blob: 150735e974e4179af4ccbf416c5868a3155a0736 [file] [log] [blame]
//
// Copyright © 2020 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "ConversionUtils_1_2.hpp"
using Half = half_float::half;
namespace armnn_driver
{
using namespace armnn;
using namespace android::nn;
template<typename HalPolicy,
typename HalOperation = typename HalPolicy::Operation,
typename HalModel = typename HalPolicy::Model>
bool ConvertElu(const HalOperation& operation, const HalModel& model, ConversionData& data)
{
using HalOperandType = typename HalPolicy::OperandType;
LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
if (!input0.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// Determine data type of input tensor
HalOperandType inputType;
if (!GetOperandType<HalPolicy>(operation, 0, model, inputType))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
ActivationDescriptor desc;
desc.m_Function = ActivationFunction::Elu;
// Read alpha
if (inputType == HalOperandType::TENSOR_FLOAT16)
{
Half alpha;
if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT16, alpha, model, data))
{
return Fail("%s: Operation has invalid inputs (FLOAT16)", __func__);
}
desc.m_A = static_cast<float>(alpha);
}
else if (inputType == HalOperandType::TENSOR_FLOAT32)
{
if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT32, desc.m_A, model, data))
{
return Fail("%s: Operation has invalid inputs (FLOAT32)", __func__);
}
}
else
{
return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
}
return ::ConvertToActivation<HalPolicy>(operation, __func__, desc, model, data);
}
template<typename HalPolicy,
typename HalOperation = typename HalPolicy::Operation,
typename HalModel = typename HalPolicy::Model>
bool ConvertFill(const HalOperation& operation, const HalModel& model, ConversionData& data)
{
using HalOperand = typename HalPolicy::Operand;
using HalOperandType = typename HalPolicy::OperandType;
LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
if (IsDynamicTensor(outputInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
// Determine data type of output tensor
HalOperandType outputType = output->type;
FillDescriptor descriptor;
// Read the scalar fill value
if (outputType == HalOperandType::TENSOR_FLOAT16)
{
Half value;
if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT16, value, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
descriptor.m_Value = static_cast<float>(value);
}
else if (outputType == HalOperandType::TENSOR_FLOAT32)
{
if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT32, descriptor.m_Value, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
}
else if (outputType == HalOperandType::TENSOR_INT32)
{
int32_t value;
if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::INT32, value, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
descriptor.m_Value = static_cast<float>(value);
}
else
{
return Fail("%s: Unsupported input tensor type: %d", __func__, outputType);
}
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsFillSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddFillLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
}
template<typename HalPolicy,
typename HalOperation = typename HalPolicy::Operation,
typename HalModel = typename HalPolicy::Model>
bool ConvertLogicalBinary(const HalOperation& operation,
const HalModel& model,
ConversionData& data,
LogicalBinaryOperation logicalOperation)
{
using HalOperand = typename HalPolicy::Operand;
ALOGV("HalPolicy::ConvertLogicalBinary()");
ALOGV("logicalOperation = %s", GetLogicalBinaryOperationAsCString(logicalOperation));
LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data);
if (!(input0.IsValid() && input1.IsValid()))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo0 = input0.GetTensorInfo();
const TensorInfo& inputInfo1 = input1.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
LogicalBinaryDescriptor descriptor(logicalOperation);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsLogicalBinarySupported,
data.m_Backends,
isSupported,
inputInfo0,
inputInfo1,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddLogicalBinaryLayer(descriptor);
assert(layer != nullptr);
bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc);
}
template<typename HalPolicy,
typename HalOperation = typename HalPolicy::Operation,
typename HalModel = typename HalPolicy::Model>
bool ConvertQuantizedLstm(const HalOperation& operation, const HalModel& model, ConversionData& data)
{
using HalOperand = typename HalPolicy::Operand;
using HalOperandType = typename HalPolicy::OperandType;
ALOGV("HalPolicy::ConvertQuantizedLstm()");
//Inputs:
// 0: The input: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBatches, inputSize]
// specifying the input to the LSTM cell. Tensor is quantized with a fixed quantization range of -1, 127/128.
LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0: input", __func__);
}
// 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, of shape [batch_size, output_size].
LayerInputHandle outputStatePrevTimeStep = ConvertToLayerInputHandle<HalPolicy>(operation, 18, model, data);
if (!outputStatePrevTimeStep.IsValid())
{
return Fail("%s: Could not read input 18: outputStatePrevTimeStep", __func__);
}
// 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape [batch_size, num_units].
LayerInputHandle cellStatePrevTimeStep = ConvertToLayerInputHandle<HalPolicy>(operation, 19, model, data);
if (!cellStatePrevTimeStep.IsValid())
{
return Fail("%s: Could not read input 19: cellStatePrevTimeStep", __func__);
}
// Get the mandatory input tensors:
// 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size].
const ConstTensorPin inputToForgetWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data);
// 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size].
const ConstTensorPin inputToCellWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 3, model, data);
// 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size].
const ConstTensorPin inputToOutputWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 4, model, data);
// 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToForgetWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 6, model, data);
// 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToCellWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 7, model, data);
// 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToOutputWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 8, model, data);
// 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin forgetGateBiasPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 13, model, data);
// 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin cellBiasPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 14, model, data);
// 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin outputGateBiasPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 15, model, data);
if (!inputToForgetWeightsPin.IsValid() ||
!inputToCellWeightsPin.IsValid() ||
!inputToOutputWeightsPin.IsValid() ||
!recurrentToForgetWeightsPin.IsValid() ||
!recurrentToCellWeightsPin.IsValid() ||
!recurrentToOutputWeightsPin.IsValid() ||
!forgetGateBiasPin.IsValid() ||
!cellBiasPin.IsValid() ||
!outputGateBiasPin.IsValid())
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional input tensors:
// 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size], where “num_units” corresponds to the number of cell units.
const ConstTensorPin inputToInputWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
1,
model,
data,
g_DontPermute,
nullptr,
true);
// 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
// “num_units”), or the second dimension of the “projection_weights”, if defined.
const ConstTensorPin recurrentToInputWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
5,
model,
data,
g_DontPermute,
nullptr,
true);
// 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape
// [num_units].
const ConstTensorPin cellToInputWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
9,
model,
data,
g_DontPermute,
nullptr,
true);
// 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape
// [num_units].
const ConstTensorPin cellToForgetWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
10,
model,
data,
g_DontPermute,
nullptr,
true);
// 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape
// [num_units].
const ConstTensorPin cellToOutputWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
11,
model,
data,
g_DontPermute,
nullptr,
true);
// 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin inputGateBiasPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
12,
model,
data,
g_DontPermute,
nullptr,
true);
// 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [output_size, num_units].
const ConstTensorPin projectionWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
16,
model,
data,
g_DontPermute,
nullptr,
true);
// 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [output_size].
const ConstTensorPin projectionBiasPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
17,
model,
data,
g_DontPermute,
nullptr,
true);
if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional())
|| (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional())
|| (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional())
|| (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional())
|| (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional())
|| (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional())
|| (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional())
|| (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional normalization tensors
// 20: The input layer normalization weights. A 1-D tensor of shape [num_units] ANEURALNETWORKS_TENSOR_QUANT16_SYMM.
// Used to rescale normalized inputs to activation at input gate.
const ConstTensorPin inputLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
20,
model,
data,
g_DontPermute,
nullptr,
true);
// 21: The forget layer normalization weights. A 1-D tensor of shape [num_units] ANEURALNETWORKS_TENSOR_QUANT16_SYMM
// Used to rescale normalized inputs to activation at forget gate.
const ConstTensorPin forgetLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
21,
model,
data,
g_DontPermute,
nullptr,
true);
// 22: The cell layer normalization weights. A 1-D tensor of shape [num_units] ANEURALNETWORKS_TENSOR_QUANT16_SYMM.
// Used to rescale normalized inputs to activation at cell gate.
const ConstTensorPin cellLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
22,
model,
data,
g_DontPermute,
nullptr,
true);
// 23: The output layer normalization weights. A 1-D tensor of shape [num_units].
// Used to rescale normalized inputs to activation at output gate.
const ConstTensorPin outputLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
23,
model,
data,
g_DontPermute,
nullptr,
true);
if ((!inputLayerNormWeightsPin.IsValid() && !inputLayerNormWeightsPin.IsOptional())
|| (!forgetLayerNormWeightsPin.IsValid() && !forgetLayerNormWeightsPin.IsOptional())
|| (!cellLayerNormWeightsPin.IsValid() && !cellLayerNormWeightsPin.IsOptional())
|| (!outputLayerNormWeightsPin.IsValid() && !outputLayerNormWeightsPin.IsOptional()))
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional input scalars:
// 24: The cell clip: If provided the cell state is clipped by this value prior to the cell output activation.
// 25: The projection clip: If provided and projection is enabled, this is used for clipping the projected values.
// Get the mandatory input scalars:
// 26: The scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
// 27: The scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
// 28: The scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
// 29: The scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
// 30: The zero point of the hidden state, i.e. input to projection.
// 31: The scale of the hidden state, i.e. input to projection.
float cellClip, projClip, matMulInputGate, matMulForgetGate, matMulCellGate, matMulOutputGate, projInputScale;
int projInputZeroPoint;
if (!GetInputScalar<HalPolicy>(operation, 24, HalOperandType::FLOAT32, cellClip, model, data, true) ||
!GetInputScalar<HalPolicy>(operation, 25, HalOperandType::FLOAT32, projClip, model, data, true) ||
!GetInputScalar<HalPolicy>(operation, 26, HalOperandType::FLOAT32, matMulInputGate, model, data) ||
!GetInputScalar<HalPolicy>(operation, 27, HalOperandType::FLOAT32, matMulForgetGate, model, data) ||
!GetInputScalar<HalPolicy>(operation, 28, HalOperandType::FLOAT32, matMulCellGate, model, data) ||
!GetInputScalar<HalPolicy>(operation, 29, HalOperandType::FLOAT32, matMulOutputGate, model, data) ||
!GetInputScalar<HalPolicy>(operation, 30, HalOperandType::INT32, projInputZeroPoint, model, data) ||
!GetInputScalar<HalPolicy>(operation, 31, HalOperandType::FLOAT32, projInputScale, model, data))
{
return Fail("%s: Operation has invalid scalar inputs", __func__);
}
// Outputs:
// 0: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED, of shape [batch_size,
// output_size].
const HalOperand* outputStateOut = GetOutputOperand<HalPolicy>(operation, 0, model);
if (!outputStateOut)
{
return Fail("%s: Could not read output 0: outputStateOut", __func__);
}
// 1: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape [batch_size, num_units].
const HalOperand* cellStateOut = GetOutputOperand<HalPolicy>(operation, 1, model);
if (!cellStateOut)
{
return Fail("%s: Could not read output 1: cellStateOut", __func__);
}
// 2: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED, of shape [batch_size, output_size].
// This is effectively the same as the current “output state (out)” value.
const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 2, model);
if (!output)
{
return Fail("%s: Could not read output 2: output", __func__);
}
// set the params structure for the AddLstmLayer call
LstmInputParams params;
params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
params.m_CellBias = cellBiasPin.GetConstTensorPtr();
params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
params.m_InputLayerNormWeights = inputLayerNormWeightsPin.GetConstTensorPtr();
params.m_ForgetLayerNormWeights = forgetLayerNormWeightsPin.GetConstTensorPtr();
params.m_CellLayerNormWeights = cellLayerNormWeightsPin.GetConstTensorPtr();
params.m_OutputLayerNormWeights = outputLayerNormWeightsPin.GetConstTensorPtr();
// set the layer descriptor
QLstmDescriptor desc;
desc.m_CellClip = cellClip;
desc.m_ProjectionClip = projClip;
desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
params.m_RecurrentToInputWeights == nullptr ||
params.m_InputGateBias == nullptr);
desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
params.m_CellToOutputWeights != nullptr);
desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr ||
params.m_ForgetLayerNormWeights != nullptr ||
params.m_CellLayerNormWeights != nullptr ||
params.m_OutputLayerNormWeights != nullptr);
desc.m_InputIntermediateScale = matMulInputGate;
desc.m_ForgetIntermediateScale = matMulForgetGate;
desc.m_CellIntermediateScale = matMulCellGate;
desc.m_OutputIntermediateScale = matMulOutputGate;
desc.m_HiddenStateScale = projInputScale;
desc.m_HiddenStateZeroPoint = projInputZeroPoint;
// validate the optional input groups
if (desc.m_CifgEnabled &&
(params.m_InputToInputWeights != nullptr ||
params.m_RecurrentToInputWeights != nullptr ||
params.m_InputGateBias != nullptr))
{
return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
" and input gate bias must be provided", __func__);
}
if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
{
return Fail("%s: projection bias should not be provided without projection weights", __func__);
}
if (desc.m_PeepholeEnabled &&
(params.m_CellToForgetWeights == nullptr ||
params.m_CellToOutputWeights == nullptr ||
(!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
{
return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
" and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
}
if (desc.m_LayerNormEnabled &&
(params.m_ForgetLayerNormWeights == nullptr ||
params.m_CellLayerNormWeights == nullptr ||
params.m_OutputLayerNormWeights == nullptr ||
(!desc.m_CifgEnabled && params.m_InputLayerNormWeights == nullptr)))
{
return Fail("%s: All, or none, of forget-norm weights, cell-norm weights and output-norm weights must be"
" provided and, if CIFG is not enabled, input-norm weights must also be provided", __func__);
}
// Basic parameters
LstmInputParamsInfo paramsInfo;
paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
// Inputs
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputStatePrevTimeStepInfo = outputStatePrevTimeStep.GetTensorInfo();
const TensorInfo& cellStatePrevTimeStepInfo = cellStatePrevTimeStep.GetTensorInfo();
// Outputs
TensorInfo outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
TensorInfo outputInfo = GetTensorInfoForOperand(*output);
const TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
// Optional parameters
if (!desc.m_CifgEnabled)
{
paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
if (desc.m_PeepholeEnabled)
{
paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
}
paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
}
if (desc.m_ProjectionEnabled)
{
paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
if (params.m_ProjectionBias != nullptr)
{
paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
}
}
else
{
// If Projection is disabled, override non-const outputs to change the quant info with hidden params, then
// create a new const TensorInfo based on this
outputStateOutInfo.SetQuantizationScale(projInputScale);
outputStateOutInfo.SetQuantizationOffset(projInputZeroPoint);
outputInfo.SetQuantizationScale(projInputScale);
outputInfo.SetQuantizationOffset(projInputZeroPoint);
}
const TensorInfo constOutputStateOutInfo(outputStateOutInfo);
const TensorInfo constOutputInfo(outputInfo);
if (desc.m_PeepholeEnabled)
{
paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
}
if (desc.m_LayerNormEnabled)
{
if(!desc.m_CifgEnabled)
{
paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
}
paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
}
// Check if the layer is supported
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& cellStateOutInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsQLstmSupported,
data.m_Backends,
isSupported,
inputInfo,
outputStatePrevTimeStepInfo,
cellStatePrevTimeStepInfo,
constOutputStateOutInfo,
cellStateOutInfo,
constOutputInfo,
desc,
paramsInfo);
};
bool isDynamic = false;
if (!IsDynamicTensor(constOutputStateOutInfo) &&
!IsDynamicTensor(cellStateOutInfo) &&
!IsDynamicTensor(constOutputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isDynamic = true;
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
// Add the layer
IConnectableLayer* layer = data.m_Network->AddQLstmLayer(desc, params, "QLstm");
input.Connect(layer->GetInputSlot(0));
outputStatePrevTimeStep.Connect(layer->GetInputSlot(1));
cellStatePrevTimeStep.Connect(layer->GetInputSlot(2));
if (!isDynamic)
{
return ( SetupAndTrackLayerOutputSlot<HalPolicy>(
operation, 0, *layer, 0, model, data, &constOutputStateOutInfo) &&
SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 1, *layer, 1, model, data) &&
SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 2, *layer, 2, model, data, &constOutputInfo));
}
else
{
return ( SetupAndTrackLayerOutputSlot<HalPolicy>(
operation, 0, *layer, 0, model, data, &constOutputStateOutInfo) &&
SetupAndTrackLayerOutputSlot<HalPolicy>(
operation, 1, *layer, 1, model, data, nullptr, validateFunc,
ActivationFn::kActivationNone, true) &&
SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 2, *layer, 2, model, data, &constOutputInfo));
}
}
template<typename HalPolicy,
typename HalOperation = typename HalPolicy::Operation,
typename HalModel = typename HalPolicy::Model>
bool ConvertRank(const HalOperation& operation, const HalModel& model, ConversionData& data)
{
using HalOperand = typename HalPolicy::Operand;
const HalOperand* inputOperand = GetInputOperand<HalPolicy>(operation, 0, model);
const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model);
if (inputOperand == nullptr || outputOperand == nullptr)
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Shape inputOperandShape = GetOperandShape(*inputOperand);
const Shape outputOperandShape = GetOperandShape(*outputOperand);
LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0", __func__);
}
armnn::TensorInfo outInfo = GetTensorInfoForOperand(*outputOperand);
if (IsDynamicTensor(outInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsRankSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outInfo);
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddRankLayer();
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, &outInfo);
}
} // armnn_driver namespace