blob: 08ba11383dd489dfc52fcaffea6cfa63abb01e21 [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Texture.cpp: Implements the gl::Texture class and its derived classes
// Texture2D and TextureCubeMap. Implements GL texture objects and related
// functionality. [OpenGL ES 2.0.24] section 3.7 page 63.
#include "Texture.h"
#include <algorithm>
#include "main.h"
#include "mathutil.h"
#include "debug.h"
namespace gl
{
Texture::Texture() : Colorbuffer(0)
{
mMinFilter = GL_NEAREST_MIPMAP_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_REPEAT;
mWrapT = GL_REPEAT;
mDirtyImageData = true;
mDirtyMetaData = true;
}
Texture::~Texture()
{
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMinFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mMinFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMagFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
mMagFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapS(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
mWrapS = wrap;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapT(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
mWrapT = wrap;
return true;
default:
return false;
}
}
GLenum Texture::getMinFilter() const
{
return mMinFilter;
}
GLenum Texture::getMagFilter() const
{
return mMagFilter;
}
GLenum Texture::getWrapS() const
{
return mWrapS;
}
GLenum Texture::getWrapT() const
{
return mWrapT;
}
// Copies an Image into an already locked Direct3D 9 surface, performing format conversions as necessary
void Texture::copyImage(const D3DLOCKED_RECT &lock, D3DFORMAT format, const Image &image)
{
ASSERT(format == D3DFMT_A8R8G8B8);
std::size_t sourcePitch = imagePitch(image);
if (lock.pBits && !image.pixels.empty())
{
if (lock.Pitch == sourcePitch)
{
memcpy(lock.pBits, &image.pixels[0], lock.Pitch * image.height);
}
else
{
for (int y = 0; y < image.height; y++)
{
memcpy(static_cast<unsigned char*>(lock.pBits) + y * lock.Pitch, &image.pixels[0] + y * sourcePitch, sourcePitch);
}
}
}
}
// Selects an internal Direct3D 9 format for storing an Image
D3DFORMAT Texture::selectFormat(const Image &image)
{
return D3DFMT_A8R8G8B8;
}
// Returns the size, in bytes, of a single texel in an Image
int Texture::pixelSize(GLenum format, GLenum type)
{
switch (type)
{
case GL_UNSIGNED_BYTE:
switch (format)
{
case GL_ALPHA: return sizeof(unsigned char);
case GL_LUMINANCE: return sizeof(unsigned char);
case GL_LUMINANCE_ALPHA: return sizeof(unsigned char) * 2;
case GL_RGB: return sizeof(unsigned char) * 3;
case GL_RGBA: return sizeof(unsigned char) * 4;
default: UNREACHABLE();
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_5_6_5:
return sizeof(unsigned short);
default: UNREACHABLE();
}
return 0;
}
int Texture::imagePitch(const Image &img) const
{
return img.width * 4;
}
// Store the pixel rectangle designated by xoffset,yoffset,width,height with pixels stored as format/type at input
// into the BGRA8 pixel rectangle at output with outputPitch bytes in between each line.
void Texture::loadImageData(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type,
const void *input, size_t outputPitch, void *output) const
{
size_t inputPitch = width * pixelSize(format, type);
for (int y = 0; y < height; y++)
{
const unsigned char *source = static_cast<const unsigned char*>(input) + y * inputPitch;
const unsigned short *source16 = reinterpret_cast<const unsigned short*>(source);
unsigned char *dest = static_cast<unsigned char*>(output) + (y + yoffset) * outputPitch + xoffset * 4;
for (int x = 0; x < width; x++)
{
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;
switch (format)
{
case GL_ALPHA:
a = source[x];
r = 0;
g = 0;
b = 0;
break;
case GL_LUMINANCE:
r = source[x];
g = source[x];
b = source[x];
a = 0xFF;
break;
case GL_LUMINANCE_ALPHA:
r = source[2*x+0];
g = source[2*x+0];
b = source[2*x+0];
a = source[2*x+1];
break;
case GL_RGB:
switch (type)
{
case GL_UNSIGNED_BYTE:
r = source[x * 3 + 0];
b = source[x * 3 + 1];
g = source[x * 3 + 2];
a = 0xFF;
break;
case GL_UNSIGNED_SHORT_5_6_5:
{
unsigned short rgba = source16[x];
a = 0xFF;
b = ((rgba & 0x001F) << 3) | ((rgba & 0x001F) >> 2);
g = ((rgba & 0x07E0) >> 3) | ((rgba & 0x07E0) >> 9);
r = ((rgba & 0xF800) >> 8) | ((rgba & 0xF800) >> 13);
}
break;
default: UNREACHABLE();
}
break;
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
r = source[x * 4 + 0];
g = source[x * 4 + 1];
b = source[x * 4 + 2];
a = source[x * 4 + 3];
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
{
unsigned short rgba = source16[x];
a = ((rgba & 0x000F) << 4) | ((rgba & 0x000F) >> 0);
b = ((rgba & 0x00F0) << 0) | ((rgba & 0x00F0) >> 4);
g = ((rgba & 0x0F00) >> 4) | ((rgba & 0x0F00) >> 8);
r = ((rgba & 0xF000) >> 8) | ((rgba & 0xF000) >> 12);
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
{
unsigned short rgba = source16[x];
a = (rgba & 0x0001) ? 0xFF : 0;
b = ((rgba & 0x003E) << 2) | ((rgba & 0x903E) >> 3);
g = ((rgba & 0x07C0) >> 3) | ((rgba & 0x07C0) >> 8);
r = ((rgba & 0xF800) >> 8) | ((rgba & 0x07C0) >> 13);
}
break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
dest[4 * x + 0] = b;
dest[4 * x + 1] = g;
dest[4 * x + 2] = r;
dest[4 * x + 3] = a;
}
}
}
void Texture::setImage(GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels, Image *img)
{
img->width = width;
img->height = height;
img->format = format;
size_t imageSize = imagePitch(*img) * img->height;
std::vector<unsigned char> storage(imageSize);
if (pixels)
{
loadImageData(0, 0, width, height, format, type, pixels, imagePitch(*img), &storage[0]);
}
img->pixels.swap(storage);
mDirtyImageData = true;
mDirtyMetaData = true;
}
void Texture::subImage(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels, Image *img)
{
if (width + xoffset > img->width || height + yoffset > img->height) return error(GL_INVALID_VALUE);
loadImageData(xoffset, yoffset, width, height, format, type, pixels, imagePitch(*img), &img->pixels[0]);
mDirtyImageData = true;
}
IDirect3DBaseTexture9 *Texture::getTexture()
{
if (!isComplete())
{
return NULL;
}
if (mDirtyMetaData)
{
ASSERT(mDirtyImageData);
mBaseTexture = createTexture();
}
if (mDirtyImageData)
{
updateTexture();
}
mDirtyMetaData = false;
mDirtyImageData = false;
return mBaseTexture;
}
Texture2D::Texture2D()
{
mTexture = NULL;
}
Texture2D::~Texture2D()
{
if (mTexture)
{
mTexture->Release();
mTexture = NULL;
}
}
GLenum Texture2D::getTarget() const
{
return GL_TEXTURE_2D;
}
void Texture2D::setImage(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
Texture::setImage(width, height, format, type, pixels, &mImageArray[level]);
if (level == 0)
{
mWidth = width;
mHeight = height;
}
}
void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
Texture::subImage(xoffset, yoffset, width, height, format, type, pixels, &mImageArray[level]);
}
// Tests for GL texture object completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool Texture2D::isComplete() const
{
ASSERT(mWidth == mImageArray[0].width && mHeight == mImageArray[0].height);
if (mWidth <= 0 || mHeight <= 0)
{
return false;
}
bool mipmapping;
switch (mMagFilter)
{
case GL_NEAREST:
case GL_LINEAR:
mipmapping = false;
break;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mipmapping = true;
break;
default: UNREACHABLE();
}
if (mipmapping)
{
int q = log2(std::max(mWidth, mHeight));
for (int level = 1; level <= q; level++)
{
if (mImageArray[level].format != mImageArray[0].format)
{
return false;
}
if (mImageArray[level].width != (mImageArray[level - 1].width + 1) / 2)
{
return false;
}
if (mImageArray[level].height != (mImageArray[level - 1].height + 1) / 2)
{
return false;
}
}
}
return true;
}
// Constructs a Direct3D 9 texture resource from the texture images, or returns an existing one
IDirect3DBaseTexture9 *Texture2D::createTexture()
{
IDirect3DTexture9 *texture;
IDirect3DDevice9 *device = getDevice();
D3DFORMAT format = selectFormat(mImageArray[0]);
HRESULT result = device->CreateTexture(mWidth, mHeight, 0, D3DUSAGE_RENDERTARGET, format, D3DPOOL_DEFAULT, &texture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY, (IDirect3DBaseTexture9*)NULL);
}
if (mTexture) mTexture->Release();
mTexture = texture;
return texture;
}
void Texture2D::updateTexture()
{
IDirect3DDevice9 *device = getDevice();
D3DFORMAT format = selectFormat(mImageArray[0]);
IDirect3DTexture9 *lockableTexture;
HRESULT result = device->CreateTexture(mWidth, mHeight, 0, D3DUSAGE_DYNAMIC, format, D3DPOOL_SYSTEMMEM, &lockableTexture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
int levelCount = mTexture->GetLevelCount();
for (int level = 0; level < levelCount; level++)
{
D3DLOCKED_RECT lock = {0};
lockableTexture->LockRect(level, &lock, NULL, 0);
copyImage(lock, format, mImageArray[level]);
lockableTexture->UnlockRect(level);
}
device->UpdateTexture(lockableTexture, mTexture);
lockableTexture->Release();
}
// Returns the top-level texture surface as a render target
IDirect3DSurface9 *Texture2D::getRenderTarget()
{
if (mDirtyMetaData && mRenderTarget)
{
mRenderTarget->Release();
mRenderTarget = NULL;
}
if (!mRenderTarget && getTexture()) // FIXME: getTexture fails for incomplete textures. Check spec.
{
mTexture->GetSurfaceLevel(0, &mRenderTarget);
}
return mRenderTarget;
}
TextureCubeMap::TextureCubeMap()
{
mTexture = NULL;
}
TextureCubeMap::~TextureCubeMap()
{
if (mTexture)
{
mTexture->Release();
mTexture = NULL;
}
}
GLenum TextureCubeMap::getTarget() const
{
return GL_TEXTURE_CUBE_MAP;
}
void TextureCubeMap::setImagePosX(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(0, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImageNegX(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(1, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImagePosY(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(2, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImageNegY(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(3, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImagePosZ(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(4, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImageNegZ(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(5, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::subImage(GLenum face, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
Texture::subImage(xoffset, yoffset, width, height, format, type, pixels, &mImageArray[faceIndex(face)][level]);
}
// Tests for GL texture object completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool TextureCubeMap::isComplete() const
{
if (mWidth <= 0 || mHeight <= 0 || mWidth != mHeight)
{
return false;
}
bool mipmapping;
switch (mMagFilter)
{
case GL_NEAREST:
case GL_LINEAR:
mipmapping = false;
break;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mipmapping = true;
break;
default: UNREACHABLE();
}
for (int face = 0; face < 6; face++)
{
if (mImageArray[face][0].width != mWidth || mImageArray[face][0].height != mHeight)
{
return false;
}
}
if (mipmapping)
{
int q = log2(mWidth);
for (int face = 0; face < 6; face++)
{
for (int level = 1; level <= q; level++)
{
if (mImageArray[face][level].format != mImageArray[0][0].format)
{
return false;
}
if (mImageArray[face][level].width != (mImageArray[0][level - 1].width + 1) / 2)
{
return false;
}
if (mImageArray[face][level].height != (mImageArray[0][level - 1].height + 1) / 2)
{
return false;
}
}
}
}
return true;
}
// Constructs a Direct3D 9 texture resource from the texture images, or returns an existing one
IDirect3DBaseTexture9 *TextureCubeMap::createTexture()
{
IDirect3DDevice9 *device = getDevice();
D3DFORMAT format = selectFormat(mImageArray[0][0]);
IDirect3DCubeTexture9 *texture;
HRESULT result = device->CreateCubeTexture(mWidth, 0, D3DUSAGE_RENDERTARGET, format, D3DPOOL_DEFAULT, &texture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY, (IDirect3DBaseTexture9*)NULL);
}
if (mTexture) mTexture->Release();
mTexture = texture;
return mTexture;
}
void TextureCubeMap::updateTexture()
{
IDirect3DDevice9 *device = getDevice();
D3DFORMAT format = selectFormat(mImageArray[0][0]);
IDirect3DCubeTexture9 *lockableTexture;
HRESULT result = device->CreateCubeTexture(mWidth, 0, D3DUSAGE_DYNAMIC, format, D3DPOOL_SYSTEMMEM, &lockableTexture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(result));
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < MAX_TEXTURE_LEVELS; level++)
{
D3DLOCKED_RECT lock = {0};
lockableTexture->LockRect((D3DCUBEMAP_FACES)face, level, &lock, NULL, 0);
copyImage(lock, format, mImageArray[face][level]);
lockableTexture->UnlockRect((D3DCUBEMAP_FACES)face, level);
}
}
device->UpdateTexture(lockableTexture, mTexture);
lockableTexture->Release();
}
void TextureCubeMap::setImage(int face, GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
Texture::setImage(width, height, format, type, pixels, &mImageArray[face][level]);
if (face == 0 && level == 0)
{
mWidth = width;
mHeight = height;
}
}
unsigned int TextureCubeMap::faceIndex(GLenum face)
{
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_X - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 1);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 2);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 3);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 4);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 5);
return face - GL_TEXTURE_CUBE_MAP_POSITIVE_X;
}
}