| // |
| // Copyright © 2017 Arm Ltd and Contributors. All rights reserved. |
| // SPDX-License-Identifier: MIT |
| // |
| |
| #pragma once |
| |
| #include "Utils.hpp" |
| |
| #include <armnn/ArmNN.hpp> |
| #include <armnn/ILayerSupport.hpp> |
| #include <armnn/BackendHelper.hpp> |
| #include <armnn/utility/Assert.hpp> |
| #include <armnn/utility/IgnoreUnused.hpp> |
| #include <armnn/utility/NumericCast.hpp> |
| |
| #include <armnnUtils/DataLayoutIndexed.hpp> |
| #include <armnnUtils/Transpose.hpp> |
| |
| #include "1.0/FullyConnected.hpp" |
| |
| #include <ActivationFunctor.h> |
| #include <CpuExecutor.h> |
| #include <OperationsUtils.h> |
| |
| #include <armnnUtils/FloatingPointComparison.hpp> |
| |
| #include <log/log.h> |
| #include <vector> |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wunneeded-internal-declaration" |
| #pragma clang diagnostic ignored "-Wunused-function" |
| #pragma clang diagnostic ignored "-Wunused-variable" |
| #endif |
| namespace armnn_driver |
| { |
| |
| /// |
| /// Helper classes |
| /// |
| |
| #ifdef ARMNN_ANDROID_R |
| using OperandType = android::nn::OperandType; |
| #endif |
| |
| struct ConversionData |
| { |
| ConversionData(const std::vector<armnn::BackendId>& backends) |
| : m_Backends(backends) |
| , m_Network(nullptr, nullptr) |
| , m_DynamicInputsEncountered(false) |
| {} |
| |
| const std::vector<armnn::BackendId> m_Backends; |
| armnn::INetworkPtr m_Network; |
| std::vector<armnn::IOutputSlot*> m_OutputSlotForOperand; |
| std::vector<android::nn::RunTimePoolInfo> m_MemPools; |
| bool m_DynamicInputsEncountered; |
| }; |
| |
| class LayerInputHandle |
| { |
| public: |
| LayerInputHandle(); |
| LayerInputHandle(bool valid, armnn::IOutputSlot* outputSlot, armnn::TensorInfo tensorInfo); |
| |
| bool IsValid() const; |
| |
| void Connect(armnn::IInputSlot& inputSlot); |
| |
| void Disconnect(armnn::IInputSlot& inputSlot); |
| |
| const armnn::TensorInfo& GetTensorInfo() const; |
| |
| private: |
| armnn::IOutputSlot* m_OutputSlot; |
| bool m_Valid; |
| armnn::TensorInfo m_TensorInfo; |
| }; |
| |
| class ConstTensorPin |
| { |
| public: |
| // Creates an invalid tensor pin (can be used to signal errors) |
| // The optional flag can be set to indicate the tensor values were missing, but it was otherwise valid |
| ConstTensorPin(bool optional = false); |
| |
| // @param tensorInfo TensorInfo associated with the tensor. |
| // @param valueStart Start address of tensor data. Belongs to one of the memory pools associated with |
| // the model being converted. |
| // @param numBytes Number of bytes for the tensor data. |
| ConstTensorPin(const armnn::TensorInfo& tensorInfo, const void* valueStart, uint32_t numBytes, |
| const armnn::PermutationVector& mappings); |
| |
| ConstTensorPin(const ConstTensorPin& other) = delete; |
| ConstTensorPin(ConstTensorPin&& other) = default; |
| |
| bool IsValid() const; |
| bool IsOptional() const; |
| |
| const armnn::ConstTensor& GetConstTensor() const; |
| const armnn::ConstTensor* GetConstTensorPtr() const; |
| |
| private: |
| armnn::ConstTensor m_ConstTensor; |
| |
| // Owned memory for swizzled tensor data, only required if the tensor needed |
| // swizzling. Otherwise, @ref m_ConstTensor will reference memory from one of |
| // the pools associated with the model being converted. |
| std::vector<uint8_t> m_SwizzledTensorData; |
| |
| // optional flag to indicate that an invalid tensor pin is not an error, but the optional values were not given |
| bool m_Optional; |
| }; |
| |
| } // namespace armnn_driver |
| |
| /// |
| /// Utility functions |
| /// |
| |
| namespace |
| { |
| |
| using namespace armnn_driver; |
| using namespace android::nn; |
| |
| // Convenience function to log the reason for failing to convert a model. |
| // @return Always returns false (so that it can be used by callers as a quick way to signal an error and return) |
| template<class... Args> |
| static bool Fail(const char* formatStr, Args&&... args) |
| { |
| ALOGD(formatStr, std::forward<Args>(args)...); |
| return false; |
| } |
| |
| // Convenience macro to call an Is*Supported function and log caller name together with reason for lack of support. |
| // Called as: FORWARD_LAYER_SUPPORT_FUNC(__func__, Is*Supported, backends, a, b, c, d, e) |
| #define FORWARD_LAYER_SUPPORT_FUNC(funcName, func, backends, supported, ...) \ |
| try \ |
| { \ |
| for (auto&& backendId : backends) \ |
| { \ |
| auto layerSupportObject = armnn::GetILayerSupportByBackendId(backendId); \ |
| if (layerSupportObject) \ |
| { \ |
| std::string reasonIfUnsupported; \ |
| supported = \ |
| layerSupportObject->func(__VA_ARGS__, armnn::Optional<std::string&>(reasonIfUnsupported)); \ |
| if (supported) \ |
| { \ |
| break; \ |
| } \ |
| else \ |
| { \ |
| if (reasonIfUnsupported.size() > 0) \ |
| { \ |
| ALOGD("%s: not supported by armnn: %s", funcName, reasonIfUnsupported.c_str()); \ |
| } \ |
| else \ |
| { \ |
| ALOGD("%s: not supported by armnn", funcName); \ |
| } \ |
| } \ |
| } \ |
| else \ |
| { \ |
| ALOGD("%s: backend not registered: %s", funcName, backendId.Get().c_str()); \ |
| } \ |
| } \ |
| if (!supported) \ |
| { \ |
| ALOGD("%s: not supported by any specified backend", funcName); \ |
| } \ |
| } \ |
| catch (const armnn::InvalidArgumentException &e) \ |
| { \ |
| throw armnn::InvalidArgumentException(e, "Failed to check layer support", CHECK_LOCATION()); \ |
| } |
| |
| template<typename HalOperand> |
| armnn::TensorShape GetTensorShapeForOperand(const HalOperand& operand) |
| { |
| return armnn::TensorShape(operand.dimensions.size(), operand.dimensions.data()); |
| } |
| |
| inline bool IsOperandTypeSupportedForTensors(V1_0::OperandType type) |
| { |
| return type == V1_0::OperandType::TENSOR_FLOAT32 || |
| type == V1_0::OperandType::TENSOR_QUANT8_ASYMM || |
| type == V1_0::OperandType::TENSOR_INT32; |
| } |
| |
| #if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) |
| |
| // Support within the 1.2 driver for specific tensor data types |
| inline bool IsOperandTypeSupportedForTensors(V1_2::OperandType type) |
| { |
| return type == V1_2::OperandType::BOOL || |
| type == V1_2::OperandType::TENSOR_BOOL8 || |
| type == V1_2::OperandType::TENSOR_FLOAT16 || |
| type == V1_2::OperandType::TENSOR_FLOAT32 || |
| type == V1_2::OperandType::TENSOR_QUANT8_ASYMM || |
| type == V1_2::OperandType::TENSOR_QUANT8_SYMM || |
| type == V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL || |
| type == V1_2::OperandType::TENSOR_QUANT16_SYMM || |
| type == V1_2::OperandType::TENSOR_INT32; |
| } |
| |
| #endif |
| |
| #ifdef ARMNN_ANDROID_NN_V1_3 |
| |
| // Support within the 1.3 driver for specific tensor data types |
| inline bool IsOperandTypeSupportedForTensors(V1_3::OperandType type) |
| { |
| return type == V1_3::OperandType::BOOL || |
| type == V1_3::OperandType::TENSOR_BOOL8 || |
| type == V1_3::OperandType::TENSOR_FLOAT16 || |
| type == V1_3::OperandType::TENSOR_FLOAT32 || |
| type == V1_3::OperandType::TENSOR_QUANT8_ASYMM || |
| type == V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED || |
| type == V1_3::OperandType::TENSOR_QUANT8_SYMM || |
| type == V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL || |
| type == V1_3::OperandType::TENSOR_QUANT16_SYMM || |
| type == V1_3::OperandType::TENSOR_INT32; |
| } |
| |
| #endif |
| |
| inline bool IsBool(V1_0::Operand) |
| { |
| return false; |
| } |
| |
| inline bool Is12OrLaterOperand(V1_0::Operand) |
| { |
| return false; |
| } |
| |
| #if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) |
| |
| inline bool IsBool(V1_2::Operand operand) |
| { |
| return operand.type == V1_2::OperandType::BOOL; |
| } |
| |
| /// Checks if a operand is 1_2 Operand |
| inline bool Is12OrLaterOperand(V1_2::Operand) |
| { |
| return true; |
| } |
| |
| #endif |
| |
| #ifdef ARMNN_ANDROID_NN_V1_3 |
| |
| inline bool IsBool(V1_3::Operand operand) |
| { |
| return operand.type == V1_3::OperandType::BOOL; |
| } |
| |
| /// Checks if a operand is 1_2 Operand |
| inline bool Is12OrLaterOperand(V1_3::Operand) |
| { |
| return true; |
| } |
| |
| #endif |
| |
| template<typename LayerHandleType> |
| armnn::IConnectableLayer& AddReshapeLayer(armnn::INetwork& network, |
| LayerHandleType& inputLayer, |
| armnn::TensorInfo reshapeInfo) |
| { |
| armnn::ReshapeDescriptor reshapeDescriptor; |
| reshapeDescriptor.m_TargetShape = reshapeInfo.GetShape(); |
| |
| armnn::IConnectableLayer* reshapeLayer = network.AddReshapeLayer(reshapeDescriptor); |
| ARMNN_ASSERT(reshapeLayer != nullptr); |
| |
| // Attach the input layer to the reshape layer |
| inputLayer.Connect(reshapeLayer->GetInputSlot(0)); |
| reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapeInfo); |
| |
| return *reshapeLayer; |
| } |
| |
| bool BroadcastTensor(LayerInputHandle& input0, |
| LayerInputHandle& input1, |
| armnn::IConnectableLayer* startLayer, |
| ConversionData& data) |
| { |
| ARMNN_ASSERT(startLayer != nullptr); |
| |
| const armnn::TensorInfo& inputInfo0 = input0.GetTensorInfo(); |
| const armnn::TensorInfo& inputInfo1 = input1.GetTensorInfo(); |
| |
| unsigned int inputDimensions0 = inputInfo0.GetNumDimensions(); |
| unsigned int inputDimensions1 = inputInfo1.GetNumDimensions(); |
| |
| if (inputDimensions0 == inputDimensions1) |
| { |
| // The inputs have the same number of dimensions, simply connect them to the given layer as they are |
| input0.Connect(startLayer->GetInputSlot(0)); |
| input1.Connect(startLayer->GetInputSlot(1)); |
| |
| return true; |
| } |
| |
| // Since the number of dimensions do not match then we need to add degenerate dimensions |
| // to the "smaller" tensor using a reshape, while keeping the order of the inputs. |
| |
| unsigned int maxInputDimensions = std::max(inputDimensions0, inputDimensions1); |
| unsigned int sizeDifference = std::abs(armnn::numeric_cast<int>(inputDimensions0) - |
| armnn::numeric_cast<int>(inputDimensions1)); |
| |
| bool input0IsSmaller = inputDimensions0 < inputDimensions1; |
| LayerInputHandle& smallInputHandle = input0IsSmaller ? input0 : input1; |
| const armnn::TensorInfo& smallInfo = smallInputHandle.GetTensorInfo(); |
| |
| const armnn::TensorShape& smallShape = smallInfo.GetShape(); |
| std::vector<unsigned int> reshapedDimensions(maxInputDimensions, 1); |
| for (unsigned int i = sizeDifference; i < maxInputDimensions; i++) |
| { |
| reshapedDimensions[i] = smallShape[i - sizeDifference]; |
| } |
| |
| armnn::TensorInfo reshapedInfo = smallInfo; |
| reshapedInfo.SetShape(armnn::TensorShape{ armnn::numeric_cast<unsigned int>(reshapedDimensions.size()), |
| reshapedDimensions.data() }); |
| |
| // RehsapeDescriptor that is ignored in the IsReshapeSupported function |
| armnn::ReshapeDescriptor reshapeDescriptor; |
| |
| bool isSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsReshapeSupported, |
| data.m_Backends, |
| isSupported, |
| smallInfo, |
| reshapedInfo, |
| reshapeDescriptor); |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| ARMNN_ASSERT(data.m_Network != nullptr); |
| armnn::IConnectableLayer& reshapeLayer = AddReshapeLayer(*data.m_Network, smallInputHandle, reshapedInfo); |
| |
| if (input0IsSmaller) |
| { |
| // Input0 is the "smaller" tensor, connect the reshape layer as follows: |
| // |
| // Input0 Input1 |
| // | | |
| // Reshape | |
| // \ / |
| // StartLayer |
| |
| reshapeLayer.GetOutputSlot(0).Connect(startLayer->GetInputSlot(0)); |
| input1.Connect(startLayer->GetInputSlot(1)); |
| } |
| else |
| { |
| // Input1 is the "smaller" tensor, connect the reshape layer as follows: |
| // |
| // Input0 Input1 |
| // | | |
| // | Reshape |
| // \ / |
| // StartLayer |
| |
| input0.Connect(startLayer->GetInputSlot(0)); |
| reshapeLayer.GetOutputSlot(0).Connect(startLayer->GetInputSlot(1)); |
| } |
| |
| return true; |
| } |
| |
| void CalcPadding(uint32_t input, |
| uint32_t kernel, |
| uint32_t stride, |
| uint32_t& outPadHead, |
| uint32_t& outPadTail, |
| android::nn::PaddingScheme scheme) |
| { |
| int32_t padHead; |
| int32_t padTail; |
| calculateExplicitPadding(input, stride, kernel, scheme, &padHead, &padTail); |
| outPadHead = armnn::numeric_cast<uint32_t>(padHead); |
| outPadTail = armnn::numeric_cast<uint32_t>(padTail); |
| } |
| |
| #if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) |
| |
| void CalcPadding(uint32_t input, uint32_t kernel, uint32_t stride, uint32_t dilation, uint32_t& outPadHead, |
| uint32_t& outPadTail, android::nn::PaddingScheme scheme) |
| { |
| int32_t padHead; |
| int32_t padTail; |
| calculateExplicitPadding(input, stride, dilation, kernel, scheme, &padHead, &padTail); |
| outPadHead = armnn::numeric_cast<uint32_t>(padHead); |
| outPadTail = armnn::numeric_cast<uint32_t>(padTail); |
| } |
| |
| void CalcPaddingTransposeConv(uint32_t output, uint32_t kernel, int32_t stride, int32_t& outPadHead, |
| int32_t& outPadTail, android::nn::PaddingScheme scheme) |
| { |
| calculateExplicitPaddingTransposeConv(output, stride, kernel, scheme, &outPadHead, &outPadTail); |
| } |
| |
| #endif |
| |
| Shape GetOperandShape(const V1_0::Operand& operand) |
| { |
| Shape shape; |
| shape.type = android::nn::OperandType(operand.type); |
| shape.dimensions = operand.dimensions; |
| shape.scale = operand.scale; |
| shape.offset = operand.zeroPoint; |
| return shape; |
| } |
| |
| #if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) |
| |
| Shape GetOperandShape(const V1_2::Operand& operand) |
| { |
| Shape shape; |
| shape.type = android::nn::OperandType(operand.type); |
| shape.dimensions = operand.dimensions; |
| shape.scale = operand.scale; |
| shape.offset = operand.zeroPoint; |
| return shape; |
| } |
| |
| #endif |
| |
| #ifdef ARMNN_ANDROID_NN_V1_3 |
| |
| Shape GetOperandShape(const V1_3::Operand& operand) |
| { |
| Shape shape; |
| shape.type = OperandType(operand.type); |
| shape.dimensions = operand.dimensions; |
| shape.scale = operand.scale; |
| shape.offset = operand.zeroPoint; |
| return shape; |
| } |
| |
| #endif |
| |
| // ArmNN requires the bias scale to be equal to the product of the weight and input scales, which is also |
| // what AndroidNN requires. However for some of the AndroidNN tests the values don't exactly match so |
| // we accept some tolerance. We don't want ArmNN itself to accept these inconsistencies as it is up to the |
| // user (us, in this case) to ensure they match. |
| void SanitizeBiasQuantizationScale(armnn::TensorInfo& biasInfo, |
| const armnn::TensorInfo& weightInfo, |
| const armnn::TensorInfo& inputInfo) |
| { |
| if (weightInfo.HasPerAxisQuantization()) |
| { |
| // NOTE: Bias scale is always set to 0 for per-axis quantization and |
| // it needs to be calculated: scale[i] = input_scale * weight_scale[i] |
| auto UpdateBiasScaleValue = [&inputInfo](float biasScale) -> float |
| { |
| return biasScale * inputInfo.GetQuantizationScale(); |
| }; |
| |
| std::vector<float> biasScales(weightInfo.GetQuantizationScales()); |
| std::transform(biasScales.begin(), biasScales.end(), biasScales.begin(), UpdateBiasScaleValue); |
| |
| biasInfo.SetQuantizationScales(biasScales); |
| biasInfo.SetQuantizationDim(weightInfo.GetQuantizationDim()); |
| |
| ALOGV("Bias quantization params have been updated for per-axis quantization"); |
| } |
| else |
| { |
| const float expectedBiasScale = weightInfo.GetQuantizationScale() * inputInfo.GetQuantizationScale(); |
| if (biasInfo.GetQuantizationScale() != expectedBiasScale) |
| { |
| if (armnnUtils::within_percentage_tolerance(biasInfo.GetQuantizationScale(), expectedBiasScale, 1.0f)) |
| { |
| ALOGW("Bias quantization scale has been modified to match input * weights"); |
| biasInfo.SetQuantizationScale(expectedBiasScale); |
| } |
| } |
| } |
| } |
| |
| // 4D Tensor Permutations |
| const armnn::PermutationVector IdentityPermutation4D({ 0U, 1U, 2U, 3U }); |
| const armnn::PermutationVector IdentityPermutation3D({ 0U, 1U, 2U }); |
| const armnn::PermutationVector SwapDim1And2({ 0U, 2U, 1U, 3U }); |
| |
| // 3D Permutation Vectors |
| const armnn::PermutationVector RotateTensorLeft({ 1U, 2U, 0U }); |
| const armnn::PermutationVector RotateTensorRight({ 2U, 0U, 1U }); |
| |
| template<typename OSlot> |
| armnn::IConnectableLayer& AddTransposeLayer(armnn::INetwork& network, OSlot& input, |
| const armnn::PermutationVector& mappings) |
| { |
| // Add swizzle layer |
| armnn::IConnectableLayer* const layer = network.AddTransposeLayer(mappings); |
| |
| ARMNN_ASSERT(layer != nullptr); |
| |
| // Connect input to swizzle layer |
| input.Connect(layer->GetInputSlot(0)); |
| |
| // Setup swizzled output |
| const armnn::TensorInfo outInfo = armnnUtils::TransposeTensorShape(input.GetTensorInfo(), mappings); |
| layer->GetOutputSlot(0).SetTensorInfo(outInfo); |
| |
| return *layer; |
| } |
| |
| bool ValidateConcatOutputShape(const std::vector<armnn::TensorShape> & inputShapes, |
| const armnn::TensorShape & outputShape, |
| uint32_t concatDim) |
| { |
| // Validate the output shape is correct given the input shapes (which have just been validated) |
| unsigned int numDimensions = inputShapes[0].GetNumDimensions(); |
| if (outputShape.GetNumDimensions() != numDimensions) |
| { |
| return Fail("%s: Output shape has wrong number of dimensions", __func__); |
| } |
| |
| unsigned int outputSizeAlongConcatenatedDimension = 0; |
| for (unsigned int i = 0; i < inputShapes.size(); i++) |
| { |
| outputSizeAlongConcatenatedDimension += inputShapes[i][concatDim]; |
| } |
| |
| for (unsigned int i = 0; i < numDimensions; ++i) |
| { |
| if (i == concatDim) |
| { |
| if (outputShape[i] != outputSizeAlongConcatenatedDimension) |
| { |
| return Fail( |
| "%s: Invalid output shape for dimension %d (%d != %d)", |
| __func__, |
| i, |
| outputShape[i], |
| outputSizeAlongConcatenatedDimension); |
| } |
| } |
| else |
| { |
| if (outputShape[i] != inputShapes[0][i]) |
| { |
| return Fail("%s: Invalid output shape", __func__); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool RequiresReshape(armnn::TensorShape & inputShape) |
| { |
| return inputShape.GetNumDimensions() < 3; |
| } |
| |
| void SwizzleInputs(armnn::INetwork& network, |
| std::vector<LayerInputHandle>& inputs, |
| std::vector<armnn::TensorShape>& inputShapes, |
| const armnn::PermutationVector& mapping) |
| { |
| if (!mapping.IsEqual(IdentityPermutation4D)) |
| { |
| size_t nInputs = inputs.size(); |
| for (size_t i=0; i<nInputs; ++i) |
| { |
| // add swizzle layer |
| armnn::IConnectableLayer& swizzleLayer = AddTransposeLayer(network, inputs[i], mapping); |
| auto& outputSlot = swizzleLayer.GetOutputSlot(0); |
| auto& outputInfo = outputSlot.GetTensorInfo(); |
| // replace inputs with the swizzled ones |
| inputs[i] = LayerInputHandle(true, &outputSlot, outputInfo); |
| inputShapes[i] = inputs[i].GetTensorInfo().GetShape(); |
| } |
| } |
| } |
| |
| bool TransposeInputTensors(ConversionData& data, |
| std::vector<LayerInputHandle>& inputs, |
| std::vector<armnn::TensorShape>& inputShapes, |
| const armnn::PermutationVector& mapping) |
| { |
| // If we have a IdentityPermutation4D or IdentityPermutation3D then we are not permuting |
| if (!mapping.IsEqual(IdentityPermutation4D) && !mapping.IsEqual(IdentityPermutation3D)) |
| { |
| armnn::TensorInfo outputTransposeInfo; |
| size_t nInputs = inputs.size(); |
| for (size_t i=0; i<nInputs; ++i) |
| { |
| // check permute layer |
| armnn::TransposeDescriptor transposeDesc; |
| transposeDesc.m_DimMappings = mapping; |
| outputTransposeInfo = armnnUtils::TransposeTensorShape(inputs[i].GetTensorInfo(), mapping); |
| |
| bool isSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsTransposeSupported, |
| data.m_Backends, |
| isSupported, |
| inputs[i].GetTensorInfo(), |
| outputTransposeInfo, |
| transposeDesc); |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| } |
| SwizzleInputs(*data.m_Network, inputs, inputShapes, mapping); |
| } |
| return true; |
| } |
| |
| |
| bool CreateConcatPermutationParameters(const unsigned int numberOfDimensions, |
| int32_t & concatDimension, |
| std::pair<armnn::PermutationVector, armnn::PermutationVector> & permutationPair) |
| { |
| bool needPermute = false; |
| ARMNN_ASSERT(numberOfDimensions >= 3); |
| |
| // ArmNN uses Compute Library subtensors to perform concatenation |
| // This only works when concatenating along dimension 0, 1 or 3 for a 4-D tensor, |
| // or along dimension 0 or 2 for a 3-D tensor. |
| if (numberOfDimensions == 4 && concatDimension == 2) |
| { |
| concatDimension = 1; |
| permutationPair = std::make_pair(SwapDim1And2, SwapDim1And2); |
| needPermute = true; |
| } |
| else if (numberOfDimensions == 3 && concatDimension == 1) |
| { |
| concatDimension = 0; |
| permutationPair = std::make_pair(RotateTensorLeft, RotateTensorRight); |
| needPermute = true; |
| } |
| // If the tensor is 3-D and the concat dimension is 2 then we don't need to permute but we do need to change the |
| // permutation identity to only have 3 dimensions |
| else if (numberOfDimensions == 3 && concatDimension == 2) |
| { |
| permutationPair = std::make_pair(IdentityPermutation3D, IdentityPermutation3D); |
| } |
| return needPermute; |
| } |
| |
| } // anonymous namespace |
| |
| namespace armnn_driver |
| { |
| |
| //// Creates an ArmNN activation layer and connects it to the given layer, if the |
| //// passed in AndroidNN activation function requires so. |
| //// @return The end layer of the sequence of layers built for the given AndroidNN |
| //// activation function or nullptr if an error occurred (e.g. unsupported activation). |
| //// Note that the end layer matches the input layer if no activation is required |
| //// (the sequence of layers has length 1). |
| armnn::IConnectableLayer* ProcessActivation(const armnn::TensorInfo& tensorInfo, |
| ActivationFn activation, |
| armnn::IConnectableLayer* prevLayer, |
| ConversionData& data); |
| |
| } // namespace armnn_driver |
| |
| /// |
| /// Utility templates |
| /// |
| |
| namespace armnn_driver |
| { |
| |
| using namespace android::nn; |
| |
| template<typename HalPolicy, |
| typename HalOperand = typename HalPolicy::Operand, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| const HalOperand* GetInputOperand(const HalOperation& operation, |
| uint32_t inputIndex, |
| const HalModel& model, |
| bool failOnIndexOutOfBounds = true) |
| { |
| if (inputIndex >= operation.inputs.size()) |
| { |
| if (failOnIndexOutOfBounds) |
| { |
| Fail("%s: invalid input index: %i out of %i", __func__, inputIndex, operation.inputs.size()); |
| } |
| return nullptr; |
| } |
| |
| // Model should have been validated beforehand |
| ARMNN_ASSERT(operation.inputs[inputIndex] < getMainModel(model).operands.size()); |
| return &getMainModel(model).operands[operation.inputs[inputIndex]]; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperand = typename HalPolicy::Operand, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| const HalOperand* GetOutputOperand(const HalOperation& operation, |
| uint32_t outputIndex, |
| const HalModel& model) |
| { |
| if (outputIndex >= operation.outputs.size()) |
| { |
| Fail("%s: invalid output index: %i out of %i", __func__, outputIndex, operation.outputs.size()); |
| return nullptr; |
| } |
| |
| // Model should have been validated beforehand |
| ARMNN_ASSERT(operation.outputs[outputIndex] < getMainModel(model).operands.size()); |
| |
| return &getMainModel(model).operands[operation.outputs[outputIndex]]; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperand = typename HalPolicy::Operand, |
| typename HalModel = typename HalPolicy::Model> |
| const void* GetOperandValueReadOnlyAddress(const HalOperand& operand, |
| const HalModel& model, |
| const ConversionData& data, |
| bool optional = false) |
| { |
| using HalOperandLifeTime = typename HalPolicy::OperandLifeTime; |
| |
| const void* valueStart = nullptr; |
| switch (operand.lifetime) |
| { |
| case HalOperandLifeTime::CONSTANT_COPY: |
| { |
| // Constant found in model.operandValues |
| valueStart = &model.operandValues[operand.location.offset]; |
| break; |
| } |
| case HalOperandLifeTime::CONSTANT_REFERENCE: |
| { |
| // Constant specified via a Memory object |
| valueStart = GetMemoryFromPool(operand.location, data.m_MemPools); |
| break; |
| } |
| case HalOperandLifeTime::NO_VALUE: |
| { |
| // An optional input tensor with no values is not an error so should not register as a fail |
| if (optional) |
| { |
| valueStart = nullptr; |
| break; |
| } |
| [[fallthrough]]; |
| } |
| default: |
| { |
| // Unsupported/invalid (e.g. can't get value of an input to the model) |
| Fail("%s: unsupported/invalid operand lifetime: %s", |
| __func__, toString(operand.lifetime).c_str()); |
| valueStart = nullptr; |
| } |
| } |
| |
| return valueStart; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model, |
| typename HalOperandType = typename HalPolicy::OperandType> |
| bool GetOperandType(const HalOperation& operation, |
| uint32_t inputIndex, |
| const HalModel& model, |
| HalOperandType& type) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model); |
| if (!operand) |
| { |
| return Fail("%s: invalid input operand at index %i", __func__, inputIndex); |
| } |
| |
| type = operand->type; |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperand = typename HalPolicy::Operand> |
| bool IsOperandConstant(const HalOperand& operand) |
| { |
| using HalOperandLifeTime = typename HalPolicy::OperandLifeTime; |
| |
| HalOperandLifeTime lifetime = operand.lifetime; |
| |
| return lifetime == HalOperandLifeTime::CONSTANT_COPY || |
| lifetime == HalOperandLifeTime::CONSTANT_REFERENCE || |
| lifetime == HalOperandLifeTime::NO_VALUE; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperand = typename HalPolicy::Operand, |
| typename HalModel = typename HalPolicy::Model> |
| ConstTensorPin ConvertOperandToConstTensorPin(const HalOperand& operand, |
| const HalModel& model, |
| const ConversionData& data, |
| const armnn::PermutationVector& dimensionMappings = g_DontPermute, |
| const armnn::TensorShape* overrideTensorShape = nullptr, |
| bool optional = false) |
| { |
| if (!IsOperandTypeSupportedForTensors(operand.type)) |
| { |
| Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand.type).c_str()); |
| return ConstTensorPin(); |
| } |
| |
| if (!optional && !IsOperandConstant<HalPolicy>(operand)) |
| { |
| Fail("%s: invalid operand lifetime: %s", __func__, toString(operand.lifetime).c_str()); |
| return ConstTensorPin(); |
| } |
| |
| const void* const valueStart = GetOperandValueReadOnlyAddress<HalPolicy>(operand, model, data, optional); |
| if (!valueStart) |
| { |
| if (optional) |
| { |
| // optional tensor with no values is not really an error; return it as invalid, but marked as optional |
| return ConstTensorPin(true); |
| } |
| // mandatory tensor with no values |
| Fail("%s: failed to get operand address", __func__); |
| return ConstTensorPin(); |
| } |
| |
| armnn::TensorInfo tensorInfo = GetTensorInfoForOperand(operand); |
| // Android datalayout might be different than armnn datalayout, e.g. the kernel for the depthwise convolution. |
| if (tensorInfo.HasPerAxisQuantization()) |
| { |
| tensorInfo.SetQuantizationDim(dimensionMappings[tensorInfo.GetQuantizationDim().value()]); |
| } |
| |
| if (overrideTensorShape != nullptr) |
| { |
| tensorInfo.SetShape(*overrideTensorShape); |
| } |
| return ConstTensorPin(tensorInfo, valueStart, operand.location.length, dimensionMappings); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| ConstTensorPin ConvertOperationInputToConstTensorPin(const HalOperation& operation, |
| uint32_t inputIndex, |
| const HalModel& model, |
| const ConversionData& data, |
| const armnn::PermutationVector& dimensionMappings = g_DontPermute, |
| const armnn::TensorShape* overrideTensorShape = nullptr, |
| bool optional = false) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model); |
| if (!operand) |
| { |
| Fail("%s: failed to get input operand: index=%u", __func__, inputIndex); |
| return ConstTensorPin(); |
| } |
| return ConvertOperandToConstTensorPin<HalPolicy>(*operand, |
| model, |
| data, |
| dimensionMappings, |
| overrideTensorShape, |
| optional); |
| } |
| |
| template<typename HalPolicy, |
| typename OutputType, |
| typename HalOperandType = typename HalPolicy::OperandType, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetInputScalar(const HalOperation& operation, |
| uint32_t inputIndex, |
| HalOperandType type, |
| OutputType& outValue, |
| const HalModel& model, |
| const ConversionData& data, |
| bool optional = false) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model); |
| if (!optional && !operand) |
| { |
| return Fail("%s: invalid input operand at index %i", __func__, inputIndex); |
| } |
| |
| if (!optional && operand->type != type) |
| { |
| return Fail("%s: unexpected operand type: %s (should be %s)", |
| __func__, toString(operand->type).c_str(), toString(type).c_str()); |
| } |
| |
| if (!optional && operand->location.length != sizeof(OutputType)) |
| { |
| return Fail("%s: incorrect operand location length: %i (should be %i)", |
| __func__, operand->location.length, sizeof(OutputType)); |
| } |
| |
| const void* valueAddress = GetOperandValueReadOnlyAddress<HalPolicy>(*operand, model, data); |
| if (!optional && !valueAddress) |
| { |
| return Fail("%s: failed to get address for operand", __func__); |
| } |
| |
| if(!optional) |
| { |
| outValue = *(static_cast<const OutputType*>(valueAddress)); |
| } |
| |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetInputInt32(const HalOperation& operation, |
| uint32_t inputIndex, |
| int32_t& outValue, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| return GetInputScalar<HalPolicy>(operation, inputIndex, HalPolicy::OperandType::INT32, outValue, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetInputFloat32(const HalOperation& operation, |
| uint32_t inputIndex, |
| float& outValue, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| return GetInputScalar<HalPolicy>(operation, inputIndex, HalPolicy::OperandType::FLOAT32, outValue, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalOperandType = typename HalPolicy::OperandType, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetInputActivationFunctionImpl(const HalOperation& operation, |
| uint32_t inputIndex, |
| HalOperandType type, |
| ActivationFn& outActivationFunction, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| if (type != HalOperandType::INT32 && type != HalOperandType::TENSOR_INT32) |
| { |
| return Fail("%s: unexpected operand type: %s (should be %s or %s)", |
| __func__, |
| toString(type).c_str(), |
| toString(HalOperandType::INT32).c_str(), |
| toString(HalOperandType::TENSOR_INT32).c_str()); |
| } |
| |
| int32_t activationFunctionAsInt; |
| if (!GetInputScalar<HalPolicy>(operation, inputIndex, type, activationFunctionAsInt, model, data)) |
| { |
| return Fail("%s: failed to get activation input value", __func__); |
| } |
| outActivationFunction = static_cast<ActivationFn>(activationFunctionAsInt); |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetInputActivationFunction(const HalOperation& operation, |
| uint32_t inputIndex, |
| ActivationFn& outActivationFunction, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| return GetInputActivationFunctionImpl<HalPolicy>(operation, |
| inputIndex, |
| HalPolicy::OperandType::INT32, |
| outActivationFunction, |
| model, |
| data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetInputActivationFunctionFromTensor(const HalOperation& operation, |
| uint32_t inputIndex, |
| ActivationFn& outActivationFunction, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| // This only accepts a 1-D tensor of size 1 |
| return GetInputActivationFunctionImpl<HalPolicy>(operation, |
| inputIndex, |
| HalPolicy::OperandType::INT32, |
| outActivationFunction, |
| model, |
| data); |
| } |
| |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetOptionalInputActivation(const HalOperation& operation, |
| uint32_t inputIndex, |
| ActivationFn& activationFunction, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| if (operation.inputs.size() <= inputIndex) |
| { |
| activationFunction = ActivationFn::kActivationNone; |
| } |
| else |
| { |
| if (!GetInputActivationFunction<HalPolicy>(operation, inputIndex, activationFunction, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| } |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename ConvolutionDescriptor, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetOptionalConvolutionDilationParams(const HalOperation& operation, |
| uint32_t dilationXIndex, |
| ConvolutionDescriptor& descriptor, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| bool success = true; |
| if (operation.inputs.size() >= dilationXIndex + 2) |
| { |
| success &= GetInputScalar<HalPolicy>(operation, |
| dilationXIndex, |
| HalPolicy::OperandType::INT32, |
| descriptor.m_DilationX, |
| model, |
| data); |
| success &= GetInputScalar<HalPolicy>(operation, |
| dilationXIndex + 1, |
| HalPolicy::OperandType::INT32, |
| descriptor.m_DilationY, |
| model, |
| data); |
| } |
| |
| return success; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetOptionalBool(const HalOperation& operation, |
| uint32_t inputIndex, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model); |
| if (!operand) |
| { |
| return false; |
| } |
| |
| if (!IsBool(*operand)) |
| { |
| return false; |
| } |
| |
| const void* valueAddress = GetOperandValueReadOnlyAddress<HalPolicy>(*operand, model, data); |
| if (!valueAddress) |
| { |
| return false; |
| } |
| |
| if (*(static_cast<const bool*>(valueAddress))) |
| { |
| return true; |
| } |
| else |
| { |
| return false; |
| } |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperand = typename HalPolicy::Operand, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetTensorInt32Values(const HalOperand& operand, |
| std::vector<int32_t>& outValues, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| if (operand.type != HalPolicy::OperandType::TENSOR_INT32) |
| { |
| return Fail("%s: invalid operand type: %s", __func__, toString(operand.type).c_str()); |
| } |
| |
| const void* startAddress = GetOperandValueReadOnlyAddress<HalPolicy>(operand, model, data); |
| if (!startAddress) |
| { |
| return Fail("%s: failed to get operand address", __func__, operand.type); |
| } |
| |
| // Check number of bytes is sensible |
| const uint32_t numBytes = operand.location.length; |
| if (numBytes % sizeof(int32_t) != 0) |
| { |
| return Fail("%s: invalid number of bytes: %i, expected to be a multiple of %i", |
| __func__, numBytes, sizeof(int32_t)); |
| } |
| |
| outValues.resize(numBytes / sizeof(int32_t)); |
| memcpy(outValues.data(), startAddress, numBytes); |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool GetInputPaddingScheme(const HalOperation& operation, |
| uint32_t inputIndex, |
| PaddingScheme& outPaddingScheme, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| int32_t paddingSchemeAsInt; |
| if (!GetInputInt32<HalPolicy>(operation, inputIndex, paddingSchemeAsInt, model, data)) |
| { |
| return Fail("%s: failed to get padding scheme input value", __func__); |
| } |
| |
| outPaddingScheme = static_cast<android::nn::PaddingScheme>(paddingSchemeAsInt); |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| LayerInputHandle ConvertToLayerInputHandle(const HalOperation& operation, |
| uint32_t inputIndex, |
| const HalModel& model, |
| ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| using HalOperandLifeTime = typename HalPolicy::OperandLifeTime; |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model); |
| if (!operand) |
| { |
| Fail("%s: failed to get input operand %i", __func__, inputIndex); |
| return LayerInputHandle(); |
| } |
| |
| if (!IsOperandTypeSupportedForTensors(operand->type)) |
| { |
| Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand->type).c_str()); |
| return LayerInputHandle(); |
| } |
| |
| try |
| { |
| armnn::TensorInfo operandTensorInfo = GetTensorInfoForOperand(*operand); |
| if (IsDynamicTensor(operandTensorInfo)) |
| { |
| Fail("%s: dynamic input tensors are not supported", __func__); |
| return LayerInputHandle(); |
| } |
| |
| switch (operand->lifetime) |
| { |
| case HalOperandLifeTime::MODEL_INPUT: |
| { |
| // NOTE: We must check whether we can support the input tensor on at least one |
| // of the provided backends; otherwise we cannot convert the operation |
| bool isInputSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsInputSupported, |
| data.m_Backends, |
| isInputSupported, |
| operandTensorInfo); |
| |
| if (!isInputSupported) |
| { |
| Fail("%s: unsupported input tensor", __func__); |
| return LayerInputHandle(); |
| } |
| |
| [[clang::fallthrough]]; // intentional fallthrough |
| } |
| case HalOperandLifeTime::TEMPORARY_VARIABLE: // intentional fallthrough |
| case HalOperandLifeTime::MODEL_OUTPUT: |
| { |
| // The tensor is either an operand internal to the model, or a model input. |
| // It can be associated with an ArmNN output slot for an existing layer. |
| |
| // m_OutputSlotForOperand[...] can be nullptr if the previous layer could not be converted |
| const uint32_t operandIndex = operation.inputs[inputIndex]; |
| return LayerInputHandle(true, data.m_OutputSlotForOperand[operandIndex], operandTensorInfo); |
| } |
| case HalOperandLifeTime::CONSTANT_COPY: // intentional fallthrough |
| case HalOperandLifeTime::CONSTANT_REFERENCE: |
| { |
| // The tensor has an already known constant value, and can be converted into an ArmNN Constant layer. |
| ConstTensorPin tensorPin = ConvertOperandToConstTensorPin<HalPolicy>(*operand, model, data); |
| if (tensorPin.IsValid()) |
| { |
| bool isSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsConstantSupported, |
| data.m_Backends, |
| isSupported, |
| tensorPin.GetConstTensor().GetInfo()); |
| if (!isSupported) |
| { |
| return LayerInputHandle(); |
| } |
| |
| armnn::IConnectableLayer* constantLayer = |
| data.m_Network->AddConstantLayer(tensorPin.GetConstTensor()); |
| armnn::IOutputSlot& outputSlot = constantLayer->GetOutputSlot(0); |
| outputSlot.SetTensorInfo(tensorPin.GetConstTensor().GetInfo()); |
| |
| return LayerInputHandle(true, &outputSlot, operandTensorInfo); |
| } |
| else |
| { |
| Fail("%s: invalid operand tensor", __func__); |
| return LayerInputHandle(); |
| } |
| break; |
| } |
| default: |
| { |
| // Unsupported lifetime for an input tensor |
| Fail("%s: unsupported lifetime for input tensor: %s", |
| __func__, toString(operand->lifetime).c_str()); |
| return LayerInputHandle(); |
| } |
| } |
| } |
| catch (UnsupportedOperand<HalOperandType>& e) |
| { |
| Fail("%s: Operand type %s not supported in ArmnnDriver", __func__, toString(e.m_type).c_str()); |
| return LayerInputHandle(); |
| } |
| } |
| |
| |
| #ifdef ARMNN_ANDROID_NN_V1_3 |
| template<typename HalPolicy> |
| LayerInputHandle ConvertToLayerInputHandle(const ::android::hardware::neuralnetworks::V1_3::Operation& operation, |
| uint32_t inputIndex, |
| const::android::hardware::neuralnetworks::V1_3::Model& model, |
| ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| using HalOperandLifeTime = typename HalPolicy::OperandLifeTime; |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model); |
| if (!operand) |
| { |
| Fail("%s: failed to get input operand %i", __func__, inputIndex); |
| return LayerInputHandle(); |
| } |
| |
| if (!IsOperandTypeSupportedForTensors(operand->type)) |
| { |
| Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand->type).c_str()); |
| return LayerInputHandle(); |
| } |
| |
| try |
| { |
| armnn::TensorInfo operandTensorInfo = GetTensorInfoForOperand(*operand); |
| |
| if (IsDynamicTensor(operandTensorInfo)) |
| { |
| data.m_DynamicInputsEncountered = true; |
| |
| const uint32_t operandIndex = operation.inputs[inputIndex]; |
| |
| // Check if the dynamic input tensors have been inferred by one of the previous layers |
| // If not we can't support them |
| if (data.m_OutputSlotForOperand.size() >= operandIndex && data.m_OutputSlotForOperand[operandIndex]) |
| { |
| operandTensorInfo = data.m_OutputSlotForOperand[operandIndex]->GetTensorInfo(); |
| } |
| else |
| { |
| Fail("%s: Type 2 dynamic input tensors are not supported", __func__); |
| return LayerInputHandle(); |
| } |
| } |
| |
| switch (operand->lifetime) |
| { |
| case HalOperandLifeTime::SUBGRAPH_INPUT: |
| { |
| // NOTE: We must check whether we can support the input tensor on at least one |
| // of the provided backends; otherwise we cannot convert the operation |
| bool isInputSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsInputSupported, |
| data.m_Backends, |
| isInputSupported, |
| operandTensorInfo); |
| |
| if (!isInputSupported) |
| { |
| Fail("%s: unsupported input tensor", __func__); |
| return LayerInputHandle(); |
| } |
| |
| [[clang::fallthrough]]; // intentional fallthrough |
| } |
| case HalOperandLifeTime::TEMPORARY_VARIABLE: // intentional fallthrough |
| case HalOperandLifeTime::SUBGRAPH_OUTPUT: |
| { |
| // The tensor is either an operand internal to the model, or a model input. |
| // It can be associated with an ArmNN output slot for an existing layer. |
| |
| // m_OutputSlotForOperand[...] can be nullptr if the previous layer could not be converted |
| const uint32_t operandIndex = operation.inputs[inputIndex]; |
| return LayerInputHandle(true, data.m_OutputSlotForOperand[operandIndex], operandTensorInfo); |
| } |
| case HalOperandLifeTime::CONSTANT_COPY: // intentional fallthrough |
| case HalOperandLifeTime::CONSTANT_REFERENCE: |
| { |
| // The tensor has an already known constant value, and can be converted into an ArmNN Constant layer. |
| ConstTensorPin tensorPin = ConvertOperandToConstTensorPin<HalPolicy>(*operand, model, data); |
| if (tensorPin.IsValid()) |
| { |
| bool isSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsConstantSupported, |
| data.m_Backends, |
| isSupported, |
| tensorPin.GetConstTensor().GetInfo()); |
| if (!isSupported) |
| { |
| return LayerInputHandle(); |
| } |
| |
| armnn::IConnectableLayer* constantLayer = |
| data.m_Network->AddConstantLayer(tensorPin.GetConstTensor()); |
| armnn::IOutputSlot& outputSlot = constantLayer->GetOutputSlot(0); |
| outputSlot.SetTensorInfo(tensorPin.GetConstTensor().GetInfo()); |
| |
| return LayerInputHandle(true, &outputSlot, operandTensorInfo); |
| } |
| else |
| { |
| Fail("%s: invalid operand tensor", __func__); |
| return LayerInputHandle(); |
| } |
| break; |
| } |
| default: |
| { |
| // Unsupported lifetime for an input tensor |
| Fail("%s: unsupported lifetime for input tensor: %s", |
| __func__, toString(operand->lifetime).c_str()); |
| return LayerInputHandle(); |
| } |
| } |
| } |
| catch (UnsupportedOperand<HalOperandType>& e) |
| { |
| Fail("%s: Operand type %s not supported in ArmnnDriver", __func__, toString(e.m_type).c_str()); |
| return LayerInputHandle(); |
| } |
| } |
| #endif |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool SetupAndTrackLayerOutputSlot(const HalOperation& operation, |
| uint32_t operationOutputIndex, |
| armnn::IConnectableLayer& layer, |
| uint32_t layerOutputIndex, |
| const HalModel& model, |
| ConversionData& data, |
| const armnn::TensorInfo* overrideOutputInfo = nullptr, |
| const std::function <void (const armnn::TensorInfo&, bool&)>& validateFunc = nullptr, |
| const ActivationFn& activationFunction = ActivationFn::kActivationNone, |
| bool inferOutputShapes = false) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, operationOutputIndex, model); |
| if ((outputOperand == nullptr) || (operationOutputIndex >= layer.GetNumOutputSlots())) |
| { |
| return false; |
| } |
| |
| armnn::IOutputSlot& outputSlot = layer.GetOutputSlot(layerOutputIndex); |
| if (overrideOutputInfo == nullptr) |
| { |
| outputSlot.SetTensorInfo(GetTensorInfoForOperand(*outputOperand)); |
| } |
| else |
| { |
| outputSlot.SetTensorInfo(*overrideOutputInfo); |
| } |
| |
| bool isSupported = false; |
| if (validateFunc && (IsDynamicTensor(outputSlot.GetTensorInfo()) || inferOutputShapes)) |
| { |
| // Type one dynamic tensors require the previous layer's output shape for inference |
| for (unsigned int inputSlotIndex = 0; inputSlotIndex < layer.GetNumInputSlots(); ++inputSlotIndex) |
| { |
| if(!layer.GetInputSlot(inputSlotIndex).GetConnection()) |
| { |
| return false; |
| } |
| } |
| // IsTensorInfoSet will infer the dynamic output shape |
| outputSlot.IsTensorInfoSet(); |
| // Once the shape is inferred we can validate it |
| validateFunc(outputSlot.GetTensorInfo(), isSupported); |
| |
| if(!isSupported) |
| { |
| for (unsigned int inputSlotIndex = 0; inputSlotIndex < layer.GetNumInputSlots(); ++inputSlotIndex) |
| { |
| layer.GetInputSlot(inputSlotIndex).GetConnection()->Disconnect(layer.GetInputSlot(inputSlotIndex)); |
| } |
| return false; |
| } |
| } |
| |
| const uint32_t operandIndex = operation.outputs[operationOutputIndex]; |
| |
| if (activationFunction != ActivationFn::kActivationNone) |
| { |
| const armnn::TensorInfo& activationOutputInfo = outputSlot.GetTensorInfo(); |
| armnn::IConnectableLayer* const endLayer = ProcessActivation(activationOutputInfo, activationFunction, |
| &layer, data); |
| |
| if (!endLayer) |
| { |
| return Fail("%s: ProcessActivation failed", __func__); |
| } |
| |
| armnn::IOutputSlot& activationOutputSlot = endLayer->GetOutputSlot(layerOutputIndex); |
| data.m_OutputSlotForOperand[operandIndex] = &activationOutputSlot; |
| } |
| else |
| { |
| data.m_OutputSlotForOperand[operandIndex] = &outputSlot; |
| } |
| |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| armnn::DataLayout OptionalDataLayout(const HalOperation& operation, |
| uint32_t inputIndex, |
| const HalModel& model, |
| ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model); |
| if (!operand) |
| { |
| return armnn::DataLayout::NHWC; |
| } |
| |
| if (!IsBool(*operand)) |
| { |
| return armnn::DataLayout::NHWC; |
| } |
| |
| const void* valueAddress = GetOperandValueReadOnlyAddress<HalPolicy>(*operand, model, data); |
| if (!valueAddress) |
| { |
| return armnn::DataLayout::NHWC; |
| } |
| |
| if (*(static_cast<const bool*>(valueAddress))) |
| { |
| return armnn::DataLayout::NCHW; |
| } |
| else |
| { |
| return armnn::DataLayout::NHWC; |
| } |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool SetupAndTrackLayerOutputSlot(const HalOperation& operation, |
| uint32_t outputIndex, |
| armnn::IConnectableLayer& layer, |
| const HalModel& model, |
| ConversionData& data, |
| const armnn::TensorInfo* overrideOutputInfo = nullptr, |
| const std::function <void (const armnn::TensorInfo&, bool&)>& validateFunc = nullptr, |
| const ActivationFn& activationFunction = ActivationFn::kActivationNone) |
| { |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, |
| outputIndex, |
| layer, |
| outputIndex, |
| model, |
| data, |
| overrideOutputInfo, |
| validateFunc, |
| activationFunction); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertToActivation(const HalOperation& operation, |
| const char* operationName, |
| const armnn::ActivationDescriptor& activationDesc, |
| const HalModel& model, |
| ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Input 0 is invalid", operationName); |
| } |
| |
| const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!outputOperand) |
| { |
| return false; |
| } |
| |
| const armnn::TensorInfo& outInfo = GetTensorInfoForOperand(*outputOperand); |
| |
| bool isSupported = false; |
| |
| auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsActivationSupported, |
| data.m_Backends, |
| isSupported, |
| input.GetTensorInfo(), |
| outInfo, |
| activationDesc); |
| }; |
| |
| if(IsDynamicTensor(outInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* layer = data.m_Network->AddActivationLayer(activationDesc); |
| ARMNN_ASSERT(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertReLu(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| armnn::ActivationDescriptor desc; |
| desc.m_Function = armnn::ActivationFunction::ReLu; |
| |
| return ConvertToActivation<HalPolicy>(operation, __func__, desc, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertReLu1(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| armnn::ActivationDescriptor desc; |
| desc.m_Function = armnn::ActivationFunction::BoundedReLu; |
| desc.m_A = 1.0f; |
| desc.m_B = -1.0f; |
| |
| return ConvertToActivation<HalPolicy>(operation, __func__, desc, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertReLu6(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| armnn::ActivationDescriptor desc; |
| desc.m_Function = armnn::ActivationFunction::BoundedReLu; |
| desc.m_A = 6.0f; |
| |
| return ConvertToActivation<HalPolicy>(operation, __func__, desc, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertTanH(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| armnn::ActivationDescriptor desc; |
| desc.m_Function = armnn::ActivationFunction::TanH; |
| desc.m_A = 1.0f; // android nn does not support tanH parameters |
| desc.m_B = 1.0f; // set to 1.0f for unity scaling |
| |
| return ConvertToActivation<HalPolicy>(operation, __func__, desc, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertPaddings(const HalOperation& operation, |
| const HalModel& model, |
| ConversionData& data, |
| unsigned int rank, |
| armnn::PadDescriptor& padDescriptor) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* paddingsOperand = GetInputOperand<HalPolicy>(operation, 1, model); |
| if (!paddingsOperand) |
| { |
| return Fail("%s: Could not read paddings operand", __func__); |
| } |
| |
| armnn::TensorShape paddingsOperandShape = GetTensorShapeForOperand(*paddingsOperand); |
| if (paddingsOperandShape.GetNumDimensions() != 2 || paddingsOperandShape.GetNumElements() != rank * 2) |
| { |
| return Fail("%s: Operation has invalid paddings operand: expected shape [%d, 2]", __func__, rank); |
| } |
| |
| std::vector<int32_t> paddings; |
| if (!GetTensorInt32Values<HalPolicy>(*paddingsOperand, paddings, model, data)) |
| { |
| return Fail("%s: Operation has invalid or unsupported paddings operand", __func__); |
| } |
| |
| // add padding for each dimension of input tensor. |
| for (unsigned int i = 0; i < paddings.size() - 1; i += 2) |
| { |
| int paddingBeforeInput = paddings[i]; |
| int paddingAfterInput = paddings[i + 1]; |
| |
| if (paddingBeforeInput < 0 || paddingAfterInput < 0) |
| { |
| return Fail("%s: Operation has invalid paddings operand, invalid padding values.", __func__); |
| } |
| |
| padDescriptor.m_PadList.emplace_back((unsigned int) paddingBeforeInput, (unsigned int) paddingAfterInput); |
| } |
| |
| return true; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertPooling2d(const HalOperation& operation, |
| const char* operationName, |
| armnn::PoolingAlgorithm poolType, |
| const HalModel& model, |
| ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation Could not read input 0", operationName); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| armnn::Pooling2dDescriptor desc; |
| desc.m_PoolType = poolType; |
| desc.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor; |
| desc.m_DataLayout = armnn::DataLayout::NHWC; |
| |
| ActivationFn activation; |
| |
| auto inputSize = operation.inputs.size(); |
| |
| if (inputSize >= 10) |
| { |
| // one input, 9 parameters (padding l r t b, stridex, stridey, width, height, activation type) |
| if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::INT32, desc.m_PadLeft, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 2, HalOperandType::INT32, desc.m_PadRight, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_PadTop, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PadBottom, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_StrideX, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, desc.m_StrideY, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 7, HalOperandType::INT32, desc.m_PoolWidth, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 8, HalOperandType::INT32, desc.m_PoolHeight, model, data) || |
| !GetInputActivationFunction<HalPolicy>(operation, 9, activation, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", operationName); |
| } |
| |
| if (Is12OrLaterOperand(*output)) |
| { |
| desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 10, model, data); |
| } |
| } |
| else |
| { |
| // one input, 6 parameters (padding, stridex, stridey, width, height, activation type) |
| android::nn::PaddingScheme scheme; |
| if (!GetInputPaddingScheme<HalPolicy>(operation, 1, scheme, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 2, HalOperandType::INT32, desc.m_StrideX, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_StrideY, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PoolWidth, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_PoolHeight, model, data) || |
| !GetInputActivationFunction<HalPolicy>(operation, 6, activation, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", operationName); |
| } |
| |
| if (Is12OrLaterOperand(*output)) |
| { |
| desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 7, model, data); |
| } |
| |
| const armnnUtils::DataLayoutIndexed dataLayout(desc.m_DataLayout); |
| const unsigned int inputWidth = inputInfo.GetShape()[dataLayout.GetWidthIndex()]; |
| const unsigned int inputHeight = inputInfo.GetShape()[dataLayout.GetHeightIndex()]; |
| |
| CalcPadding(inputWidth, desc.m_PoolWidth, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, scheme); |
| CalcPadding(inputHeight, desc.m_PoolHeight, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, scheme); |
| } |
| |
| bool isSupported = false; |
| |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsPooling2dSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| desc); |
| |
| }; |
| |
| if(IsDynamicTensor(outputInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* pooling2dLayer = data.m_Network->AddPooling2dLayer(desc); |
| if (!pooling2dLayer) |
| { |
| return Fail("%s: AddPooling2dLayer failed", __func__); |
| } |
| |
| input.Connect(pooling2dLayer->GetInputSlot(0)); |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *pooling2dLayer, model, |
| data, nullptr, validateFunc, activation); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertAdd(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data); |
| |
| if (!input0.IsValid() || !input1.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| // The FuseActivation parameter is always the input index 2 |
| // and it should be optional |
| ActivationFn activationFunction; |
| if (!GetOptionalInputActivation<HalPolicy>(operation, 2, activationFunction, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!outputOperand) |
| { |
| return false; |
| } |
| |
| const armnn::TensorInfo& inputInfo0 = input0.GetTensorInfo(); |
| const armnn::TensorInfo& inputInfo1 = input1.GetTensorInfo(); |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsAdditionSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo0, |
| inputInfo1, |
| outputInfo); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const startLayer = data.m_Network->AddAdditionLayer(); |
| |
| bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data); |
| if (!isReshapeSupported) |
| { |
| return false; |
| } |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *startLayer, model, |
| data, nullptr, validateFunc, activationFunction); |
| |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertArgMinMax(const HalOperation& operation, |
| const HalModel& model, |
| ConversionData& data, |
| armnn::ArgMinMaxFunction argMinMaxFunction) |
| { |
| ALOGV("argMinMaxFunction = %s", GetArgMinMaxFunctionAsCString(argMinMaxFunction)); |
| |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| |
| LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| |
| if (!input0.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| int32_t axis; |
| if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::INT32, axis, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs. Failed to read axis.", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input0.GetTensorInfo(); |
| int rank = static_cast<int>(inputInfo.GetNumDimensions()); |
| |
| if (((axis < -rank) && (axis < 0)) || ((axis >= rank) && (axis > 0))) |
| { |
| // Square bracket denotes inclusive n while parenthesis denotes exclusive n |
| // E.g. Rank 4 tensor can have axis in range [-4, 3) |
| // -1 == 3, -2 == 2, -3 == 1, -4 == 0 |
| return Fail("%s: Axis must be in range [-n, n)", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo0 = input0.GetTensorInfo(); |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| armnn::ArgMinMaxDescriptor descriptor; |
| descriptor.m_Function = argMinMaxFunction; |
| descriptor.m_Axis = axis; |
| |
| bool isSupported = false; |
| |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsArgMinMaxSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo0, |
| outputInfo, |
| descriptor); |
| }; |
| |
| if(IsDynamicTensor(outputInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* layer = data.m_Network->AddArgMinMaxLayer(descriptor); |
| assert(layer != nullptr); |
| |
| input0.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertConcatenation(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| |
| // The first N (0..N-1) inputs are tensors. The Nth input is the concatenation axis. |
| if (operation.inputs.size() <= 1) |
| { |
| return Fail("%s: Operation has insufficient arguments", __func__); |
| } |
| |
| // Get inputs and outputs |
| const std::size_t numInputTensors = operation.inputs.size() - 1; |
| |
| int32_t concatDim; |
| if (!GetInputScalar<HalPolicy>(operation, numInputTensors, HalOperandType::INT32, concatDim, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!outputOperand) |
| { |
| return Fail("%s: Operation has no outputs", __func__); |
| } |
| |
| armnn::TensorInfo outputInfo = GetTensorInfoForOperand(*outputOperand); |
| armnn::TensorShape outputShape = outputInfo.GetShape(); |
| const bool isDynamicTensor = IsDynamicTensor(outputInfo); |
| // |
| // handle negative concat dims along the lines of tensorflow as described here: |
| // https://www.tensorflow.org/api_docs/python/tf/concat |
| // "negative axis refers to axis + rank(values)-th dimension" |
| // |
| if (concatDim < 0) |
| { |
| concatDim += outputShape.GetNumDimensions(); |
| } |
| |
| if (concatDim >= static_cast<int32_t>(outputShape.GetNumDimensions()) || concatDim < 0) |
| { |
| return Fail("%s: Operation has invalid concat axis: %d", __func__, concatDim); |
| } |
| |
| std::vector<LayerInputHandle> inputHandles; |
| std::vector<armnn::TensorShape> inputShapes; |
| |
| inputHandles.reserve(numInputTensors); |
| inputShapes.reserve(numInputTensors); |
| |
| bool inputsHaveBeenReshaped = false; |
| unsigned int tensorDimensionsAdded = 0; |
| for (uint32_t i = 0; i < numInputTensors; ++i) |
| { |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operation, i, model); |
| if (!operand) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| LayerInputHandle operandInputHandle = ConvertToLayerInputHandle<HalPolicy>(operation, i, model, data); |
| if (!operandInputHandle.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| armnn::TensorShape operandShape = GetTensorShapeForOperand(*operand); |
| if (operandShape.GetNumDimensions() == 0) |
| { |
| return Fail("%s: Operands with rank 0 are not supported", __func__); |
| } |
| |
| if (RequiresReshape(operandShape)) |
| { |
| inputsHaveBeenReshaped = true; |
| |
| armnn::TensorInfo reshapeInfo = operandInputHandle.GetTensorInfo(); |
| |
| // Expand the tensor to three dimensions |
| if (operandShape.GetNumDimensions() == 2) |
| { |
| reshapeInfo.SetShape(armnn::TensorShape({1, operandShape[0], operandShape[1]})); |
| tensorDimensionsAdded = 1; |
| } |
| else |
| { |
| reshapeInfo.SetShape(armnn::TensorShape({1, 1, operandShape[0]})); |
| tensorDimensionsAdded = 2; |
| } |
| |
| armnn::ReshapeDescriptor reshapeDescriptor; |
| reshapeDescriptor.m_TargetShape = reshapeInfo.GetShape(); |
| |
| bool isSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsReshapeSupported, |
| data.m_Backends, |
| isSupported, |
| operandInputHandle.GetTensorInfo(), |
| reshapeInfo, |
| reshapeDescriptor); |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| armnn::IConnectableLayer& newReshape = AddReshapeLayer(*data.m_Network, operandInputHandle, reshapeInfo); |
| |
| // Point to the reshape operation rather then the input operation |
| operandShape = reshapeInfo.GetShape(); |
| operandInputHandle = LayerInputHandle(true, &newReshape.GetOutputSlot(0), reshapeInfo); |
| } |
| |
| inputShapes.emplace_back(operandShape); |
| inputHandles.emplace_back(operandInputHandle); |
| |
| if (!inputHandles.back().IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| } |
| |
| ARMNN_ASSERT(inputShapes.size() == inputHandles.size()); |
| |
| if (inputsHaveBeenReshaped) |
| { |
| // Adjust the concatenation dimension by the amount of dimensions added (if any) |
| concatDim += tensorDimensionsAdded; |
| |
| // Add extra dimensions to the output shape to reflect the addition of the reshape layers |
| if (tensorDimensionsAdded == 1) |
| { |
| if (IsDynamicTensor(outputInfo)) |
| { |
| outputShape = armnn::TensorShape({1, 0, 0}, {true, false, false}); |
| } |
| else |
| { |
| outputShape = armnn::TensorShape({1, outputShape[0], outputShape[1]}); |
| } |
| } |
| else if (tensorDimensionsAdded == 2) |
| { |
| if (IsDynamicTensor(outputInfo)) |
| { |
| outputShape = armnn::TensorShape({1, 1, 0}, {true, true, false}); |
| } |
| else |
| { |
| outputShape = armnn::TensorShape({1, 1, outputShape[0]}); |
| } |
| } |
| } |
| |
| // Check if permutations is required and get the pair of permutations required for the concatenation. |
| // Permutation is required when the concat dimension is 2 for a 4D tensor or 1 for a 3D tensor. |
| std::pair<armnn::PermutationVector, armnn::PermutationVector> permutationPair = |
| std::make_pair(IdentityPermutation4D, IdentityPermutation4D); |
| bool needPermute = CreateConcatPermutationParameters(inputShapes[0].GetNumDimensions(), |
| concatDim, |
| permutationPair); |
| |
| // Only relevant to static tensors as dynamic output tensors will be transposed as a result of inferring from input |
| if (!isDynamicTensor) |
| { |
| if (needPermute) |
| { |
| outputShape = armnnUtils::TransposeTensorShape(outputShape, permutationPair.first); |
| } |
| |
| outputInfo.SetShape(outputShape); |
| } |
| // this is no-op for identity swizzles, otherwise it replaces both |
| // the handles and shapes with the swizzled layer output handles and shapes |
| if (!TransposeInputTensors(data, inputHandles, inputShapes, permutationPair.first)) |
| { |
| return false; |
| } |
| |
| // Create an armnn concat layer descriptor - this will also perform validation on the input shapes |
| armnn::OriginsDescriptor concatDescriptor; |
| |
| try |
| { |
| // The concat descriptor is always created across the only supported concat dimension |
| // which is 0, 1 or 3 for a 4-D tensor, or 0 or 2 for a 3-D tensor. |
| concatDescriptor = armnn::CreateDescriptorForConcatenation(inputShapes.begin(), |
| inputShapes.end(), |
| concatDim); |
| } catch (std::exception& error) |
| { |
| return Fail("%s: Error preparing concat descriptor. %s", __func__, error.what()); |
| } |
| |
| // Validate the output shape is correct given the input shapes based on the |
| // only valid concat dimension which is 0, 1 or 3 for a 4-D tensor, or 0 or 2 for a 3-D tensor. |
| if (!isDynamicTensor) |
| { |
| if (!ValidateConcatOutputShape(inputShapes, outputShape, concatDim)) |
| { |
| return Fail("%s: Error validating the output shape for concat", __func__); |
| } |
| } |
| |
| std::vector<const armnn::TensorInfo*> inputTensorInfos; |
| std::transform(inputHandles.begin(), inputHandles.end(), std::back_inserter(inputTensorInfos), |
| [](const LayerInputHandle& h)->const armnn::TensorInfo*{ return &h.GetTensorInfo(); }); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported){ |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, IsConcatSupported, data.m_Backends, isSupported, inputTensorInfos, |
| outputInfo, concatDescriptor); |
| }; |
| |
| if (!isDynamicTensor) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* layer = data.m_Network->AddConcatLayer(concatDescriptor); |
| assert(layer != nullptr); |
| layer->GetOutputSlot(0).SetTensorInfo(outputInfo); |
| // Connect inputs to the layer |
| const int numInputSlots = layer->GetNumInputSlots(); |
| assert(static_cast<std::size_t>(numInputSlots) == inputHandles.size()); |
| for (int i = 0; i < numInputSlots; ++i) |
| { |
| // connect the input directly to the merge (concat) layer |
| inputHandles[static_cast<unsigned int>(i)].Connect(layer->GetInputSlot(i)); |
| } |
| |
| // Transpose the output shape |
| auto transposeOutputShape = [&](){ |
| armnn::TransposeDescriptor transposeDesc; |
| transposeDesc.m_DimMappings = permutationPair.second; |
| armnn::TensorInfo inputTransposeInfo = layer->GetOutputSlot(0).GetTensorInfo(); |
| armnn::TensorInfo outputTransposeInfo = armnnUtils::TransposeTensorShape(inputTransposeInfo, |
| permutationPair.second); |
| isSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsTransposeSupported, |
| data.m_Backends, |
| isSupported, |
| inputTransposeInfo, |
| outputTransposeInfo, |
| transposeDesc); |
| if (!isSupported) |
| { |
| return false; |
| } |
| // Add permutation layer and connect the output to it, the permutation becomes the output layer |
| armnn::IConnectableLayer& deswizzleLayer = AddTransposeLayer(*data.m_Network, layer->GetOutputSlot(0), |
| permutationPair.second); |
| layer = &deswizzleLayer; |
| |
| return true; |
| }; |
| |
| if (needPermute && !isDynamicTensor) |
| { |
| transposeOutputShape(); |
| } |
| |
| if (inputsHaveBeenReshaped) |
| { |
| if (isDynamicTensor) |
| { |
| // Infer the output shapes of concat if outputs are type 1 dynamic |
| ARMNN_ASSERT(layer->GetOutputSlot(0).IsTensorInfoSet()); |
| if (!ValidateConcatOutputShape(inputShapes, |
| layer->GetOutputSlot(0).GetTensorInfo().GetShape(), |
| concatDim)) |
| { |
| return Fail("%s: Error validating the output shape for concat", __func__); |
| } |
| transposeOutputShape(); |
| } |
| |
| armnn::TensorInfo afterConcatInfo = layer->GetOutputSlot(0).GetTensorInfo(); |
| // Undo the reshape knowing the amount of dimensions added |
| if (tensorDimensionsAdded == 1) |
| { |
| afterConcatInfo.SetShape( |
| armnn::TensorShape({afterConcatInfo.GetShape()[1], afterConcatInfo.GetShape()[2]})); |
| } |
| else if (tensorDimensionsAdded == 2) |
| { |
| afterConcatInfo.SetShape(armnn::TensorShape({afterConcatInfo.GetShape()[2]})); |
| } |
| |
| armnn::ReshapeDescriptor reshapeDescriptor; |
| reshapeDescriptor.m_TargetShape = afterConcatInfo.GetShape(); |
| armnn::TensorInfo concatInfo = layer->GetOutputSlot(0).GetTensorInfo(); |
| |
| isSupported = false; |
| auto validateReshapeFunc = [&](const armnn::TensorInfo& afterConcatInfo, bool& isSupported){ |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsReshapeSupported, |
| data.m_Backends, |
| isSupported, |
| concatInfo, |
| afterConcatInfo, |
| reshapeDescriptor); |
| }; |
| |
| if (!IsDynamicTensor(afterConcatInfo)) |
| { |
| validateReshapeFunc(afterConcatInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| layer = &AddReshapeLayer(*data.m_Network, layer->GetOutputSlot(0), afterConcatInfo); |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, |
| 0, |
| *layer, |
| model, |
| data, |
| nullptr, |
| validateReshapeFunc); |
| } |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertConv2d(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| // ArmNN does not currently support non-fixed weights or bias |
| const ConstTensorPin weightsPin = ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1, model, data); |
| const ConstTensorPin biasPin = ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data); |
| |
| if (!weightsPin.IsValid() || !biasPin.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| armnn::ConstTensor weights = weightsPin.GetConstTensor(); |
| armnn::ConstTensor bias = biasPin.GetConstTensor(); |
| SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo); |
| |
| armnn::Convolution2dDescriptor desc; |
| desc.m_DataLayout = armnn::DataLayout::NHWC; |
| ActivationFn activation; |
| |
| if (operation.inputs.size() == 10) |
| { |
| if (!GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_PadLeft, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PadRight, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_PadTop, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, desc.m_PadBottom, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 7, HalOperandType::INT32, desc.m_StrideX, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 8, HalOperandType::INT32, desc.m_StrideY, model, data) || |
| !GetInputActivationFunction<HalPolicy>(operation, 9, activation, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| } |
| else if (operation.inputs.size() == 7) |
| { |
| android::nn::PaddingScheme paddingScheme; |
| if (!GetInputPaddingScheme<HalPolicy>(operation, 3, paddingScheme, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_StrideX, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_StrideY, model, data) || |
| !GetInputActivationFunction<HalPolicy>(operation, 6, activation, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const uint32_t kernelX = weights.GetShape()[2]; |
| const uint32_t kernelY = weights.GetShape()[1]; |
| const uint32_t inputX = inputInfo.GetShape()[2]; |
| const uint32_t inputY = inputInfo.GetShape()[1]; |
| |
| CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme); |
| CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme); |
| } |
| else |
| { |
| return Fail("%s: Unsupported number of operation inputs", __func__); |
| } |
| |
| desc.m_BiasEnabled = true; |
| armnn::Optional<armnn::TensorInfo> biases(bias.GetInfo()); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsConvolution2dSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| desc, |
| weights.GetInfo(), |
| biases); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* startLayer = |
| data.m_Network->AddConvolution2dLayer(desc, weights, armnn::Optional<armnn::ConstTensor>(bias)); |
| |
| if (!startLayer) |
| { |
| return Fail("%s: AddConvolution2dLayer failed", __func__); |
| } |
| |
| input.Connect(startLayer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *startLayer, model, |
| data, nullptr, validateFunc, activation); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertDepthToSpace(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid() ) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| if (rank != 4) |
| { |
| return Fail("%s: Only inputs with rank 4 are supported", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| armnn::DepthToSpaceDescriptor descriptor; |
| |
| GetInputScalar<HalPolicy>(operation, 1, HalOperandType::INT32, descriptor.m_BlockSize, model, data); |
| if (descriptor.m_BlockSize <= 1) |
| { |
| return Fail("%s: Block size must be at least 1 in all dimensions"); |
| } |
| |
| descriptor.m_DataLayout = armnn::DataLayout::NHWC; |
| if (Is12OrLaterOperand(*output)) |
| { |
| descriptor.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 2, model, data); |
| } |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsDepthToSpaceSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| descriptor); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddDepthToSpaceLayer(descriptor); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertDepthwiseConv2d(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| // ArmNN does not currently support non-fixed weights or bias |
| // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ] |
| const HalOperand* weightsOperand = GetInputOperand<HalPolicy>(operation, 1, model); |
| |
| if (weightsOperand == nullptr) |
| { |
| return Fail("%s: Operand is invalid", __func__); |
| } |
| armnn::DepthwiseConvolution2dDescriptor desc; |
| desc.m_DataLayout = armnn::DataLayout::NHWC; |
| |
| // Reinterpret weight data as [ H, W, I, M ] |
| armnn::TensorShape weightsShape({ weightsOperand->dimensions[1], |
| weightsOperand->dimensions[2], |
| inputInfo.GetShape()[3], |
| weightsOperand->dimensions[3] / inputInfo.GetShape()[3] }); |
| |
| // Swizzle weight data [ H, W, I, M ] -> [ M, I, H, W ] |
| const armnn::PermutationVector HWIMToMIHW = { 2U, 3U, 1U, 0U }; |
| |
| const ConstTensorPin weightsPin = |
| ConvertOperationInputToConstTensorPin<HalPolicy>(operation, |
| 1, |
| model, |
| data, |
| HWIMToMIHW, |
| &weightsShape); |
| |
| // Bias is a 1D tensor |
| const ConstTensorPin biasPin = ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data); |
| |
| if (!weightsPin.IsValid() || !biasPin.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| armnn::ConstTensor weights = weightsPin.GetConstTensor(); |
| armnn::ConstTensor bias = biasPin.GetConstTensor(); |
| SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo); |
| |
| ActivationFn activation; |
| |
| if (operation.inputs.size() == 11) |
| { |
| if (!GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_PadLeft, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PadRight, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_PadTop, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, desc.m_PadBottom, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 7, HalOperandType::INT32, desc.m_StrideX, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 8, HalOperandType::INT32, desc.m_StrideY, model, data) || |
| !GetInputActivationFunction<HalPolicy>(operation, 10, activation, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| } |
| else if (operation.inputs.size() == 8) |
| { |
| android::nn::PaddingScheme paddingScheme; |
| if (!GetInputPaddingScheme<HalPolicy>(operation, 3, paddingScheme, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_StrideX, model, data) || |
| !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_StrideY, model, data) || |
| !GetInputActivationFunction<HalPolicy>(operation, 7, activation, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const uint32_t kernelX = weights.GetShape()[3]; |
| const uint32_t kernelY = weights.GetShape()[2]; |
| const uint32_t inputX = inputInfo.GetShape()[2]; |
| const uint32_t inputY = inputInfo.GetShape()[1]; |
| |
| CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme); |
| CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme); |
| } |
| else |
| { |
| return Fail("%s: Unsupported number of operation inputs", __func__); |
| } |
| |
| desc.m_BiasEnabled = true; |
| armnn::Optional<armnn::TensorInfo> biases(bias.GetInfo()); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsDepthwiseConvolutionSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| desc, |
| weights.GetInfo(), |
| biases); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* startLayer = |
| data.m_Network->AddDepthwiseConvolution2dLayer(desc, weights, armnn::Optional<armnn::ConstTensor>(bias)); |
| if (!startLayer) |
| { |
| return Fail("%s: AddDepthwiseConvolution2dLayer failed", __func__); |
| } |
| |
| input.Connect(startLayer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *startLayer, model, |
| data, nullptr, validateFunc, activation); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertDequantize(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid input", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| const armnn::Optional<unsigned int>& quantizationDim = inputInfo.GetQuantizationDim(); |
| if (quantizationDim.has_value() && quantizationDim.value() != 0) |
| { |
| return Fail("%s: Operation has quantization dimension different than 0", __func__); |
| } |
| |
| const HalOperand* const outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!outputOperand) |
| { |
| return Fail("%s: Operation has invalid outputs", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsDequantizeSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo); |
| }; |
| |
| if(IsDynamicTensor(outputInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddDequantizeLayer(); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertDiv(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data); |
| |
| if (!input0.IsValid() || !input1.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| // The FuseActivation parameter is always the input index 2 |
| // and it should be optional |
| ActivationFn activationFunction; |
| if (!GetOptionalInputActivation<HalPolicy>(operation, 2, activationFunction, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsDivisionSupported, |
| data.m_Backends, |
| isSupported, |
| input0.GetTensorInfo(), |
| input1.GetTensorInfo(), |
| outputInfo); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const startLayer = data.m_Network->AddDivisionLayer(); |
| |
| bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data); |
| if (!isReshapeSupported) |
| { |
| return false; |
| } |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *startLayer, model, |
| data, nullptr, validateFunc, activationFunction); |
| |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertFloor(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* const outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!outputOperand) |
| { |
| return Fail("%s: Operation has invalid outputs", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsFloorSupported, |
| data.m_Backends, |
| isSupported, |
| input.GetTensorInfo(), |
| outputInfo); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* layer = data.m_Network->AddFloorLayer(); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| inline bool IsQSymm8(const V1_0::Operand&) |
| { |
| return false; |
| } |
| |
| #if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) |
| |
| inline bool IsQSymm8(const V1_2::Operand& operand) |
| { |
| return operand.type == V1_2::OperandType::TENSOR_QUANT8_SYMM; |
| } |
| |
| #endif |
| |
| #ifdef ARMNN_ANDROID_NN_V1_3 |
| |
| inline bool IsQSymm8(const V1_3::Operand& operand) |
| { |
| return operand.type == V1_3::OperandType::TENSOR_QUANT8_SYMM; |
| } |
| |
| #endif |
| |
| enum class DequantizeStatus |
| { |
| SUCCESS, |
| NOT_REQUIRED, |
| INVALID_OPERAND |
| }; |
| |
| using DequantizeResult = std::tuple<std::unique_ptr<float[]>, size_t, armnn::TensorInfo, DequantizeStatus>; |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| DequantizeResult DequantizeIfRequired(size_t operand_index, |
| const HalOperation& operation, |
| const HalModel& model, |
| const ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* weightsOperand = GetInputOperand<HalPolicy>(operation, operand_index, model); |
| if (!weightsOperand) |
| { |
| return { nullptr, 0, armnn::TensorInfo(), DequantizeStatus::INVALID_OPERAND }; |
| } |
| |
| if (IsOperandConstant<HalPolicy>(*weightsOperand)) |
| { |
| // Weights are already constant |
| return { nullptr, 0, armnn::TensorInfo(), DequantizeStatus::NOT_REQUIRED }; |
| } |
| |
| const size_t weightsInputIndex = operation.inputs[operand_index]; |
| |
| // The weights are a non const tensor, this indicates they might be the output of a dequantize op. |
| // Iterate over the nodes and find the previous operation which should be DEQUANTIZE |
| for (uint32_t operationIdx = 0; operationIdx < getMainModel(model).operations.size(); ++operationIdx) |
| { |
| // Search for the DEQUANTIZE op which has the operand with index equal to operandIndex |
| const auto& operationIt = getMainModel(model).operations[operationIdx]; |
| if (operationIt.type != HalPolicy::OperationType::DEQUANTIZE) |
| { |
| continue; |
| } |
| |
| size_t outOpIndex = weightsInputIndex + 1; |
| for (size_t i = 0; outOpIndex != weightsInputIndex && i < operationIt.outputs.size(); ++i) |
| { |
| outOpIndex = operationIt.outputs[i]; |
| } |
| |
| if (outOpIndex != weightsInputIndex) |
| { |
| continue; |
| } |
| |
| const HalOperand* operand = GetInputOperand<HalPolicy>(operationIt, 0, model); |
| ARMNN_ASSERT(operand); |
| |
| if (!IsQSymm8(*operand)) |
| { |
| // Only supporting dequantize from QSYMM8 to FLOAT |
| break; |
| } |
| |
| // Allocate a new buffer for the dequantized data and manually dequantize |
| const void* startValue = GetOperandValueReadOnlyAddress<HalPolicy>(*operand, model, data); |
| if (!startValue) |
| { |
| // Failed to get the operand address |
| break; |
| } |
| |
| const uint8_t* quantizedBuffer = reinterpret_cast<const uint8_t*>(startValue); |
| size_t dequantizedBufferLength = operand->location.length; |
| const float quantizationScale = operand->scale; |
| |
| auto dequantizedBuffer = std::make_unique<float[]>(dequantizedBufferLength + 1); |
| for (size_t i = 0; i < dequantizedBufferLength; ++i) |
| { |
| float* dstPtr = dequantizedBuffer.get(); |
| ARMNN_ASSERT(dstPtr); |
| *dstPtr++ = quantizedBuffer[i] * quantizationScale; |
| } |
| |
| // Construct tensor info for dequantized ConstTensor |
| armnn::TensorInfo tensorInfo(operand->dimensions.size(), |
| operand->dimensions.data(), |
| armnn::DataType::Float32); |
| |
| return { std::move(dequantizedBuffer), dequantizedBufferLength * sizeof(float), |
| std::move(tensorInfo), |
| DequantizeStatus::SUCCESS }; |
| } |
| |
| return { nullptr, 0, armnn::TensorInfo() , DequantizeStatus::NOT_REQUIRED}; |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| ConstTensorPin DequantizeAndMakeConstTensorPin(const HalOperation& operation, |
| const HalModel& model, |
| const ConversionData& data, |
| size_t operandIndex, |
| bool optional = false) |
| { |
| DequantizeResult dequantized = DequantizeIfRequired<HalPolicy>(operandIndex,operation, model, data); |
| |
| DequantizeStatus status = std::get<3>(dequantized); |
| switch (status) |
| { |
| case DequantizeStatus::INVALID_OPERAND: |
| { |
| // return invalid const tensor pin |
| return ConstTensorPin(); |
| } |
| case DequantizeStatus::NOT_REQUIRED: |
| { |
| return ConvertOperationInputToConstTensorPin<HalPolicy>( |
| operation, operandIndex, model, data, g_DontPermute, nullptr, optional); |
| } |
| case DequantizeStatus::SUCCESS: |
| default: |
| { |
| return ConstTensorPin( |
| std::get<2>(dequantized), std::get<0>(dequantized).get(), std::get<1>(dequantized), g_DontPermute); |
| } |
| } |
| } |
| |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertFullyConnected(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| ConstTensorPin weightsPin = DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 1); |
| ConstTensorPin biasPin = ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data); // 1D |
| |
| if (!weightsPin.IsValid()) |
| { |
| return Fail("%s: Operation has invalid weights", __func__); |
| } |
| |
| if (!biasPin.IsValid()) |
| { |
| return Fail("%s: Operation has invalid bias", __func__); |
| } |
| |
| armnn::ConstTensor weights = weightsPin.GetConstTensor(); |
| armnn::ConstTensor bias = biasPin.GetConstTensor(); |
| armnn::TensorInfo reshapedInfo = inputInfo; |
| |
| try |
| { |
| reshapedInfo.SetShape(FlattenFullyConnectedInput(inputInfo.GetShape(), weights.GetInfo().GetShape())); |
| } |
| catch (const std::exception& e) |
| { |
| return Fail("%s: %s", __func__, e.what()); |
| } |
| |
| // ensuring that the bias value is within 1% of the weights input (small float differences can exist) |
| SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), reshapedInfo); |
| |
| ActivationFn activationFunction; |
| if (!GetInputActivationFunction<HalPolicy>(operation, 3, activationFunction, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| armnn::FullyConnectedDescriptor desc; |
| desc.m_TransposeWeightMatrix = true; |
| desc.m_BiasEnabled = true; |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| if (!VerifyFullyConnectedShapes(reshapedInfo.GetShape(), |
| weights.GetInfo().GetShape(), |
| outputInfo.GetShape(), |
| desc.m_TransposeWeightMatrix)) |
| { |
| isSupported = false; |
| Fail("%s: Expected outputShape does not match actual outputShape", __func__); |
| return; |
| } |
| |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsFullyConnectedSupported, |
| data.m_Backends, |
| isSupported, |
| reshapedInfo, |
| outputInfo, |
| weights.GetInfo(), |
| bias.GetInfo(), |
| desc); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* startLayer = |
| data.m_Network->AddFullyConnectedLayer(desc, weights, armnn::Optional<armnn::ConstTensor>(bias)); |
| |
| if (inputInfo.GetNumDimensions() > 2U) |
| { |
| armnn::ReshapeDescriptor reshapeDescriptor; |
| reshapeDescriptor.m_TargetShape = reshapedInfo.GetShape(); |
| |
| armnn::IConnectableLayer* reshapeLayer = data.m_Network->AddReshapeLayer(reshapeDescriptor); |
| assert(reshapeLayer != nullptr); |
| input.Connect(reshapeLayer->GetInputSlot(0)); |
| reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedInfo); |
| reshapeLayer->GetOutputSlot(0).Connect(startLayer->GetInputSlot(0)); |
| } |
| else |
| { |
| input.Connect(startLayer->GetInputSlot(0)); |
| } |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *startLayer, model, |
| data, nullptr, validateFunc, activationFunction); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertL2Normalization(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| if (operation.inputs.size() != 1) |
| { |
| return Fail("%s: Optional inputs are not supported", __func__); |
| } |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| if (outputInfo.GetNumDimensions() != 4u) |
| { |
| return Fail("%s: Tensor Rank other than 4 is not supported", __func__); |
| } |
| |
| armnn::L2NormalizationDescriptor desc; |
| desc.m_DataLayout = armnn::DataLayout::NHWC; |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsL2NormalizationSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| desc); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* layer = data.m_Network->AddL2NormalizationLayer(desc); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertLocalResponseNormalization(const HalOperation& operation, |
| const HalModel& model, |
| ConversionData& data) |
| { |
| if (operation.inputs.size() != 5) |
| { |
| return Fail("%s: Optional inputs are not supported", __func__); |
| } |
| |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandType = typename HalPolicy::OperandType; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| if (outputInfo.GetNumDimensions() != 4u) |
| { |
| return Fail("%s: Tensor Rank other than 4 is not supported", __func__); |
| } |
| |
| armnn::NormalizationDescriptor descriptor; |
| descriptor.m_DataLayout = armnn::DataLayout::NHWC; |
| descriptor.m_NormChannelType = armnn::NormalizationAlgorithmChannel::Across; |
| descriptor.m_NormMethodType = armnn::NormalizationAlgorithmMethod::LocalBrightness; |
| |
| if (!input.IsValid() || |
| !GetInputScalar<HalPolicy>(operation, 1, HalOperandType::INT32, descriptor.m_NormSize, model, data) || |
| !GetInputFloat32<HalPolicy>(operation, 2, descriptor.m_K, model, data) || |
| !GetInputFloat32<HalPolicy>(operation, 3, descriptor.m_Alpha, model, data) || |
| !GetInputFloat32<HalPolicy>(operation, 4, descriptor.m_Beta, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| // ArmNN expects normSize to be the full size of the normalization |
| // window rather than the radius as in AndroidNN. |
| descriptor.m_NormSize = 1 + (2 * descriptor.m_NormSize); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsNormalizationSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| descriptor); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| |
| armnn::IConnectableLayer* layer = data.m_Network->AddNormalizationLayer(descriptor); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertLogistic(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| armnn::ActivationDescriptor desc; |
| desc.m_Function = armnn::ActivationFunction::Sigmoid; |
| |
| return ConvertToActivation<HalPolicy>(operation, __func__, desc, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertMean(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| const HalOperand* axisOperand = GetInputOperand<HalPolicy>(operation, 1, model); |
| if (!axisOperand) |
| { |
| return Fail("%s: Could not read input 1", __func__); |
| } |
| |
| std::vector<int32_t> axis; |
| if (!GetTensorInt32Values<HalPolicy>(*axisOperand, axis, model, data)) |
| { |
| return Fail("%s: Input 1 has invalid values", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| |
| // Convert the axis to unsigned int and remove duplicates. |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| std::set<unsigned int> uniqueAxis; |
| std::transform(axis.begin(), axis.end(), |
| std::inserter(uniqueAxis, uniqueAxis.begin()), |
| [rank](int i) -> unsigned int { return (i + rank) % rank; }); |
| |
| // Get the "keep dims" flag. |
| int32_t keepDims = 0; |
| if (!GetInputInt32<HalPolicy>(operation, 2, keepDims, model, data)) |
| { |
| return Fail("%s: Could not read input 2", __func__); |
| } |
| |
| armnn::MeanDescriptor descriptor; |
| descriptor.m_Axis.assign(uniqueAxis.begin(), uniqueAxis.end()); |
| descriptor.m_KeepDims = keepDims > 0; |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsMeanSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| descriptor); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddMeanLayer(descriptor); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertMul(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data); |
| |
| if (!input0.IsValid() || !input1.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| // The FuseActivation parameter is always the input index 2 |
| // and it should be optional |
| ActivationFn activationFunction; |
| if (!GetOptionalInputActivation<HalPolicy>(operation, 2, activationFunction, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model); |
| |
| if (outputOperand == nullptr) |
| { |
| return false; |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsMultiplicationSupported, |
| data.m_Backends, |
| isSupported, |
| input0.GetTensorInfo(), |
| input1.GetTensorInfo(), |
| outputInfo); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const startLayer = data.m_Network->AddMultiplicationLayer(); |
| |
| const armnn::TensorInfo& inputTensorInfo0 = input0.GetTensorInfo(); |
| const armnn::TensorInfo& inputTensorInfo1 = input1.GetTensorInfo(); |
| |
| bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data); |
| if (!isReshapeSupported) |
| { |
| return false; |
| } |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *startLayer, model, |
| data, nullptr, validateFunc, activationFunction); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertPad(HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| |
| armnn::PadDescriptor descriptor; |
| if (!ConvertPaddings<HalPolicy>(operation, model, data, rank, descriptor)) |
| { |
| return Fail("%s: Could not convert paddings", __func__); |
| } |
| |
| // For a ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED tensor, |
| // the scale and zeroPoint must be the same as input0 |
| // Before Android Q, the pad value for ANEURALNETWORKS_TENSOR_QUANT8_ASYMM was undefined. Since Android Q the pad |
| // value must be "logical zero" we set it to be equal to the QuantizationOffset so effectively it ends up as |
| // (QuantizationOffset - QuantizationOffset) * scale = 0. |
| if (inputInfo.GetDataType() == armnn::DataType::QAsymmU8 || inputInfo.GetDataType() == armnn::DataType::QAsymmS8) |
| { |
| descriptor.m_PadValue = inputInfo.GetQuantizationOffset(); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsPadSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| descriptor); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddPadLayer(descriptor); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertReshape(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| const HalOperand* inputOperand = GetInputOperand<HalPolicy>(operation, 0, model); |
| const HalOperand* requestedShapeOperand = GetInputOperand<HalPolicy>(operation, 1, model); |
| const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model); |
| |
| if (inputOperand == nullptr |
| || requestedShapeOperand == nullptr |
| || outputOperand == nullptr) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| if (requestedShapeOperand->dimensions.size() != 1) |
| { |
| return Fail("%s: Input 1 expected to be one-dimensional (found %i dimensions)", |
| __func__, requestedShapeOperand->dimensions.size()); |
| } |
| |
| std::vector<int32_t> targetDimensions; |
| if (!GetTensorInt32Values<HalPolicy>(*requestedShapeOperand, targetDimensions, model, data)) |
| { |
| return Fail("%s: Could not read values of input 1", __func__); |
| } |
| |
| const Shape inputOperandShape = GetOperandShape(*inputOperand); |
| |
| Shape requestedShape; |
| // targetDimensions may contain special values (e.g. -1). reshapePrepare() is an AndroidNN provided utility |
| // function that resolves these values into a fully specified tensor shape. |
| if (!reshapePrepare(inputOperandShape, targetDimensions.data(), targetDimensions.size(), &requestedShape)) |
| { |
| return Fail("%s: Failed to resolve the requested shape", __func__); |
| } |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Could not read input 0", __func__); |
| } |
| |
| armnn::ReshapeDescriptor reshapeDescriptor; |
| reshapeDescriptor.m_TargetShape = armnn::TensorShape(requestedShape.dimensions.size(), |
| requestedShape.dimensions.data()); |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsReshapeSupported, |
| data.m_Backends, |
| isSupported, |
| input.GetTensorInfo(), |
| outputInfo, |
| reshapeDescriptor); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* layer = data.m_Network->AddReshapeLayer(reshapeDescriptor); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertSub(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data); |
| |
| if (!input0.IsValid() || !input1.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| // The FuseActivation parameter is always the input index 2 |
| // and it should be optional |
| ActivationFn activationFunction; |
| if (!GetOptionalInputActivation<HalPolicy>(operation, 2, activationFunction, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsSubtractionSupported, |
| data.m_Backends, |
| isSupported, |
| input0.GetTensorInfo(), |
| input1.GetTensorInfo(), |
| outputInfo); |
| }; |
| |
| if(IsDynamicTensor(outputInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const startLayer = data.m_Network->AddSubtractionLayer(); |
| |
| const armnn::TensorInfo& inputTensorInfo0 = input0.GetTensorInfo(); |
| const armnn::TensorInfo& inputTensorInfo1 = input1.GetTensorInfo(); |
| |
| bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data); |
| if (!isReshapeSupported) |
| { |
| return false; |
| } |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *startLayer, model, |
| data, nullptr, validateFunc, activationFunction); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertSqueeze(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| if (rank > 4) |
| { |
| Fail("%s: Inputs with rank greater than 4 are not supported", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| if (IsDynamicTensor(GetTensorInfoForOperand(*output)) && !(AreDynamicTensorsSupported())) |
| { |
| return Fail("%s: Dynamic output tensors are not supported", __func__); |
| } |
| |
| // NOTE: Axis is an optional parameter to SQUEEZE, therefore we do not want to generate a failure |
| // if the operand index is out of bounds. |
| const HalOperand* axisOperand = GetInputOperand<HalPolicy>(operation, 1, model, false); |
| |
| const uint32_t dimensionSequence[] = { 0, 1, 2, 3 }; |
| |
| std::vector<int32_t> axis; |
| if (!axisOperand) |
| { |
| axis.assign(dimensionSequence, |
| dimensionSequence + rank); |
| } |
| else if (!GetTensorInt32Values<HalPolicy>(*axisOperand, axis, model, data)) |
| { |
| return Fail("%s: Operation has an invalid or unsupported axis operand", __func__); |
| } |
| |
| std::vector<uint32_t> outputDims; |
| for (unsigned int i = 0; i < rank; i++) |
| { |
| bool skipSqueeze = (std::find(axis.begin(), axis.end(), i) == axis.end()); |
| auto currentDimension = inputInfo.GetShape()[i]; |
| if (skipSqueeze || currentDimension != 1) |
| { |
| outputDims.push_back(currentDimension); |
| } |
| } |
| |
| armnn::TensorShape outShape = armnn::TensorShape(outputDims.size(), outputDims.data()); |
| |
| armnn::TensorInfo outputInfo = inputInfo; |
| outputInfo.SetShape(outShape); |
| |
| armnn::ReshapeDescriptor reshapeDesc; |
| reshapeDesc.m_TargetShape = outputInfo.GetShape(); |
| |
| bool isSupported = false; |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsReshapeSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| reshapeDesc); |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddReshapeLayer(reshapeDesc); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertStridedSlice(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| if (rank > 4) |
| { |
| Fail("%s: Inputs with rank greater than 4 are not supported", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| const HalOperand* beginOperand = GetInputOperand<HalPolicy>(operation, 1, model); |
| const HalOperand* endOperand = GetInputOperand<HalPolicy>(operation, 2, model); |
| const HalOperand* stridesOperand = GetInputOperand<HalPolicy>(operation, 3, model); |
| |
| std::vector<int32_t> beginValues; |
| std::vector<int32_t> endValues; |
| std::vector<int32_t> stridesValues; |
| |
| // The length of the beginOperand, endOperand and stridesOperand must be of a rank(input) |
| auto ValidateInputOperands = [&] (const HalOperand& operand, std::vector<int32_t>& operandValues) |
| { |
| if (!GetTensorInt32Values<HalPolicy>(operand, operandValues, model, data)) |
| { |
| return false; |
| } |
| |
| if (operandValues.size() != rank) |
| { |
| return false; |
| } |
| |
| return true; |
| }; |
| |
| if (!ValidateInputOperands(*beginOperand, beginValues) |
| || !ValidateInputOperands(*endOperand, endValues) |
| || !ValidateInputOperands(*stridesOperand, stridesValues)) |
| { |
| return Fail("%s: Operation has invalid input operand", __func__); |
| } |
| |
| // Stride cannot have value '0' |
| if (std::any_of(stridesValues.cbegin(), stridesValues.cend(), [](int32_t i){ return i == 0; })) |
| { |
| return Fail("%s: Stride must be non-zero value.", __func__); |
| } |
| |
| armnn::StridedSliceDescriptor descriptor; |
| descriptor.m_Begin.assign(beginValues.cbegin(), beginValues.cend()); |
| descriptor.m_End.assign(endValues.cbegin(), endValues.cend()); |
| descriptor.m_Stride.assign(stridesValues.cbegin(), stridesValues.cend()); |
| descriptor.m_DataLayout = armnn::DataLayout::NHWC; |
| |
| // Get the "begin_mask", "end_mask", and "shrink_axis_mask" flags |
| if (!GetInputInt32<HalPolicy>(operation, 4, descriptor.m_BeginMask, model, data) || |
| !GetInputInt32<HalPolicy>(operation, 5, descriptor.m_EndMask, model, data) || |
| !GetInputInt32<HalPolicy>(operation, 6, descriptor.m_ShrinkAxisMask, model, data)) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsStridedSliceSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| descriptor); |
| }; |
| |
| if(IsDynamicTensor(outputInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| // Check if slice can fit in a inferred output |
| armnn::TensorShape inputShape = inputInfo.GetShape(); |
| for (unsigned int i = 0; i < inputShape.GetNumDimensions(); i++) |
| { |
| int stride = descriptor.m_Stride[i]; |
| int start = descriptor.GetStartForAxis(inputShape, i); |
| int stop = descriptor.GetStopForAxis(inputShape, i, start); |
| |
| if (descriptor.m_ShrinkAxisMask & (1 << i)) |
| { |
| // If the difference between the start point and the end point of the slice on an axis being shrunk |
| // is greater than 1 then throw an error as the output will not be large enough to hold the slice |
| if (((descriptor.m_Begin[i] - descriptor.m_End[i]) > 1) |
| || ((descriptor.m_Begin[i] - descriptor.m_End[i]) < -1)) |
| { |
| return Fail("%s: StridedSlice: Output will not be large enough to hold the slice", __func__); |
| } |
| |
| if(stride < 0) |
| { |
| return Fail("%s: StridedSlice: Stride can not be negative while ShrinkAxisMask is set.", __func__); |
| } |
| } |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddStridedSliceLayer(descriptor); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertTranspose(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| using HalOperand = typename HalPolicy::Operand; |
| using HalOperandLifeTime = typename HalPolicy::OperandLifeTime; |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| if (rank > 4) |
| { |
| Fail("%s: Inputs with rank greater than 4 are not supported", __func__); |
| } |
| |
| // NOTE: Axis is an optional parameter to TRANSPOSE, therefore we do not want to generate a failure |
| // if the operand index is out of bounds. |
| const HalOperand* permOperand = GetInputOperand<HalPolicy>(operation, 1, model, false); |
| |
| std::vector<int32_t> perm(rank); |
| if (!permOperand || (permOperand->lifetime == HalOperandLifeTime::NO_VALUE)) |
| { |
| for (unsigned int i = rank; i > 0; i--) |
| { |
| perm[rank - i] = armnn::numeric_cast<int> (i - 1); |
| } |
| } |
| else if (!GetTensorInt32Values<HalPolicy>(*permOperand, perm, model, data)) |
| { |
| return Fail("%s: Operation has an invalid or unsupported permutation operand", __func__); |
| } |
| |
| std::vector<uint32_t> outputDims(perm.begin(), perm.begin() + rank); |
| |
| armnn::TransposeDescriptor transposeDesc; |
| transposeDesc.m_DimMappings = armnn::PermutationVector(outputDims.data(), outputDims.size()); |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsTransposeSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| transposeDesc); |
| }; |
| |
| if(IsDynamicTensor(outputInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddTransposeLayer(transposeDesc); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalOperand = typename HalPolicy::Operand, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertBatchToSpaceNd(const HalOperation& operation, |
| const HalModel& model, |
| ConversionData& data) |
| { |
| |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| const HalOperand* blockOperand = GetInputOperand<HalPolicy>(operation, 1, model); |
| if (!blockOperand) |
| { |
| return Fail("%s: Could not read input 1", __func__); |
| } |
| |
| // Convert the block operand to int32 |
| std::vector<int32_t> block; |
| if (!GetTensorInt32Values<HalPolicy>(*blockOperand, block, model, data)) |
| { |
| return Fail("%s: Input 1 has invalid values", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| if (rank != 4) |
| { |
| Fail("%s: Only inputs with rank equal to 4 are supported", __func__); |
| } |
| |
| if (std::any_of(block.cbegin(), block.cend(), [](int32_t i){ return i < 1; })) |
| { |
| return Fail("%s: Block sizes for each spatial dimension of the input tensor must be" |
| " greater than or equal to 1", __func__); |
| } |
| |
| armnn::BatchToSpaceNdDescriptor batchToSpaceNdDesc; |
| batchToSpaceNdDesc.m_BlockShape.assign(block.cbegin(), block.cend()); |
| batchToSpaceNdDesc.m_DataLayout = armnn::DataLayout::NHWC; |
| |
| if (Is12OrLaterOperand(*output)) |
| { |
| batchToSpaceNdDesc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 2, model, data); |
| } |
| // Setting crops to 0,0 0,0 as it is not supported in Android NN API |
| batchToSpaceNdDesc.m_Crops = {{0, 0}, {0, 0}}; |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsBatchToSpaceNdSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| batchToSpaceNdDesc); |
| }; |
| |
| if(!IsDynamicTensor(outputInfo)) |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| else |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddBatchToSpaceNdLayer(batchToSpaceNdDesc); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| template<typename HalPolicy, |
| typename HalOperation = typename HalPolicy::Operation, |
| typename HalOperand = typename HalPolicy::Operand, |
| typename HalModel = typename HalPolicy::Model> |
| bool ConvertSpaceToBatchNd(const HalOperation& operation, const HalModel& model, ConversionData& data) |
| { |
| LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data); |
| if (!input.IsValid()) |
| { |
| return Fail("%s: Operation has invalid inputs", __func__); |
| } |
| |
| const armnn::TensorInfo& inputInfo = input.GetTensorInfo(); |
| unsigned int rank = inputInfo.GetNumDimensions(); |
| unsigned int spatialDim = rank - 2; |
| |
| if (rank != 4) |
| { |
| Fail("%s: Only inputs with rank 4 are supported", __func__); |
| } |
| |
| const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model); |
| if (!output) |
| { |
| return Fail("%s: Could not read output 0", __func__); |
| } |
| |
| const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output); |
| |
| const HalOperand* blockShapeOperand = GetInputOperand<HalPolicy>(operation, 1, model); |
| const HalOperand* paddingsOperand = GetInputOperand<HalPolicy>(operation, 2, model); |
| |
| armnn::TensorShape blockShapeOperandShape = GetTensorShapeForOperand(*blockShapeOperand); |
| if (blockShapeOperandShape.GetNumDimensions() != 1 || blockShapeOperandShape.GetNumElements() != spatialDim) |
| { |
| return Fail("%s: Operation has invalid block shape operand: expected shape [%d]", __func__, spatialDim); |
| } |
| |
| std::vector<int32_t> blockShape; |
| if (!GetTensorInt32Values<HalPolicy>(*blockShapeOperand, blockShape, model, data)) |
| { |
| return Fail("%s: Operation has an invalid or unsupported block size operand", __func__); |
| } |
| if (std::any_of(blockShape.cbegin(), blockShape.cend(), [](int32_t i){ return i < 1; })) |
| { |
| return Fail("%s: Block shape must be at least 1 in all dimensions.", __func__); |
| } |
| |
| armnn::TensorShape paddingsOperandShape = GetTensorShapeForOperand(*paddingsOperand); |
| if (paddingsOperandShape.GetNumDimensions() != 2 || paddingsOperandShape.GetNumElements() != 2 * spatialDim) |
| { |
| return Fail("%s: Operation has invalid paddings operand: expected shape [%d, 2]", __func__, spatialDim); |
| } |
| |
| std::vector<std::pair<unsigned int, unsigned int>> paddingList; |
| std::vector<int32_t> paddings; |
| if (!GetTensorInt32Values<HalPolicy>(*paddingsOperand, paddings, model, data)) |
| { |
| return Fail("%s: Operation has an invalid or unsupported paddings operand", __func__); |
| } |
| for (unsigned int i = 0; i < paddings.size() - 1; i += 2) |
| { |
| int paddingBeforeInput = paddings[i]; |
| int paddingAfterInput = paddings[i + 1]; |
| if (paddingBeforeInput < 0 || paddingAfterInput < 0) |
| { |
| return Fail("%s: Operation has invalid paddings operand, invalid padding values.", __func__); |
| } |
| |
| paddingList.emplace_back((unsigned int) paddingBeforeInput, (unsigned int) paddingAfterInput); |
| } |
| |
| armnn::SpaceToBatchNdDescriptor descriptor; |
| descriptor.m_DataLayout = armnn::DataLayout::NHWC; |
| descriptor.m_BlockShape.assign(blockShape.cbegin(), blockShape.cend()); |
| descriptor.m_PadList.assign(paddingList.cbegin(), paddingList.cend()); |
| |
| if (Is12OrLaterOperand(*output)) |
| { |
| descriptor.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 3, model, data); |
| } |
| |
| bool isSupported = false; |
| auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) |
| { |
| FORWARD_LAYER_SUPPORT_FUNC(__func__, |
| IsSpaceToBatchNdSupported, |
| data.m_Backends, |
| isSupported, |
| inputInfo, |
| outputInfo, |
| descriptor); |
| }; |
| |
| if(IsDynamicTensor(outputInfo)) |
| { |
| isSupported = AreDynamicTensorsSupported(); |
| } |
| else |
| { |
| validateFunc(outputInfo, isSupported); |
| } |
| |
| if (!isSupported) |
| { |
| return false; |
| } |
| |
| armnn::IConnectableLayer* const layer = data.m_Network->AddSpaceToBatchNdLayer(descriptor); |
| assert(layer != nullptr); |
| input.Connect(layer->GetInputSlot(0)); |
| |
| return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data, nullptr, validateFunc); |
| } |
| |
| } // namespace armnn_driver |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |