| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // This library provides Symbolize() function that symbolizes program |
| // counters to their corresponding symbol names on linux platforms. |
| // This library has a minimal implementation of an ELF symbol table |
| // reader (i.e. it doesn't depend on libelf, etc.). |
| // |
| // The algorithm used in Symbolize() is as follows. |
| // |
| // 1. Go through a list of maps in /proc/self/maps and find the map |
| // containing the program counter. |
| // |
| // 2. Open the mapped file and find a regular symbol table inside. |
| // Iterate over symbols in the symbol table and look for the symbol |
| // containing the program counter. If such a symbol is found, |
| // obtain the symbol name, and demangle the symbol if possible. |
| // If the symbol isn't found in the regular symbol table (binary is |
| // stripped), try the same thing with a dynamic symbol table. |
| // |
| // Note that Symbolize() is originally implemented to be used in |
| // signal handlers, hence it doesn't use malloc() and other unsafe |
| // operations. It should be both thread-safe and async-signal-safe. |
| // |
| // Implementation note: |
| // |
| // We don't use heaps but only use stacks. We want to reduce the |
| // stack consumption so that the symbolizer can run on small stacks. |
| // |
| // Here are some numbers collected with GCC 4.1.0 on x86: |
| // - sizeof(Elf32_Sym) = 16 |
| // - sizeof(Elf32_Shdr) = 40 |
| // - sizeof(Elf64_Sym) = 24 |
| // - sizeof(Elf64_Shdr) = 64 |
| // |
| // This implementation is intended to be async-signal-safe but uses some |
| // functions which are not guaranteed to be so, such as memchr() and |
| // memmove(). We assume they are async-signal-safe. |
| |
| #include <dlfcn.h> |
| #include <elf.h> |
| #include <fcntl.h> |
| #include <link.h> // For ElfW() macro. |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <cerrno> |
| #include <cinttypes> |
| #include <climits> |
| #include <cstdint> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <cstring> |
| |
| #include "absl/base/casts.h" |
| #include "absl/base/dynamic_annotations.h" |
| #include "absl/base/internal/low_level_alloc.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/internal/spinlock.h" |
| #include "absl/base/port.h" |
| #include "absl/debugging/internal/demangle.h" |
| #include "absl/debugging/internal/vdso_support.h" |
| |
| namespace absl { |
| |
| // Value of argv[0]. Used by MaybeInitializeObjFile(). |
| static char *argv0_value = nullptr; |
| |
| void InitializeSymbolizer(const char *argv0) { |
| if (argv0_value != nullptr) { |
| free(argv0_value); |
| argv0_value = nullptr; |
| } |
| if (argv0 != nullptr && argv0[0] != '\0') { |
| argv0_value = strdup(argv0); |
| } |
| } |
| |
| namespace debugging_internal { |
| namespace { |
| |
| // Re-runs fn until it doesn't cause EINTR. |
| #define NO_INTR(fn) \ |
| do { \ |
| } while ((fn) < 0 && errno == EINTR) |
| |
| // On Linux, ELF_ST_* are defined in <linux/elf.h>. To make this portable |
| // we define our own ELF_ST_BIND and ELF_ST_TYPE if not available. |
| #ifndef ELF_ST_BIND |
| #define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4) |
| #endif |
| |
| #ifndef ELF_ST_TYPE |
| #define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF) |
| #endif |
| |
| // Some platforms use a special .opd section to store function pointers. |
| const char kOpdSectionName[] = ".opd"; |
| |
| #if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64) |
| // Use opd section for function descriptors on these platforms, the function |
| // address is the first word of the descriptor. |
| enum { kPlatformUsesOPDSections = 1 }; |
| #else // not PPC or IA64 |
| enum { kPlatformUsesOPDSections = 0 }; |
| #endif |
| |
| // This works for PowerPC & IA64 only. A function descriptor consist of two |
| // pointers and the first one is the function's entry. |
| const size_t kFunctionDescriptorSize = sizeof(void *) * 2; |
| |
| const int kMaxDecorators = 10; // Seems like a reasonable upper limit. |
| |
| struct InstalledSymbolDecorator { |
| SymbolDecorator fn; |
| void *arg; |
| int ticket; |
| }; |
| |
| int g_num_decorators; |
| InstalledSymbolDecorator g_decorators[kMaxDecorators]; |
| |
| struct FileMappingHint { |
| const void *start; |
| const void *end; |
| uint64_t offset; |
| const char *filename; |
| }; |
| |
| // Protects g_decorators. |
| // We are using SpinLock and not a Mutex here, because we may be called |
| // from inside Mutex::Lock itself, and it prohibits recursive calls. |
| // This happens in e.g. base/stacktrace_syscall_unittest. |
| // Moreover, we are using only TryLock(), if the decorator list |
| // is being modified (is busy), we skip all decorators, and possibly |
| // loose some info. Sorry, that's the best we could do. |
| base_internal::SpinLock g_decorators_mu(base_internal::kLinkerInitialized); |
| |
| const int kMaxFileMappingHints = 8; |
| int g_num_file_mapping_hints; |
| FileMappingHint g_file_mapping_hints[kMaxFileMappingHints]; |
| // Protects g_file_mapping_hints. |
| base_internal::SpinLock g_file_mapping_mu(base_internal::kLinkerInitialized); |
| |
| // Async-signal-safe function to zero a buffer. |
| // memset() is not guaranteed to be async-signal-safe. |
| static void SafeMemZero(void* p, size_t size) { |
| unsigned char *c = static_cast<unsigned char *>(p); |
| while (size--) { |
| *c++ = 0; |
| } |
| } |
| |
| struct ObjFile { |
| ObjFile() |
| : filename(nullptr), |
| start_addr(nullptr), |
| end_addr(nullptr), |
| offset(0), |
| fd(-1), |
| elf_type(-1) { |
| SafeMemZero(&elf_header, sizeof(elf_header)); |
| } |
| |
| char *filename; |
| const void *start_addr; |
| const void *end_addr; |
| uint64_t offset; |
| |
| // The following fields are initialized on the first access to the |
| // object file. |
| int fd; |
| int elf_type; |
| ElfW(Ehdr) elf_header; |
| }; |
| |
| // Build 4-way associative cache for symbols. Within each cache line, symbols |
| // are replaced in LRU order. |
| enum { |
| ASSOCIATIVITY = 4, |
| }; |
| struct SymbolCacheLine { |
| const void *pc[ASSOCIATIVITY]; |
| char *name[ASSOCIATIVITY]; |
| |
| // age[i] is incremented when a line is accessed. it's reset to zero if the |
| // i'th entry is read. |
| uint32_t age[ASSOCIATIVITY]; |
| }; |
| |
| // --------------------------------------------------------------- |
| // An async-signal-safe arena for LowLevelAlloc |
| static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena; |
| |
| static base_internal::LowLevelAlloc::Arena *SigSafeArena() { |
| return g_sig_safe_arena.load(std::memory_order_acquire); |
| } |
| |
| static void InitSigSafeArena() { |
| if (SigSafeArena() == nullptr) { |
| base_internal::LowLevelAlloc::Arena *new_arena = |
| base_internal::LowLevelAlloc::NewArena( |
| base_internal::LowLevelAlloc::kAsyncSignalSafe); |
| base_internal::LowLevelAlloc::Arena *old_value = nullptr; |
| if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena, |
| std::memory_order_release, |
| std::memory_order_relaxed)) { |
| // We lost a race to allocate an arena; deallocate. |
| base_internal::LowLevelAlloc::DeleteArena(new_arena); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------- |
| // An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation. |
| |
| class AddrMap { |
| public: |
| AddrMap() : size_(0), allocated_(0), obj_(nullptr) {} |
| ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); } |
| int Size() const { return size_; } |
| ObjFile *At(int i) { return &obj_[i]; } |
| ObjFile *Add(); |
| void Clear(); |
| |
| private: |
| int size_; // count of valid elements (<= allocated_) |
| int allocated_; // count of allocated elements |
| ObjFile *obj_; // array of allocated_ elements |
| AddrMap(const AddrMap &) = delete; |
| AddrMap &operator=(const AddrMap &) = delete; |
| }; |
| |
| void AddrMap::Clear() { |
| for (int i = 0; i != size_; i++) { |
| At(i)->~ObjFile(); |
| } |
| size_ = 0; |
| } |
| |
| ObjFile *AddrMap::Add() { |
| if (size_ == allocated_) { |
| int new_allocated = allocated_ * 2 + 50; |
| ObjFile *new_obj_ = |
| static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena( |
| new_allocated * sizeof(*new_obj_), SigSafeArena())); |
| if (obj_) { |
| memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_)); |
| base_internal::LowLevelAlloc::Free(obj_); |
| } |
| obj_ = new_obj_; |
| allocated_ = new_allocated; |
| } |
| return new (&obj_[size_++]) ObjFile; |
| } |
| |
| // --------------------------------------------------------------- |
| |
| enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND }; |
| |
| class Symbolizer { |
| public: |
| Symbolizer(); |
| ~Symbolizer(); |
| const char *GetSymbol(const void *const pc); |
| |
| private: |
| char *CopyString(const char *s) { |
| int len = strlen(s); |
| char *dst = static_cast<char *>( |
| base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); |
| ABSL_RAW_CHECK(dst != nullptr, "out of memory"); |
| memcpy(dst, s, len + 1); |
| return dst; |
| } |
| ObjFile *FindObjFile(const void *const start, |
| size_t size) ABSL_ATTRIBUTE_NOINLINE; |
| static bool RegisterObjFile(const char *filename, |
| const void *const start_addr, |
| const void *const end_addr, uint64_t offset, |
| void *arg); |
| SymbolCacheLine *GetCacheLine(const void *const pc); |
| const char *FindSymbolInCache(const void *const pc); |
| const char *InsertSymbolInCache(const void *const pc, const char *name); |
| void AgeSymbols(SymbolCacheLine *line); |
| void ClearAddrMap(); |
| FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj, |
| const void *const pc, |
| const ptrdiff_t relocation, |
| char *out, int out_size, |
| char *tmp_buf, int tmp_buf_size); |
| |
| enum { |
| SYMBOL_BUF_SIZE = 2048, |
| TMP_BUF_SIZE = 1024, |
| SYMBOL_CACHE_LINES = 128, |
| }; |
| |
| AddrMap addr_map_; |
| |
| bool ok_; |
| bool addr_map_read_; |
| |
| char symbol_buf_[SYMBOL_BUF_SIZE]; |
| |
| // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym) |
| // so we ensure that tmp_buf_ is properly aligned to store either. |
| alignas(16) char tmp_buf_[TMP_BUF_SIZE]; |
| static_assert(alignof(ElfW(Shdr)) <= 16, |
| "alignment of tmp buf too small for Shdr"); |
| static_assert(alignof(ElfW(Sym)) <= 16, |
| "alignment of tmp buf too small for Sym"); |
| |
| SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES]; |
| }; |
| |
| static std::atomic<Symbolizer *> g_cached_symbolizer; |
| |
| } // namespace |
| |
| static int SymbolizerSize() { |
| int pagesize = getpagesize(); |
| return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize; |
| } |
| |
| // Return (and set null) g_cached_symbolized_state if it is not null. |
| // Otherwise return a new symbolizer. |
| static Symbolizer *AllocateSymbolizer() { |
| InitSigSafeArena(); |
| Symbolizer *symbolizer = |
| g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire); |
| if (symbolizer != nullptr) { |
| return symbolizer; |
| } |
| return new (base_internal::LowLevelAlloc::AllocWithArena( |
| SymbolizerSize(), SigSafeArena())) Symbolizer(); |
| } |
| |
| // Set g_cached_symbolize_state to s if it is null, otherwise |
| // delete s. |
| static void FreeSymbolizer(Symbolizer *s) { |
| Symbolizer *old_cached_symbolizer = nullptr; |
| if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s, |
| std::memory_order_release, |
| std::memory_order_relaxed)) { |
| s->~Symbolizer(); |
| base_internal::LowLevelAlloc::Free(s); |
| } |
| } |
| |
| Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) { |
| for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { |
| for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) { |
| symbol_cache_line.pc[j] = nullptr; |
| symbol_cache_line.name[j] = nullptr; |
| symbol_cache_line.age[j] = 0; |
| } |
| } |
| } |
| |
| Symbolizer::~Symbolizer() { |
| for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { |
| for (char *s : symbol_cache_line.name) { |
| base_internal::LowLevelAlloc::Free(s); |
| } |
| } |
| ClearAddrMap(); |
| } |
| |
| // We don't use assert() since it's not guaranteed to be |
| // async-signal-safe. Instead we define a minimal assertion |
| // macro. So far, we don't need pretty printing for __FILE__, etc. |
| #define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort()) |
| |
| // Read up to "count" bytes from file descriptor "fd" into the buffer |
| // starting at "buf" while handling short reads and EINTR. On |
| // success, return the number of bytes read. Otherwise, return -1. |
| static ssize_t ReadPersistent(int fd, void *buf, size_t count) { |
| SAFE_ASSERT(fd >= 0); |
| SAFE_ASSERT(count <= SSIZE_MAX); |
| char *buf0 = reinterpret_cast<char *>(buf); |
| size_t num_bytes = 0; |
| while (num_bytes < count) { |
| ssize_t len; |
| NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes)); |
| if (len < 0) { // There was an error other than EINTR. |
| ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno); |
| return -1; |
| } |
| if (len == 0) { // Reached EOF. |
| break; |
| } |
| num_bytes += len; |
| } |
| SAFE_ASSERT(num_bytes <= count); |
| return static_cast<ssize_t>(num_bytes); |
| } |
| |
| // Read up to "count" bytes from "offset" in the file pointed by file |
| // descriptor "fd" into the buffer starting at "buf". On success, |
| // return the number of bytes read. Otherwise, return -1. |
| static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count, |
| const off_t offset) { |
| off_t off = lseek(fd, offset, SEEK_SET); |
| if (off == (off_t)-1) { |
| ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd, |
| static_cast<uintmax_t>(offset), errno); |
| return -1; |
| } |
| return ReadPersistent(fd, buf, count); |
| } |
| |
| // Try reading exactly "count" bytes from "offset" bytes in a file |
| // pointed by "fd" into the buffer starting at "buf" while handling |
| // short reads and EINTR. On success, return true. Otherwise, return |
| // false. |
| static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count, |
| const off_t offset) { |
| ssize_t len = ReadFromOffset(fd, buf, count, offset); |
| return len >= 0 && static_cast<size_t>(len) == count; |
| } |
| |
| // Returns elf_header.e_type if the file pointed by fd is an ELF binary. |
| static int FileGetElfType(const int fd) { |
| ElfW(Ehdr) elf_header; |
| if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { |
| return -1; |
| } |
| if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) { |
| return -1; |
| } |
| return elf_header.e_type; |
| } |
| |
| // Read the section headers in the given ELF binary, and if a section |
| // of the specified type is found, set the output to this section header |
| // and return true. Otherwise, return false. |
| // To keep stack consumption low, we would like this function to not get |
| // inlined. |
| static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType( |
| const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type, |
| ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) { |
| ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf); |
| const int buf_entries = tmp_buf_size / sizeof(buf[0]); |
| const int buf_bytes = buf_entries * sizeof(buf[0]); |
| |
| for (int i = 0; i < sh_num;) { |
| const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]); |
| const ssize_t num_bytes_to_read = |
| (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes; |
| const off_t offset = sh_offset + i * sizeof(buf[0]); |
| const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset); |
| if (len % sizeof(buf[0]) != 0) { |
| ABSL_RAW_LOG( |
| WARNING, |
| "Reading %zd bytes from offset %ju returned %zd which is not a " |
| "multiple of %zu.", |
| num_bytes_to_read, static_cast<uintmax_t>(offset), len, |
| sizeof(buf[0])); |
| return false; |
| } |
| const ssize_t num_headers_in_buf = len / sizeof(buf[0]); |
| SAFE_ASSERT(num_headers_in_buf <= buf_entries); |
| for (int j = 0; j < num_headers_in_buf; ++j) { |
| if (buf[j].sh_type == type) { |
| *out = buf[j]; |
| return true; |
| } |
| } |
| i += num_headers_in_buf; |
| } |
| return false; |
| } |
| |
| // There is no particular reason to limit section name to 63 characters, |
| // but there has (as yet) been no need for anything longer either. |
| const int kMaxSectionNameLen = 64; |
| |
| bool ForEachSection(int fd, |
| const std::function<bool(const std::string &name, |
| const ElfW(Shdr) &)> &callback) { |
| ElfW(Ehdr) elf_header; |
| if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { |
| return false; |
| } |
| |
| ElfW(Shdr) shstrtab; |
| off_t shstrtab_offset = |
| (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx); |
| if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { |
| return false; |
| } |
| |
| for (int i = 0; i < elf_header.e_shnum; ++i) { |
| ElfW(Shdr) out; |
| off_t section_header_offset = |
| (elf_header.e_shoff + elf_header.e_shentsize * i); |
| if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) { |
| return false; |
| } |
| off_t name_offset = shstrtab.sh_offset + out.sh_name; |
| char header_name[kMaxSectionNameLen + 1]; |
| ssize_t n_read = |
| ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset); |
| if (n_read == -1) { |
| return false; |
| } else if (n_read > kMaxSectionNameLen) { |
| // Long read? |
| return false; |
| } |
| header_name[n_read] = '\0'; |
| |
| std::string name(header_name); |
| if (!callback(name, out)) { |
| break; |
| } |
| } |
| return true; |
| } |
| |
| // name_len should include terminating '\0'. |
| bool GetSectionHeaderByName(int fd, const char *name, size_t name_len, |
| ElfW(Shdr) * out) { |
| char header_name[kMaxSectionNameLen]; |
| if (sizeof(header_name) < name_len) { |
| ABSL_RAW_LOG(WARNING, |
| "Section name '%s' is too long (%zu); " |
| "section will not be found (even if present).", |
| name, name_len); |
| // No point in even trying. |
| return false; |
| } |
| |
| ElfW(Ehdr) elf_header; |
| if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { |
| return false; |
| } |
| |
| ElfW(Shdr) shstrtab; |
| off_t shstrtab_offset = |
| (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx); |
| if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { |
| return false; |
| } |
| |
| for (int i = 0; i < elf_header.e_shnum; ++i) { |
| off_t section_header_offset = |
| (elf_header.e_shoff + elf_header.e_shentsize * i); |
| if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) { |
| return false; |
| } |
| off_t name_offset = shstrtab.sh_offset + out->sh_name; |
| ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset); |
| if (n_read < 0) { |
| return false; |
| } else if (static_cast<size_t>(n_read) != name_len) { |
| // Short read -- name could be at end of file. |
| continue; |
| } |
| if (memcmp(header_name, name, name_len) == 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Compare symbols at in the same address. |
| // Return true if we should pick symbol1. |
| static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1, |
| const ElfW(Sym) & symbol2) { |
| // If one of the symbols is weak and the other is not, pick the one |
| // this is not a weak symbol. |
| char bind1 = ELF_ST_BIND(symbol1.st_info); |
| char bind2 = ELF_ST_BIND(symbol1.st_info); |
| if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false; |
| if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true; |
| |
| // If one of the symbols has zero size and the other is not, pick the |
| // one that has non-zero size. |
| if (symbol1.st_size != 0 && symbol2.st_size == 0) { |
| return true; |
| } |
| if (symbol1.st_size == 0 && symbol2.st_size != 0) { |
| return false; |
| } |
| |
| // If one of the symbols has no type and the other is not, pick the |
| // one that has a type. |
| char type1 = ELF_ST_TYPE(symbol1.st_info); |
| char type2 = ELF_ST_TYPE(symbol1.st_info); |
| if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) { |
| return true; |
| } |
| if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) { |
| return false; |
| } |
| |
| // Pick the first one, if we still cannot decide. |
| return true; |
| } |
| |
| // Return true if an address is inside a section. |
| static bool InSection(const void *address, const ElfW(Shdr) * section) { |
| const char *start = reinterpret_cast<const char *>(section->sh_addr); |
| size_t size = static_cast<size_t>(section->sh_size); |
| return start <= address && address < (start + size); |
| } |
| |
| // Read a symbol table and look for the symbol containing the |
| // pc. Iterate over symbols in a symbol table and look for the symbol |
| // containing "pc". If the symbol is found, and its name fits in |
| // out_size, the name is written into out and SYMBOL_FOUND is returned. |
| // If the name does not fit, truncated name is written into out, |
| // and SYMBOL_TRUNCATED is returned. Out is NUL-terminated. |
| // If the symbol is not found, SYMBOL_NOT_FOUND is returned; |
| // To keep stack consumption low, we would like this function to not get |
| // inlined. |
| static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol( |
| const void *const pc, const int fd, char *out, int out_size, |
| ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab, |
| const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) { |
| if (symtab == nullptr) { |
| return SYMBOL_NOT_FOUND; |
| } |
| |
| // Read multiple symbols at once to save read() calls. |
| ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf); |
| const int buf_entries = tmp_buf_size / sizeof(buf[0]); |
| |
| const int num_symbols = symtab->sh_size / symtab->sh_entsize; |
| |
| // On platforms using an .opd section (PowerPC & IA64), a function symbol |
| // has the address of a function descriptor, which contains the real |
| // starting address. However, we do not always want to use the real |
| // starting address because we sometimes want to symbolize a function |
| // pointer into the .opd section, e.g. FindSymbol(&foo,...). |
| const bool pc_in_opd = |
| kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd); |
| const bool deref_function_descriptor_pointer = |
| kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd; |
| |
| ElfW(Sym) best_match; |
| SafeMemZero(&best_match, sizeof(best_match)); |
| bool found_match = false; |
| for (int i = 0; i < num_symbols;) { |
| off_t offset = symtab->sh_offset + i * symtab->sh_entsize; |
| const int num_remaining_symbols = num_symbols - i; |
| const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries); |
| const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]); |
| const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset); |
| SAFE_ASSERT(len % sizeof(buf[0]) == 0); |
| const ssize_t num_symbols_in_buf = len / sizeof(buf[0]); |
| SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk); |
| for (int j = 0; j < num_symbols_in_buf; ++j) { |
| const ElfW(Sym) &symbol = buf[j]; |
| |
| // For a DSO, a symbol address is relocated by the loading address. |
| // We keep the original address for opd redirection below. |
| const char *const original_start_address = |
| reinterpret_cast<const char *>(symbol.st_value); |
| const char *start_address = original_start_address + relocation; |
| |
| if (deref_function_descriptor_pointer && |
| InSection(original_start_address, opd)) { |
| // The opd section is mapped into memory. Just dereference |
| // start_address to get the first double word, which points to the |
| // function entry. |
| start_address = *reinterpret_cast<const char *const *>(start_address); |
| } |
| |
| // If pc is inside the .opd section, it points to a function descriptor. |
| const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size; |
| const void *const end_address = |
| reinterpret_cast<const char *>(start_address) + size; |
| if (symbol.st_value != 0 && // Skip null value symbols. |
| symbol.st_shndx != 0 && // Skip undefined symbols. |
| #ifdef STT_TLS |
| ELF_ST_TYPE(symbol.st_info) != STT_TLS && // Skip thread-local data. |
| #endif // STT_TLS |
| ((start_address <= pc && pc < end_address) || |
| (start_address == pc && pc == end_address))) { |
| if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) { |
| found_match = true; |
| best_match = symbol; |
| } |
| } |
| } |
| i += num_symbols_in_buf; |
| } |
| |
| if (found_match) { |
| const size_t off = strtab->sh_offset + best_match.st_name; |
| const ssize_t n_read = ReadFromOffset(fd, out, out_size, off); |
| if (n_read <= 0) { |
| // This should never happen. |
| ABSL_RAW_LOG(WARNING, |
| "Unable to read from fd %d at offset %zu: n_read = %zd", fd, |
| off, n_read); |
| return SYMBOL_NOT_FOUND; |
| } |
| ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data."); |
| |
| // strtab->sh_offset points into .strtab-like section that contains |
| // NUL-terminated strings: '\0foo\0barbaz\0...". |
| // |
| // sh_offset+st_name points to the start of symbol name, but we don't know |
| // how long the symbol is, so we try to read as much as we have space for, |
| // and usually over-read (i.e. there is a NUL somewhere before n_read). |
| if (memchr(out, '\0', n_read) == nullptr) { |
| // Either out_size was too small (n_read == out_size and no NUL), or |
| // we tried to read past the EOF (n_read < out_size) and .strtab is |
| // corrupt (missing terminating NUL; should never happen for valid ELF). |
| out[n_read - 1] = '\0'; |
| return SYMBOL_TRUNCATED; |
| } |
| return SYMBOL_FOUND; |
| } |
| |
| return SYMBOL_NOT_FOUND; |
| } |
| |
| // Get the symbol name of "pc" from the file pointed by "fd". Process |
| // both regular and dynamic symbol tables if necessary. |
| // See FindSymbol() comment for description of return value. |
| FindSymbolResult Symbolizer::GetSymbolFromObjectFile( |
| const ObjFile &obj, const void *const pc, const ptrdiff_t relocation, |
| char *out, int out_size, char *tmp_buf, int tmp_buf_size) { |
| ElfW(Shdr) symtab; |
| ElfW(Shdr) strtab; |
| ElfW(Shdr) opd; |
| ElfW(Shdr) *opd_ptr = nullptr; |
| |
| // On platforms using an .opd sections for function descriptor, read |
| // the section header. The .opd section is in data segment and should be |
| // loaded but we check that it is mapped just to be extra careful. |
| if (kPlatformUsesOPDSections) { |
| if (GetSectionHeaderByName(obj.fd, kOpdSectionName, |
| sizeof(kOpdSectionName) - 1, &opd) && |
| FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation, |
| opd.sh_size) != nullptr) { |
| opd_ptr = &opd; |
| } else { |
| return SYMBOL_NOT_FOUND; |
| } |
| } |
| |
| // Consult a regular symbol table first. |
| if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum, |
| obj.elf_header.e_shoff, SHT_SYMTAB, &symtab, |
| tmp_buf, tmp_buf_size)) { |
| return SYMBOL_NOT_FOUND; |
| } |
| if (!ReadFromOffsetExact( |
| obj.fd, &strtab, sizeof(strtab), |
| obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { |
| return SYMBOL_NOT_FOUND; |
| } |
| const FindSymbolResult rc = |
| FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab, |
| opd_ptr, tmp_buf, tmp_buf_size); |
| if (rc != SYMBOL_NOT_FOUND) { |
| return rc; // Found the symbol in a regular symbol table. |
| } |
| |
| // If the symbol is not found, then consult a dynamic symbol table. |
| if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum, |
| obj.elf_header.e_shoff, SHT_DYNSYM, &symtab, |
| tmp_buf, tmp_buf_size)) { |
| return SYMBOL_NOT_FOUND; |
| } |
| if (!ReadFromOffsetExact( |
| obj.fd, &strtab, sizeof(strtab), |
| obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { |
| return SYMBOL_NOT_FOUND; |
| } |
| return FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab, |
| opd_ptr, tmp_buf, tmp_buf_size); |
| } |
| |
| namespace { |
| // Thin wrapper around a file descriptor so that the file descriptor |
| // gets closed for sure. |
| class FileDescriptor { |
| public: |
| explicit FileDescriptor(int fd) : fd_(fd) {} |
| FileDescriptor(const FileDescriptor &) = delete; |
| FileDescriptor &operator=(const FileDescriptor &) = delete; |
| |
| ~FileDescriptor() { |
| if (fd_ >= 0) { |
| NO_INTR(close(fd_)); |
| } |
| } |
| |
| int get() const { return fd_; } |
| |
| private: |
| const int fd_; |
| }; |
| |
| // Helper class for reading lines from file. |
| // |
| // Note: we don't use ProcMapsIterator since the object is big (it has |
| // a 5k array member) and uses async-unsafe functions such as sscanf() |
| // and snprintf(). |
| class LineReader { |
| public: |
| explicit LineReader(int fd, char *buf, int buf_len) |
| : fd_(fd), |
| buf_len_(buf_len), |
| buf_(buf), |
| bol_(buf), |
| eol_(buf), |
| eod_(buf) {} |
| |
| LineReader(const LineReader &) = delete; |
| LineReader &operator=(const LineReader &) = delete; |
| |
| // Read '\n'-terminated line from file. On success, modify "bol" |
| // and "eol", then return true. Otherwise, return false. |
| // |
| // Note: if the last line doesn't end with '\n', the line will be |
| // dropped. It's an intentional behavior to make the code simple. |
| bool ReadLine(const char **bol, const char **eol) { |
| if (BufferIsEmpty()) { // First time. |
| const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_); |
| if (num_bytes <= 0) { // EOF or error. |
| return false; |
| } |
| eod_ = buf_ + num_bytes; |
| bol_ = buf_; |
| } else { |
| bol_ = eol_ + 1; // Advance to the next line in the buffer. |
| SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_". |
| if (!HasCompleteLine()) { |
| const int incomplete_line_length = eod_ - bol_; |
| // Move the trailing incomplete line to the beginning. |
| memmove(buf_, bol_, incomplete_line_length); |
| // Read text from file and append it. |
| char *const append_pos = buf_ + incomplete_line_length; |
| const int capacity_left = buf_len_ - incomplete_line_length; |
| const ssize_t num_bytes = |
| ReadPersistent(fd_, append_pos, capacity_left); |
| if (num_bytes <= 0) { // EOF or error. |
| return false; |
| } |
| eod_ = append_pos + num_bytes; |
| bol_ = buf_; |
| } |
| } |
| eol_ = FindLineFeed(); |
| if (eol_ == nullptr) { // '\n' not found. Malformed line. |
| return false; |
| } |
| *eol_ = '\0'; // Replace '\n' with '\0'. |
| |
| *bol = bol_; |
| *eol = eol_; |
| return true; |
| } |
| |
| private: |
| char *FindLineFeed() const { |
| return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_)); |
| } |
| |
| bool BufferIsEmpty() const { return buf_ == eod_; } |
| |
| bool HasCompleteLine() const { |
| return !BufferIsEmpty() && FindLineFeed() != nullptr; |
| } |
| |
| const int fd_; |
| const int buf_len_; |
| char *const buf_; |
| char *bol_; |
| char *eol_; |
| const char *eod_; // End of data in "buf_". |
| }; |
| } // namespace |
| |
| // Place the hex number read from "start" into "*hex". The pointer to |
| // the first non-hex character or "end" is returned. |
| static const char *GetHex(const char *start, const char *end, |
| uint64_t *const value) { |
| uint64_t hex = 0; |
| const char *p; |
| for (p = start; p < end; ++p) { |
| int ch = *p; |
| if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') || |
| (ch >= 'a' && ch <= 'f')) { |
| hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9); |
| } else { // Encountered the first non-hex character. |
| break; |
| } |
| } |
| SAFE_ASSERT(p <= end); |
| *value = hex; |
| return p; |
| } |
| |
| static const char *GetHex(const char *start, const char *end, |
| const void **const addr) { |
| uint64_t hex = 0; |
| const char *p = GetHex(start, end, &hex); |
| *addr = reinterpret_cast<void *>(hex); |
| return p; |
| } |
| |
| // Read /proc/self/maps and run "callback" for each mmapped file found. If |
| // "callback" returns false, stop scanning and return true. Else continue |
| // scanning /proc/self/maps. Return true if no parse error is found. |
| static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap( |
| bool (*callback)(const char *filename, const void *const start_addr, |
| const void *const end_addr, uint64_t offset, void *arg), |
| void *arg, void *tmp_buf, int tmp_buf_size) { |
| // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter |
| // requires kernel to stop all threads, and is significantly slower when there |
| // are 1000s of threads. |
| char maps_path[80]; |
| snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid()); |
| |
| int maps_fd; |
| NO_INTR(maps_fd = open(maps_path, O_RDONLY)); |
| FileDescriptor wrapped_maps_fd(maps_fd); |
| if (wrapped_maps_fd.get() < 0) { |
| ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno); |
| return false; |
| } |
| |
| // Iterate over maps and look for the map containing the pc. Then |
| // look into the symbol tables inside. |
| LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf), |
| tmp_buf_size); |
| while (true) { |
| const char *cursor; |
| const char *eol; |
| if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line. |
| break; |
| } |
| |
| const char *line = cursor; |
| const void *start_address; |
| // Start parsing line in /proc/self/maps. Here is an example: |
| // |
| // 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat |
| // |
| // We want start address (08048000), end address (0804c000), flags |
| // (r-xp) and file name (/bin/cat). |
| |
| // Read start address. |
| cursor = GetHex(cursor, eol, &start_address); |
| if (cursor == eol || *cursor != '-') { |
| ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); |
| return false; |
| } |
| ++cursor; // Skip '-'. |
| |
| // Read end address. |
| const void *end_address; |
| cursor = GetHex(cursor, eol, &end_address); |
| if (cursor == eol || *cursor != ' ') { |
| ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); |
| return false; |
| } |
| ++cursor; // Skip ' '. |
| |
| // Read flags. Skip flags until we encounter a space or eol. |
| const char *const flags_start = cursor; |
| while (cursor < eol && *cursor != ' ') { |
| ++cursor; |
| } |
| // We expect at least four letters for flags (ex. "r-xp"). |
| if (cursor == eol || cursor < flags_start + 4) { |
| ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line); |
| return false; |
| } |
| |
| // Check flags. Normally we are only interested in "r-x" maps. On |
| // the PowerPC, function pointers point to descriptors in the .opd |
| // section. The descriptors themselves are not executable code. So |
| // we need to relax the check below to "r**". |
| if (memcmp(flags_start, "r-x", 3) != 0 && // Not a "r-x" map. |
| !(kPlatformUsesOPDSections && flags_start[0] == 'r')) { |
| continue; // We skip this map. |
| } |
| ++cursor; // Skip ' '. |
| |
| // Read file offset. |
| uint64_t offset; |
| cursor = GetHex(cursor, eol, &offset); |
| ++cursor; // Skip ' '. |
| |
| // Skip to file name. "cursor" now points to dev. We need to skip at least |
| // two spaces for dev and inode. |
| int num_spaces = 0; |
| while (cursor < eol) { |
| if (*cursor == ' ') { |
| ++num_spaces; |
| } else if (num_spaces >= 2) { |
| // The first non-space character after skipping two spaces |
| // is the beginning of the file name. |
| break; |
| } |
| ++cursor; |
| } |
| |
| // Check whether this entry corresponds to our hint table for the true |
| // filename. |
| bool hinted = |
| GetFileMappingHint(&start_address, &end_address, &offset, &cursor); |
| if (!hinted && (cursor == eol || cursor[0] == '[')) { |
| // not an object file, typically [vdso] or [vsyscall] |
| continue; |
| } |
| if (!callback(cursor, start_address, end_address, offset, arg)) break; |
| } |
| return true; |
| } |
| |
| // Find the objfile mapped in address region containing [addr, addr + len). |
| ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) { |
| for (int i = 0; i < 2; ++i) { |
| if (!ok_) return nullptr; |
| |
| // Read /proc/self/maps if necessary |
| if (!addr_map_read_) { |
| addr_map_read_ = true; |
| if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) { |
| ok_ = false; |
| return nullptr; |
| } |
| } |
| |
| int lo = 0; |
| int hi = addr_map_.Size(); |
| while (lo < hi) { |
| int mid = (lo + hi) / 2; |
| if (addr < addr_map_.At(mid)->end_addr) { |
| hi = mid; |
| } else { |
| lo = mid + 1; |
| } |
| } |
| if (lo != addr_map_.Size()) { |
| ObjFile *obj = addr_map_.At(lo); |
| SAFE_ASSERT(obj->end_addr > addr); |
| if (addr >= obj->start_addr && |
| reinterpret_cast<const char *>(addr) + len <= obj->end_addr) |
| return obj; |
| } |
| |
| // The address mapping may have changed since it was last read. Retry. |
| ClearAddrMap(); |
| } |
| return nullptr; |
| } |
| |
| void Symbolizer::ClearAddrMap() { |
| for (int i = 0; i != addr_map_.Size(); i++) { |
| ObjFile *o = addr_map_.At(i); |
| base_internal::LowLevelAlloc::Free(o->filename); |
| if (o->fd >= 0) { |
| NO_INTR(close(o->fd)); |
| } |
| } |
| addr_map_.Clear(); |
| addr_map_read_ = false; |
| } |
| |
| // Callback for ReadAddrMap to register objfiles in an in-memory table. |
| bool Symbolizer::RegisterObjFile(const char *filename, |
| const void *const start_addr, |
| const void *const end_addr, uint64_t offset, |
| void *arg) { |
| Symbolizer *impl = static_cast<Symbolizer *>(arg); |
| |
| // Files are supposed to be added in the increasing address order. Make |
| // sure that's the case. |
| int addr_map_size = impl->addr_map_.Size(); |
| if (addr_map_size != 0) { |
| ObjFile *old = impl->addr_map_.At(addr_map_size - 1); |
| if (old->end_addr > end_addr) { |
| ABSL_RAW_LOG(ERROR, |
| "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR |
| ": %s", |
| reinterpret_cast<uintptr_t>(end_addr), filename, |
| reinterpret_cast<uintptr_t>(old->end_addr), old->filename); |
| return true; |
| } else if (old->end_addr == end_addr) { |
| // The same entry appears twice. This sometimes happens for [vdso]. |
| if (old->start_addr != start_addr || |
| strcmp(old->filename, filename) != 0) { |
| ABSL_RAW_LOG(ERROR, |
| "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s", |
| reinterpret_cast<uintptr_t>(end_addr), filename, |
| reinterpret_cast<uintptr_t>(old->end_addr), old->filename); |
| } |
| return true; |
| } |
| } |
| ObjFile *obj = impl->addr_map_.Add(); |
| obj->filename = impl->CopyString(filename); |
| obj->start_addr = start_addr; |
| obj->end_addr = end_addr; |
| obj->offset = offset; |
| obj->elf_type = -1; // filled on demand |
| obj->fd = -1; // opened on demand |
| return true; |
| } |
| |
| // This function wraps the Demangle function to provide an interface |
| // where the input symbol is demangled in-place. |
| // To keep stack consumption low, we would like this function to not |
| // get inlined. |
| static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size, |
| char *tmp_buf, |
| int tmp_buf_size) { |
| if (Demangle(out, tmp_buf, tmp_buf_size)) { |
| // Demangling succeeded. Copy to out if the space allows. |
| int len = strlen(tmp_buf); |
| if (len + 1 <= out_size) { // +1 for '\0'. |
| SAFE_ASSERT(len < tmp_buf_size); |
| memmove(out, tmp_buf, len + 1); |
| } |
| } |
| } |
| |
| SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) { |
| uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc); |
| pc0 >>= 3; // drop the low 3 bits |
| |
| // Shuffle bits. |
| pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18); |
| return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES]; |
| } |
| |
| void Symbolizer::AgeSymbols(SymbolCacheLine *line) { |
| for (uint32_t &age : line->age) { |
| ++age; |
| } |
| } |
| |
| const char *Symbolizer::FindSymbolInCache(const void *const pc) { |
| if (pc == nullptr) return nullptr; |
| |
| SymbolCacheLine *line = GetCacheLine(pc); |
| for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { |
| if (line->pc[i] == pc) { |
| AgeSymbols(line); |
| line->age[i] = 0; |
| return line->name[i]; |
| } |
| } |
| return nullptr; |
| } |
| |
| const char *Symbolizer::InsertSymbolInCache(const void *const pc, |
| const char *name) { |
| SAFE_ASSERT(pc != nullptr); |
| |
| SymbolCacheLine *line = GetCacheLine(pc); |
| uint32_t max_age = 0; |
| int oldest_index = -1; |
| for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { |
| if (line->pc[i] == nullptr) { |
| AgeSymbols(line); |
| line->pc[i] = pc; |
| line->name[i] = CopyString(name); |
| line->age[i] = 0; |
| return line->name[i]; |
| } |
| if (line->age[i] >= max_age) { |
| max_age = line->age[i]; |
| oldest_index = i; |
| } |
| } |
| |
| AgeSymbols(line); |
| ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache"); |
| base_internal::LowLevelAlloc::Free(line->name[oldest_index]); |
| line->pc[oldest_index] = pc; |
| line->name[oldest_index] = CopyString(name); |
| line->age[oldest_index] = 0; |
| return line->name[oldest_index]; |
| } |
| |
| static void MaybeOpenFdFromSelfExe(ObjFile *obj) { |
| if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) { |
| return; |
| } |
| int fd = open("/proc/self/exe", O_RDONLY); |
| if (fd == -1) { |
| return; |
| } |
| // Verify that contents of /proc/self/exe matches in-memory image of |
| // the binary. This can fail if the "deleted" binary is in fact not |
| // the main executable, or for binaries that have the first PT_LOAD |
| // segment smaller than 4K. We do it in four steps so that the |
| // buffer is smaller and we don't consume too much stack space. |
| const char *mem = reinterpret_cast<const char *>(obj->start_addr); |
| for (int i = 0; i < 4; ++i) { |
| char buf[1024]; |
| ssize_t n = read(fd, buf, sizeof(buf)); |
| if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) { |
| close(fd); |
| return; |
| } |
| mem += sizeof(buf); |
| } |
| obj->fd = fd; |
| } |
| |
| static bool MaybeInitializeObjFile(ObjFile *obj) { |
| if (obj->fd < 0) { |
| obj->fd = open(obj->filename, O_RDONLY); |
| |
| if (obj->fd < 0) { |
| // Getting /proc/self/exe here means that we were hinted. |
| if (strcmp(obj->filename, "/proc/self/exe") == 0) { |
| // /proc/self/exe may be inaccessible (due to setuid, etc.), so try |
| // accessing the binary via argv0. |
| if (argv0_value != nullptr) { |
| obj->fd = open(argv0_value, O_RDONLY); |
| } |
| } else { |
| MaybeOpenFdFromSelfExe(obj); |
| } |
| } |
| |
| if (obj->fd < 0) { |
| ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno); |
| return false; |
| } |
| obj->elf_type = FileGetElfType(obj->fd); |
| if (obj->elf_type < 0) { |
| ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename, |
| obj->elf_type); |
| return false; |
| } |
| |
| if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header), |
| 0)) { |
| ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // The implementation of our symbolization routine. If it |
| // successfully finds the symbol containing "pc" and obtains the |
| // symbol name, returns pointer to that symbol. Otherwise, returns nullptr. |
| // If any symbol decorators have been installed via InstallSymbolDecorator(), |
| // they are called here as well. |
| // To keep stack consumption low, we would like this function to not |
| // get inlined. |
| const char *Symbolizer::GetSymbol(const void *const pc) { |
| const char *entry = FindSymbolInCache(pc); |
| if (entry != nullptr) { |
| return entry; |
| } |
| symbol_buf_[0] = '\0'; |
| |
| ObjFile *const obj = FindObjFile(pc, 1); |
| ptrdiff_t relocation = 0; |
| int fd = -1; |
| if (obj != nullptr) { |
| if (MaybeInitializeObjFile(obj)) { |
| if (obj->elf_type == ET_DYN && |
| reinterpret_cast<uint64_t>(obj->start_addr) >= obj->offset) { |
| // This object was relocated. |
| // |
| // For obj->offset > 0, adjust the relocation since a mapping at offset |
| // X in the file will have a start address of [true relocation]+X. |
| relocation = reinterpret_cast<ptrdiff_t>(obj->start_addr) - obj->offset; |
| } |
| |
| fd = obj->fd; |
| } |
| if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_, |
| sizeof(symbol_buf_), tmp_buf_, |
| sizeof(tmp_buf_)) == SYMBOL_FOUND) { |
| // Only try to demangle the symbol name if it fit into symbol_buf_. |
| DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_, |
| sizeof(tmp_buf_)); |
| } |
| } else { |
| #if ABSL_HAVE_VDSO_SUPPORT |
| VDSOSupport vdso; |
| if (vdso.IsPresent()) { |
| VDSOSupport::SymbolInfo symbol_info; |
| if (vdso.LookupSymbolByAddress(pc, &symbol_info)) { |
| // All VDSO symbols are known to be short. |
| size_t len = strlen(symbol_info.name); |
| ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_), |
| "VDSO symbol unexpectedly long"); |
| memcpy(symbol_buf_, symbol_info.name, len + 1); |
| } |
| } |
| #endif |
| } |
| |
| if (g_decorators_mu.TryLock()) { |
| if (g_num_decorators > 0) { |
| SymbolDecoratorArgs decorator_args = { |
| pc, relocation, fd, symbol_buf_, sizeof(symbol_buf_), |
| tmp_buf_, sizeof(tmp_buf_), nullptr}; |
| for (int i = 0; i < g_num_decorators; ++i) { |
| decorator_args.arg = g_decorators[i].arg; |
| g_decorators[i].fn(&decorator_args); |
| } |
| } |
| g_decorators_mu.Unlock(); |
| } |
| if (symbol_buf_[0] == '\0') { |
| return nullptr; |
| } |
| symbol_buf_[sizeof(symbol_buf_) - 1] = '\0'; // Paranoia. |
| return InsertSymbolInCache(pc, symbol_buf_); |
| } |
| |
| bool RemoveAllSymbolDecorators(void) { |
| if (!g_decorators_mu.TryLock()) { |
| // Someone else is using decorators. Get out. |
| return false; |
| } |
| g_num_decorators = 0; |
| g_decorators_mu.Unlock(); |
| return true; |
| } |
| |
| bool RemoveSymbolDecorator(int ticket) { |
| if (!g_decorators_mu.TryLock()) { |
| // Someone else is using decorators. Get out. |
| return false; |
| } |
| for (int i = 0; i < g_num_decorators; ++i) { |
| if (g_decorators[i].ticket == ticket) { |
| while (i < g_num_decorators - 1) { |
| g_decorators[i] = g_decorators[i + 1]; |
| ++i; |
| } |
| g_num_decorators = i; |
| break; |
| } |
| } |
| g_decorators_mu.Unlock(); |
| return true; // Decorator is known to be removed. |
| } |
| |
| int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) { |
| static int ticket = 0; |
| |
| if (!g_decorators_mu.TryLock()) { |
| // Someone else is using decorators. Get out. |
| return false; |
| } |
| int ret = ticket; |
| if (g_num_decorators >= kMaxDecorators) { |
| ret = -1; |
| } else { |
| g_decorators[g_num_decorators] = {decorator, arg, ticket++}; |
| ++g_num_decorators; |
| } |
| g_decorators_mu.Unlock(); |
| return ret; |
| } |
| |
| bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset, |
| const char *filename) { |
| SAFE_ASSERT(start <= end); |
| SAFE_ASSERT(filename != nullptr); |
| |
| InitSigSafeArena(); |
| |
| if (!g_file_mapping_mu.TryLock()) { |
| return false; |
| } |
| |
| bool ret = true; |
| if (g_num_file_mapping_hints >= kMaxFileMappingHints) { |
| ret = false; |
| } else { |
| // TODO(ckennelly): Move this into a std::string copy routine. |
| int len = strlen(filename); |
| char *dst = static_cast<char *>( |
| base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); |
| ABSL_RAW_CHECK(dst != nullptr, "out of memory"); |
| memcpy(dst, filename, len + 1); |
| |
| auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++]; |
| hint.start = start; |
| hint.end = end; |
| hint.offset = offset; |
| hint.filename = dst; |
| } |
| |
| g_file_mapping_mu.Unlock(); |
| return ret; |
| } |
| |
| bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset, |
| const char **filename) { |
| if (!g_file_mapping_mu.TryLock()) { |
| return false; |
| } |
| bool found = false; |
| for (int i = 0; i < g_num_file_mapping_hints; i++) { |
| if (g_file_mapping_hints[i].start <= *start && |
| *end <= g_file_mapping_hints[i].end) { |
| // We assume that the start_address for the mapping is the base |
| // address of the ELF section, but when [start_address,end_address) is |
| // not strictly equal to [hint.start, hint.end), that assumption is |
| // invalid. |
| // |
| // This uses the hint's start address (even though hint.start is not |
| // necessarily equal to start_address) to ensure the correct |
| // relocation is computed later. |
| *start = g_file_mapping_hints[i].start; |
| *end = g_file_mapping_hints[i].end; |
| *offset = g_file_mapping_hints[i].offset; |
| *filename = g_file_mapping_hints[i].filename; |
| found = true; |
| break; |
| } |
| } |
| g_file_mapping_mu.Unlock(); |
| return found; |
| } |
| |
| } // namespace debugging_internal |
| |
| bool Symbolize(const void *pc, char *out, int out_size) { |
| // Symbolization is very slow under tsan. |
| ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); |
| SAFE_ASSERT(out_size >= 0); |
| debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer(); |
| const char *name = s->GetSymbol(pc); |
| bool ok = false; |
| if (name != nullptr && out_size > 0) { |
| strncpy(out, name, out_size); |
| ok = true; |
| if (out[out_size - 1] != '\0') { |
| // strncpy() does not '\0' terminate when it truncates. Do so, with |
| // trailing ellipsis. |
| static constexpr char kEllipsis[] = "..."; |
| int ellipsis_size = |
| std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1); |
| memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size); |
| out[out_size - 1] = '\0'; |
| } |
| } |
| debugging_internal::FreeSymbolizer(s); |
| ANNOTATE_IGNORE_READS_AND_WRITES_END(); |
| return ok; |
| } |
| |
| } // namespace absl |