size) {
28 assert(batch_size != 0);
29 this->batch_size_ = batch_size;
30 return *this;
31 }
32
33 inline size_t batch_size() const {
34 return this->batch_size_;
35 }
36
37 inline VMulCMicrokernelTester& inplace(bool inplace) {
38 this->inplace_ = inplace;
39 return *this;
40 }
41
42 inline bool inplace() const {
43 return this->inplace_;
44 }
45
46 inline VMulCMicrokernelTester& a_scale(float a_scale) {
47 assert(a_scale > 0.0f);
48 assert(std::isnormal(a_scale));
49 this->a_scale_ = a_scale;
50 return *this;
51 }
52
53 inline float a_scale() const {
54 return this->a_scale_;
55 }
56
57 inline VMulCMicrokernelTester& a_zero_point(uint8_t a_zero_point) {
58 this->a_zero_point_ = a_zero_point;
59 return *this;
60 }
61
62 inline uint8_t a_zero_point() const {
63 return this->a_zero_point_;
64 }
65
66 inline VMulCMicrokernelTester& b_scale(float b_scale) {
67 assert(b_scale > 0.0f);
68 assert(std::isnormal(b_scale));
69 this->b_scale_ = b_scale;
70 return *this;
71 }
72
73 inline float b_scale() const {
74 return this->b_scale_;
75 }
76
77 inline VMulCMicrokernelTester& b_zero_point(uint8_t b_zero_point) {
78 this->b_zero_point_ = b_zero_point;
79 return *this;
80 }
81
82 inline uint8_t b_zero_point() const {
83 return this->b_zero_point_;
84 }
85
86 inline VMulCMicrokernelTester& y_scale(float y_scale) {
87 assert(y_scale > 0.0f);
88 assert(std::isnormal(y_scale));
89 this->y_scale_ = y_scale;
90 return *this;
91 }
92
93 inline float y_scale() const {
94 return this->y_scale_;
95 }
96
97 inline VMulCMicrokernelTester& y_zero_point(uint8_t y_zero_point) {
98 this->y_zero_point_ = y_zero_point;
99 return *this;
100 }
101
102 inline uint8_t y_zero_point() const {
103 return this->y_zero_point_;
104 }
105
106 inline VMulCMicrokernelTester& qmin(uint8_t qmin) {
107 this->qmin_ = qmin;
108 return *this;
109 }
110
111 inline uint8_t qmin() const {
112 return this->qmin_;
113 }
114
115 inline VMulCMicrokernelTester& qmax(uint8_t qmax) {
116 this->qmax_ = qmax;
117 return *this;
118 }
119
120 inline uint8_t qmax() const {
121 return this->qmax_;
122 }
123
124 inline VMulCMicrokernelTester& iterations(size_t iterations) {
125 this->iterations_ = iterations;
126 return *this;
127 }
128
129 inline size_t iterations() const {
130 return this->iterations_;
131 }
132
133 void Test(
134 xnn_qu8_vmul_minmax_ukernel_function vmul_minmax,
135 xnn_init_qu8_mul_minmax_params_fn init_params,
Marat Dukhana212eac2021-08-02 09:58:04 -0700136 xnn_qu8_requantize_fn requantize) const
137 {
138 std::random_device random_device;
139 auto rng = std::mt19937(random_device());
140 auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
141
142 std::vector<uint8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
143 std::vector<uint8_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint8_t) : 0));
144 std::vector<float> y_fp(batch_size());
145 std::vector<uint8_t> y_ref(batch_size());
146 for (size_t iteration = 0; iteration < iterations(); iteration++) {
147 std::generate(a.begin(), a.end(), std::ref(u8rng));
148 const uint8_t b = u8rng();
149 if (inplace()) {
150 std::generate(y.begin(), y.end(), std::ref(u8rng));
151 } else {
152 std::fill(y.begin(), y.end(), 0xA5);
153 }
154 const uint8_t* a_data = inplace() ? y.data() : a.data();
155
156 // Prepare parameters.
157 const float product_scale = a_scale() * b_scale();
158 const float product_output_scale = product_scale / y_scale();
159 xnn_qu8_mul_minmax_params quantization_params;
160 init_params(
161 &quantization_params,
162 a_zero_point(), b_zero_point(), y_zero_point(),
163 product_output_scale, qmin(), qmax());
Marat Dukhana212eac2021-08-02 09:58:04 -0700164
165 // Compute reference results.
166 for (size_t i = 0; i < batch_size(); i++) {
167 const int32_t acc =
168 (int32_t(a_data[i]) - int32_t(a_zero_point())) * (int32_t(b) - int32_t(b_zero_point()));
169 y_fp[i] = float(y_zero_point()) + product_output_scale * float(acc);
170 y_fp[i] = std::min<float>(y_fp[i], float(int32_t(qmax())));
171 y_fp[i] = std::max<float>(y_fp[i], float(int32_t(qmin())));
Marat Dukhan50323b82022-01-11 00:12:01 -0800172 y_ref[i] = requantize(
173 acc, product_output_scale, y_zero_point(), qmin(), qmax());
Marat Dukhana212eac2021-08-02 09:58:04 -0700174 }
175
176 // Call optimized micro-kernel.
177 vmul_minmax(batch_size(), a_data, &b, y.data(), &quantization_params);
178
179 // Verify results.
180 for (size_t i = 0; i < batch_size(); i++) {
181 ASSERT_LE(uint32_t(y[i]), uint32_t(qmax()))
182 << "at element " << i << " / " << batch_size();
183 ASSERT_GE(uint32_t(y[i]), uint32_t(qmin()))
184 << "at element " << i << " / " << batch_size();
185 ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f)
186 << "at element " << i << " / " << batch_size();
187 ASSERT_EQ(uint32_t(y[i]), uint32_t(y_ref[i]))
188 << "at element " << i << " / " << batch_size();
189 }
190 }
191 }
192
193 void Test(
194 xnn_qs8_vmul_minmax_ukernel_function vmul_minmax,
195 xnn_init_qs8_mul_minmax_params_fn init_params,
Marat Dukhana212eac2021-08-02 09:58:04 -0700196 xnn_qs8_requantize_fn requantize) const
197 {
198 std::random_device random_device;
199 auto rng = std::mt19937(random_device());
200 auto i8rng = std::bind(
201 std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
202 rng);
203
204 std::vector<int8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t));
205 std::vector<int8_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(int8_t) : 0));
206 std::vector<float> y_fp(batch_size());
207 std::vector<int8_t> y_ref(batch_size());
208 for (size_t iteration = 0; iteration < iterations(); iteration++) {
209 std::generate(a.begin(), a.end(), std::ref(i8rng));
210 const int8_t b = i8rng();
211 if (inplace()) {
212 std::generate(y.begin(), y.end(), std::ref(i8rng));
213 } else {
214 std::fill(y.begin(), y.end(), 0xA5);
215 }
216 const int8_t* a_data = inplace() ? y.data() : a.data();
217
218 // Prepare parameters.
219 const float product_scale = a_scale() * b_scale();
220 const float product_output_scale = product_scale / y_scale();
221 EXPECT_GE(product_output_scale, 0x1.0p-32f);
222 xnn_qs8_mul_minmax_params quantization_params;
223 init_params(
224 &quantization_params,
225 int8_t(a_zero_point() - 0x80), int8_t(b_zero_point() - 0x80), int8_t(y_zero_point() - 0x80),
226 product_output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
Marat Dukhana212eac2021-08-02 09:58:04 -0700227
228 // Compute reference results.
229 for (size_t i = 0; i < batch_size(); i++) {
230 const int32_t acc =
231 (int32_t(a_data[i]) - int32_t(a_zero_point() - 0x80)) * (int32_t(b) - int32_t(b_zero_point() - 0x80));
232 y_fp[i] = float(y_zero_point() - 0x80) + product_output_scale * float(acc);
233 y_fp[i] = std::min<float>(y_fp[i], float(int32_t(qmax() - 0x80)));
234 y_fp[i] = std::max<float>(y_fp[i], float(int32_t(qmin() - 0x80)));
Marat Dukhan50323b82022-01-11 00:12:01 -0800235 y_ref[i] = requantize(
236 acc, product_output_scale, int8_t(y_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
Marat Dukhana212eac2021-08-02 09:58:04 -0700237 }
238
239 // Call optimized micro-kernel.
240 vmul_minmax(batch_size(), a_data, &b, y.data(), &quantization_params);
241
242 // Verify results.
243 for (size_t i = 0; i < batch_size(); i++) {
244 ASSERT_LE(int32_t(y[i]), int32_t(qmax() - 0x80))
245 << "at element " << i << " / " << batch_size();
246 ASSERT_GE(int32_t(y[i]), int32_t(qmin() - 0x80))
247 << "at element " << i << " / " << batch_size();
248 ASSERT_EQ(int32_t(y_ref[i]), int32_t(y[i]))
249 << "at element " << i << " / " << batch_size();
250 ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f)
251 << "at element " << i << " / " << batch_size();
252 }
253 }
254 }
255
256 private:
257 size_t batch_size_{1};
258 bool inplace_{false};
259 float a_scale_{0.75f};
260 float b_scale_{1.25f};
261 float y_scale_{0.96875f};
262 uint8_t a_zero_point_{121};
263 uint8_t b_zero_point_{127};
264 uint8_t y_zero_point_{133};
265 uint8_t qmin_{0};
266 uint8_t qmax_{255};
267 size_t iterations_{15};
268};