blob: ec6fced16ababcc541f4620619a98ac97dde712a [file] [log] [blame]
mistergc2e75482017-09-19 16:54:40 -04001// Copyright 2017 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14//
15// -----------------------------------------------------------------------------
16// File: fixed_array.h
17// -----------------------------------------------------------------------------
18//
19// A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20// the array can be determined at run-time. It is a good replacement for
21// non-standard and deprecated uses of `alloca()` and variable length arrays
22// within the GCC extension. (See
23// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24//
25// `FixedArray` allocates small arrays inline, keeping performance fast by
26// avoiding heap operations. It also helps reduce the chances of
27// accidentally overflowing your stack if large input is passed to
28// your function.
29
30#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31#define ABSL_CONTAINER_FIXED_ARRAY_H_
32
33#include <algorithm>
34#include <array>
35#include <cassert>
36#include <cstddef>
37#include <initializer_list>
38#include <iterator>
39#include <limits>
40#include <memory>
41#include <new>
42#include <type_traits>
43
44#include "absl/algorithm/algorithm.h"
45#include "absl/base/dynamic_annotations.h"
46#include "absl/base/internal/throw_delegate.h"
47#include "absl/base/macros.h"
48#include "absl/base/optimization.h"
49#include "absl/base/port.h"
Abseil Team6365d172018-01-02 08:53:02 -080050#include "absl/memory/memory.h"
mistergc2e75482017-09-19 16:54:40 -040051
52namespace absl {
53
54constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
55
56// -----------------------------------------------------------------------------
57// FixedArray
58// -----------------------------------------------------------------------------
59//
60// A `FixedArray` provides a run-time fixed-size array, allocating small arrays
61// inline for efficiency and correctness.
62//
63// Most users should not specify an `inline_elements` argument and let
64// `FixedArray<>` automatically determine the number of elements
65// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
66// `FixedArray<>` implementation will inline arrays of
67// length <= `inline_elements`.
68//
69// Note that a `FixedArray` constructed with a `size_type` argument will
70// default-initialize its values by leaving trivially constructible types
71// uninitialized (e.g. int, int[4], double), and others default-constructed.
72// This matches the behavior of c-style arrays and `std::array`, but not
73// `std::vector`.
74//
75// Note that `FixedArray` does not provide a public allocator; if it requires a
76// heap allocation, it will do so with global `::operator new[]()` and
77// `::operator delete[]()`, even if T provides class-scope overrides for these
78// operators.
79template <typename T, size_t inlined = kFixedArrayUseDefault>
80class FixedArray {
81 static constexpr size_t kInlineBytesDefault = 256;
82
83 // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
84 // but this seems to be mostly pedantic.
85 template <typename Iter>
86 using EnableIfForwardIterator = typename std::enable_if<
87 std::is_convertible<
88 typename std::iterator_traits<Iter>::iterator_category,
89 std::forward_iterator_tag>::value,
90 int>::type;
91
92 public:
93 // For playing nicely with stl:
94 using value_type = T;
95 using iterator = T*;
96 using const_iterator = const T*;
97 using reverse_iterator = std::reverse_iterator<iterator>;
98 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
99 using reference = T&;
100 using const_reference = const T&;
101 using pointer = T*;
102 using const_pointer = const T*;
103 using difference_type = ptrdiff_t;
104 using size_type = size_t;
105
106 static constexpr size_type inline_elements =
107 inlined == kFixedArrayUseDefault
108 ? kInlineBytesDefault / sizeof(value_type)
109 : inlined;
110
Abseil Team6365d172018-01-02 08:53:02 -0800111 FixedArray(const FixedArray& other) : rep_(other.begin(), other.end()) {}
112 FixedArray(FixedArray&& other) noexcept(
113 // clang-format off
114 absl::allocator_is_nothrow<std::allocator<value_type>>::value &&
115 // clang-format on
116 std::is_nothrow_move_constructible<value_type>::value)
117 : rep_(std::make_move_iterator(other.begin()),
118 std::make_move_iterator(other.end())) {}
119
mistergc2e75482017-09-19 16:54:40 -0400120 // Creates an array object that can store `n` elements.
121 // Note that trivially constructible elements will be uninitialized.
122 explicit FixedArray(size_type n) : rep_(n) {}
123
124 // Creates an array initialized with `n` copies of `val`.
125 FixedArray(size_type n, const value_type& val) : rep_(n, val) {}
126
127 // Creates an array initialized with the elements from the input
128 // range. The array's size will always be `std::distance(first, last)`.
129 // REQUIRES: Iter must be a forward_iterator or better.
130 template <typename Iter, EnableIfForwardIterator<Iter> = 0>
131 FixedArray(Iter first, Iter last) : rep_(first, last) {}
132
Abseil Team8d8dcb02017-09-29 08:44:28 -0700133 // Creates the array from an initializer_list.
mistergc2e75482017-09-19 16:54:40 -0400134 FixedArray(std::initializer_list<T> init_list)
135 : FixedArray(init_list.begin(), init_list.end()) {}
136
137 ~FixedArray() {}
138
Abseil Team6365d172018-01-02 08:53:02 -0800139 // Assignments are deleted because they break the invariant that the size of a
140 // `FixedArray` never changes.
141 void operator=(FixedArray&&) = delete;
mistergc2e75482017-09-19 16:54:40 -0400142 void operator=(const FixedArray&) = delete;
143
144 // FixedArray::size()
145 //
146 // Returns the length of the fixed array.
147 size_type size() const { return rep_.size(); }
148
149 // FixedArray::max_size()
150 //
151 // Returns the largest possible value of `std::distance(begin(), end())` for a
152 // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
153 // over the number of bytes taken by T.
154 constexpr size_type max_size() const {
155 return std::numeric_limits<difference_type>::max() / sizeof(value_type);
156 }
157
158 // FixedArray::empty()
159 //
160 // Returns whether or not the fixed array is empty.
161 bool empty() const { return size() == 0; }
162
163 // FixedArray::memsize()
164 //
165 // Returns the memory size of the fixed array in bytes.
166 size_t memsize() const { return size() * sizeof(value_type); }
167
168 // FixedArray::data()
169 //
170 // Returns a const T* pointer to elements of the `FixedArray`. This pointer
171 // can be used to access (but not modify) the contained elements.
172 const_pointer data() const { return AsValue(rep_.begin()); }
173
174 // Overload of FixedArray::data() to return a T* pointer to elements of the
175 // fixed array. This pointer can be used to access and modify the contained
176 // elements.
177 pointer data() { return AsValue(rep_.begin()); }
178 // FixedArray::operator[]
179 //
180 // Returns a reference the ith element of the fixed array.
181 // REQUIRES: 0 <= i < size()
182 reference operator[](size_type i) {
183 assert(i < size());
184 return data()[i];
185 }
186
187 // Overload of FixedArray::operator()[] to return a const reference to the
188 // ith element of the fixed array.
189 // REQUIRES: 0 <= i < size()
190 const_reference operator[](size_type i) const {
191 assert(i < size());
192 return data()[i];
193 }
194
195 // FixedArray::at
196 //
197 // Bounds-checked access. Returns a reference to the ith element of the
198 // fiexed array, or throws std::out_of_range
199 reference at(size_type i) {
200 if (ABSL_PREDICT_FALSE(i >= size())) {
201 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
202 }
203 return data()[i];
204 }
205
206 // Overload of FixedArray::at() to return a const reference to the ith element
207 // of the fixed array.
208 const_reference at(size_type i) const {
209 if (i >= size()) {
210 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
211 }
212 return data()[i];
213 }
214
215 // FixedArray::front()
216 //
217 // Returns a reference to the first element of the fixed array.
218 reference front() { return *begin(); }
219
220 // Overload of FixedArray::front() to return a reference to the first element
221 // of a fixed array of const values.
222 const_reference front() const { return *begin(); }
223
224 // FixedArray::back()
225 //
226 // Returns a reference to the last element of the fixed array.
227 reference back() { return *(end() - 1); }
228
229 // Overload of FixedArray::back() to return a reference to the last element
230 // of a fixed array of const values.
231 const_reference back() const { return *(end() - 1); }
232
233 // FixedArray::begin()
234 //
235 // Returns an iterator to the beginning of the fixed array.
236 iterator begin() { return data(); }
237
238 // Overload of FixedArray::begin() to return a const iterator to the
239 // beginning of the fixed array.
240 const_iterator begin() const { return data(); }
241
242 // FixedArray::cbegin()
243 //
244 // Returns a const iterator to the beginning of the fixed array.
245 const_iterator cbegin() const { return begin(); }
246
247 // FixedArray::end()
248 //
249 // Returns an iterator to the end of the fixed array.
250 iterator end() { return data() + size(); }
251
252 // Overload of FixedArray::end() to return a const iterator to the end of the
253 // fixed array.
254 const_iterator end() const { return data() + size(); }
255
256 // FixedArray::cend()
257 //
258 // Returns a const iterator to the end of the fixed array.
259 const_iterator cend() const { return end(); }
260
261 // FixedArray::rbegin()
262 //
263 // Returns a reverse iterator from the end of the fixed array.
264 reverse_iterator rbegin() { return reverse_iterator(end()); }
265
266 // Overload of FixedArray::rbegin() to return a const reverse iterator from
267 // the end of the fixed array.
268 const_reverse_iterator rbegin() const {
269 return const_reverse_iterator(end());
270 }
271
272 // FixedArray::crbegin()
273 //
274 // Returns a const reverse iterator from the end of the fixed array.
275 const_reverse_iterator crbegin() const { return rbegin(); }
276
277 // FixedArray::rend()
278 //
279 // Returns a reverse iterator from the beginning of the fixed array.
280 reverse_iterator rend() { return reverse_iterator(begin()); }
281
282 // Overload of FixedArray::rend() for returning a const reverse iterator
283 // from the beginning of the fixed array.
284 const_reverse_iterator rend() const {
285 return const_reverse_iterator(begin());
286 }
287
288 // FixedArray::crend()
289 //
290 // Returns a reverse iterator from the beginning of the fixed array.
291 const_reverse_iterator crend() const { return rend(); }
292
293 // FixedArray::fill()
294 //
295 // Assigns the given `value` to all elements in the fixed array.
296 void fill(const T& value) { std::fill(begin(), end(), value); }
297
298 // Relational operators. Equality operators are elementwise using
299 // `operator==`, while order operators order FixedArrays lexicographically.
300 friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
301 return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
302 }
303
304 friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
305 return !(lhs == rhs);
306 }
307
308 friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
309 return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
310 rhs.end());
311 }
312
313 friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
314 return rhs < lhs;
315 }
316
317 friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
318 return !(rhs < lhs);
319 }
320
321 friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
322 return !(lhs < rhs);
323 }
324
325 private:
326 // HolderTraits
327 //
328 // Wrapper to hold elements of type T for the case where T is an array type.
329 // If 'T' is an array type, HolderTraits::type is a struct with a 'T v;'.
330 // Otherwise, HolderTraits::type is simply 'T'.
331 //
332 // Maintainer's Note: The simpler solution would be to simply wrap T in a
333 // struct whether it's an array or not: 'struct Holder { T v; };', but
334 // that causes some paranoid diagnostics to misfire about uses of data(),
335 // believing that 'data()' (aka '&rep_.begin().v') is a pointer to a single
336 // element, rather than the packed array that it really is.
337 // e.g.:
338 //
339 // FixedArray<char> buf(1);
340 // sprintf(buf.data(), "foo");
341 //
342 // error: call to int __builtin___sprintf_chk(etc...)
343 // will always overflow destination buffer [-Werror]
344 //
345 class HolderTraits {
346 template <typename U>
347 struct SelectImpl {
348 using type = U;
349 static pointer AsValue(type* p) { return p; }
350 };
351
352 // Partial specialization for elements of array type.
353 template <typename U, size_t N>
354 struct SelectImpl<U[N]> {
355 struct Holder { U v[N]; };
356 using type = Holder;
357 static pointer AsValue(type* p) { return &p->v; }
358 };
359 using Impl = SelectImpl<value_type>;
360
361 public:
362 using type = typename Impl::type;
363
364 static pointer AsValue(type *p) { return Impl::AsValue(p); }
365
366 // TODO(billydonahue): fix the type aliasing violation
367 // this assertion hints at.
368 static_assert(sizeof(type) == sizeof(value_type),
369 "Holder must be same size as value_type");
370 };
371
372 using Holder = typename HolderTraits::type;
373 static pointer AsValue(Holder *p) { return HolderTraits::AsValue(p); }
374
375 // InlineSpace
376 //
377 // Allocate some space, not an array of elements of type T, so that we can
378 // skip calling the T constructors and destructors for space we never use.
379 // How many elements should we store inline?
380 // a. If not specified, use a default of kInlineBytesDefault bytes (This is
381 // currently 256 bytes, which seems small enough to not cause stack overflow
382 // or unnecessary stack pollution, while still allowing stack allocation for
383 // reasonably long character arrays).
384 // b. Never use 0 length arrays (not ISO C++)
385 //
386 template <size_type N, typename = void>
387 class InlineSpace {
388 public:
389 Holder* data() { return reinterpret_cast<Holder*>(space_.data()); }
390 void AnnotateConstruct(size_t n) const { Annotate(n, true); }
391 void AnnotateDestruct(size_t n) const { Annotate(n, false); }
392
393 private:
394#ifndef ADDRESS_SANITIZER
395 void Annotate(size_t, bool) const { }
396#else
397 void Annotate(size_t n, bool creating) const {
398 if (!n) return;
399 const void* bot = &left_redzone_;
400 const void* beg = space_.data();
401 const void* end = space_.data() + n;
402 const void* top = &right_redzone_ + 1;
403 // args: (beg, end, old_mid, new_mid)
404 if (creating) {
405 ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, top, end);
406 ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, beg, bot);
407 } else {
408 ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, end, top);
409 ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, bot, beg);
410 }
411 }
412#endif // ADDRESS_SANITIZER
413
414 using Buffer =
415 typename std::aligned_storage<sizeof(Holder), alignof(Holder)>::type;
416
417 ADDRESS_SANITIZER_REDZONE(left_redzone_);
418 std::array<Buffer, N> space_;
419 ADDRESS_SANITIZER_REDZONE(right_redzone_);
420 };
421
422 // specialization when N = 0.
423 template <typename U>
424 class InlineSpace<0, U> {
425 public:
426 Holder* data() { return nullptr; }
427 void AnnotateConstruct(size_t) const {}
428 void AnnotateDestruct(size_t) const {}
429 };
430
431 // Rep
432 //
433 // A const Rep object holds FixedArray's size and data pointer.
434 //
435 class Rep : public InlineSpace<inline_elements> {
436 public:
437 Rep(size_type n, const value_type& val) : n_(n), p_(MakeHolder(n)) {
438 std::uninitialized_fill_n(p_, n, val);
439 }
440
441 explicit Rep(size_type n) : n_(n), p_(MakeHolder(n)) {
442 // Loop optimizes to nothing for trivially constructible T.
443 for (Holder* p = p_; p != p_ + n; ++p)
444 // Note: no parens: default init only.
445 // Also note '::' to avoid Holder class placement new operator.
446 ::new (static_cast<void*>(p)) Holder;
447 }
448
449 template <typename Iter>
450 Rep(Iter first, Iter last)
451 : n_(std::distance(first, last)), p_(MakeHolder(n_)) {
452 std::uninitialized_copy(first, last, AsValue(p_));
453 }
454
455 ~Rep() {
456 // Destruction must be in reverse order.
457 // Loop optimizes to nothing for trivially destructible T.
458 for (Holder* p = end(); p != begin();) (--p)->~Holder();
459 if (IsAllocated(size())) {
460 ::operator delete[](begin());
461 } else {
462 this->AnnotateDestruct(size());
463 }
464 }
465 Holder* begin() const { return p_; }
466 Holder* end() const { return p_ + n_; }
467 size_type size() const { return n_; }
468
469 private:
470 Holder* MakeHolder(size_type n) {
471 if (IsAllocated(n)) {
472 return Allocate(n);
473 } else {
474 this->AnnotateConstruct(n);
475 return this->data();
476 }
477 }
478
479 Holder* Allocate(size_type n) {
480 return static_cast<Holder*>(::operator new[](n * sizeof(Holder)));
481 }
482
483 bool IsAllocated(size_type n) const { return n > inline_elements; }
484
485 const size_type n_;
486 Holder* const p_;
487 };
488
489
490 // Data members
491 Rep rep_;
492};
493
494template <typename T, size_t N>
495constexpr size_t FixedArray<T, N>::inline_elements;
496
497template <typename T, size_t N>
498constexpr size_t FixedArray<T, N>::kInlineBytesDefault;
499
500} // namespace absl
501#endif // ABSL_CONTAINER_FIXED_ARRAY_H_