| // |
| // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| #include "compiler/translator/ParseContext.h" |
| |
| #include <stdarg.h> |
| #include <stdio.h> |
| |
| #include "compiler/preprocessor/SourceLocation.h" |
| #include "compiler/translator/Cache.h" |
| #include "compiler/translator/glslang.h" |
| #include "compiler/translator/ValidateSwitch.h" |
| #include "compiler/translator/ValidateGlobalInitializer.h" |
| #include "compiler/translator/util.h" |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Sub- vector and matrix fields |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| // |
| // Look at a '.' field selector string and change it into offsets |
| // for a vector. |
| // |
| bool TParseContext::parseVectorFields(const TString &compString, |
| int vecSize, |
| TVectorFields &fields, |
| const TSourceLoc &line) |
| { |
| fields.num = (int)compString.size(); |
| if (fields.num > 4) |
| { |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| |
| enum |
| { |
| exyzw, |
| ergba, |
| estpq |
| } fieldSet[4]; |
| |
| for (int i = 0; i < fields.num; ++i) |
| { |
| switch (compString[i]) |
| { |
| case 'x': |
| fields.offsets[i] = 0; |
| fieldSet[i] = exyzw; |
| break; |
| case 'r': |
| fields.offsets[i] = 0; |
| fieldSet[i] = ergba; |
| break; |
| case 's': |
| fields.offsets[i] = 0; |
| fieldSet[i] = estpq; |
| break; |
| case 'y': |
| fields.offsets[i] = 1; |
| fieldSet[i] = exyzw; |
| break; |
| case 'g': |
| fields.offsets[i] = 1; |
| fieldSet[i] = ergba; |
| break; |
| case 't': |
| fields.offsets[i] = 1; |
| fieldSet[i] = estpq; |
| break; |
| case 'z': |
| fields.offsets[i] = 2; |
| fieldSet[i] = exyzw; |
| break; |
| case 'b': |
| fields.offsets[i] = 2; |
| fieldSet[i] = ergba; |
| break; |
| case 'p': |
| fields.offsets[i] = 2; |
| fieldSet[i] = estpq; |
| break; |
| |
| case 'w': |
| fields.offsets[i] = 3; |
| fieldSet[i] = exyzw; |
| break; |
| case 'a': |
| fields.offsets[i] = 3; |
| fieldSet[i] = ergba; |
| break; |
| case 'q': |
| fields.offsets[i] = 3; |
| fieldSet[i] = estpq; |
| break; |
| default: |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| } |
| |
| for (int i = 0; i < fields.num; ++i) |
| { |
| if (fields.offsets[i] >= vecSize) |
| { |
| error(line, "vector field selection out of range", compString.c_str()); |
| return false; |
| } |
| |
| if (i > 0) |
| { |
| if (fieldSet[i] != fieldSet[i - 1]) |
| { |
| error(line, "illegal - vector component fields not from the same set", |
| compString.c_str()); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Errors |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| |
| // |
| // Used by flex/bison to output all syntax and parsing errors. |
| // |
| void TParseContext::error(const TSourceLoc &loc, |
| const char *reason, |
| const char *token, |
| const char *extraInfo) |
| { |
| mDiagnostics.error(loc, reason, token, extraInfo); |
| } |
| |
| void TParseContext::warning(const TSourceLoc &loc, |
| const char *reason, |
| const char *token, |
| const char *extraInfo) |
| { |
| mDiagnostics.warning(loc, reason, token, extraInfo); |
| } |
| |
| void TParseContext::outOfRangeError(bool isError, |
| const TSourceLoc &loc, |
| const char *reason, |
| const char *token, |
| const char *extraInfo) |
| { |
| if (isError) |
| { |
| error(loc, reason, token, extraInfo); |
| } |
| else |
| { |
| warning(loc, reason, token, extraInfo); |
| } |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, "", op, extraInfo.c_str()); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " |
| << operand << " (or there is no acceptable conversion)"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " wrong operand type", op, extraInfo.c_str()); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void TParseContext::binaryOpError(const TSourceLoc &line, |
| const char *op, |
| TString left, |
| TString right) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" |
| << left << "' and a right operand of type '" << right |
| << "' (or there is no acceptable conversion)"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " wrong operand types ", op, extraInfo.c_str()); |
| } |
| |
| void TParseContext::checkPrecisionSpecified(const TSourceLoc &line, |
| TPrecision precision, |
| TBasicType type) |
| { |
| if (!mChecksPrecisionErrors) |
| return; |
| if (precision == EbpUndefined) |
| { |
| switch (type) |
| { |
| case EbtFloat: |
| error(line, "No precision specified for (float)", ""); |
| return; |
| case EbtInt: |
| case EbtUInt: |
| UNREACHABLE(); // there's always a predeclared qualifier |
| error(line, "No precision specified (int)", ""); |
| return; |
| default: |
| if (IsSampler(type)) |
| { |
| error(line, "No precision specified (sampler)", ""); |
| return; |
| } |
| } |
| } |
| } |
| |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node) |
| { |
| TIntermSymbol *symNode = node->getAsSymbolNode(); |
| TIntermBinary *binaryNode = node->getAsBinaryNode(); |
| |
| if (binaryNode) |
| { |
| switch (binaryNode->getOp()) |
| { |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| case EOpIndexDirectStruct: |
| case EOpIndexDirectInterfaceBlock: |
| return checkCanBeLValue(line, op, binaryNode->getLeft()); |
| case EOpVectorSwizzle: |
| { |
| bool ok = checkCanBeLValue(line, op, binaryNode->getLeft()); |
| if (ok) |
| { |
| int offsetCount[4] = {0, 0, 0, 0}; |
| |
| TIntermAggregate *swizzleOffsets = binaryNode->getRight()->getAsAggregate(); |
| |
| for (const auto &offset : *swizzleOffsets->getSequence()) |
| { |
| int value = offset->getAsTyped()->getAsConstantUnion()->getIConst(0); |
| offsetCount[value]++; |
| if (offsetCount[value] > 1) |
| { |
| error(line, " l-value of swizzle cannot have duplicate components", op); |
| return false; |
| } |
| } |
| } |
| |
| return ok; |
| } |
| default: |
| break; |
| } |
| error(line, " l-value required", op); |
| |
| return false; |
| } |
| |
| const char *symbol = 0; |
| if (symNode != 0) |
| symbol = symNode->getSymbol().c_str(); |
| |
| const char *message = 0; |
| switch (node->getQualifier()) |
| { |
| case EvqConst: |
| message = "can't modify a const"; |
| break; |
| case EvqConstReadOnly: |
| message = "can't modify a const"; |
| break; |
| case EvqAttribute: |
| message = "can't modify an attribute"; |
| break; |
| case EvqFragmentIn: |
| message = "can't modify an input"; |
| break; |
| case EvqVertexIn: |
| message = "can't modify an input"; |
| break; |
| case EvqUniform: |
| message = "can't modify a uniform"; |
| break; |
| case EvqVaryingIn: |
| message = "can't modify a varying"; |
| break; |
| case EvqFragCoord: |
| message = "can't modify gl_FragCoord"; |
| break; |
| case EvqFrontFacing: |
| message = "can't modify gl_FrontFacing"; |
| break; |
| case EvqPointCoord: |
| message = "can't modify gl_PointCoord"; |
| break; |
| case EvqNumWorkGroups: |
| message = "can't modify gl_NumWorkGroups"; |
| break; |
| case EvqWorkGroupSize: |
| message = "can't modify gl_WorkGroupSize"; |
| break; |
| case EvqWorkGroupID: |
| message = "can't modify gl_WorkGroupID"; |
| break; |
| case EvqLocalInvocationID: |
| message = "can't modify gl_LocalInvocationID"; |
| break; |
| case EvqGlobalInvocationID: |
| message = "can't modify gl_GlobalInvocationID"; |
| break; |
| case EvqLocalInvocationIndex: |
| message = "can't modify gl_LocalInvocationIndex"; |
| break; |
| case EvqComputeIn: |
| message = "can't modify work group size variable"; |
| break; |
| default: |
| // |
| // Type that can't be written to? |
| // |
| if (node->getBasicType() == EbtVoid) |
| { |
| message = "can't modify void"; |
| } |
| if (IsSampler(node->getBasicType())) |
| { |
| message = "can't modify a sampler"; |
| } |
| } |
| |
| if (message == 0 && binaryNode == 0 && symNode == 0) |
| { |
| error(line, " l-value required", op); |
| |
| return false; |
| } |
| |
| // |
| // Everything else is okay, no error. |
| // |
| if (message == 0) |
| return true; |
| |
| // |
| // If we get here, we have an error and a message. |
| // |
| if (symNode) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "\"" << symbol << "\" (" << message << ")"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " l-value required", op, extraInfo.c_str()); |
| } |
| else |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "(" << message << ")"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " l-value required", op, extraInfo.c_str()); |
| } |
| |
| return false; |
| } |
| |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| void TParseContext::checkIsConst(TIntermTyped *node) |
| { |
| if (node->getQualifier() != EvqConst) |
| { |
| error(node->getLine(), "constant expression required", ""); |
| } |
| } |
| |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token) |
| { |
| if (!node->isScalarInt()) |
| { |
| error(node->getLine(), "integer expression required", token); |
| } |
| } |
| |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| void TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token) |
| { |
| if (!symbolTable.atGlobalLevel()) |
| { |
| error(line, "only allowed at global scope", token); |
| } |
| } |
| |
| // For now, keep it simple: if it starts "gl_", it's reserved, independent |
| // of scope. Except, if the symbol table is at the built-in push-level, |
| // which is when we are parsing built-ins. |
| // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a |
| // webgl shader. |
| bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier) |
| { |
| static const char *reservedErrMsg = "reserved built-in name"; |
| if (!symbolTable.atBuiltInLevel()) |
| { |
| if (identifier.compare(0, 3, "gl_") == 0) |
| { |
| error(line, reservedErrMsg, "gl_"); |
| return false; |
| } |
| if (IsWebGLBasedSpec(mShaderSpec)) |
| { |
| if (identifier.compare(0, 6, "webgl_") == 0) |
| { |
| error(line, reservedErrMsg, "webgl_"); |
| return false; |
| } |
| if (identifier.compare(0, 7, "_webgl_") == 0) |
| { |
| error(line, reservedErrMsg, "_webgl_"); |
| return false; |
| } |
| if (mShaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) |
| { |
| error(line, reservedErrMsg, "css_"); |
| return false; |
| } |
| } |
| if (identifier.find("__") != TString::npos) |
| { |
| error(line, |
| "identifiers containing two consecutive underscores (__) are reserved as " |
| "possible future keywords", |
| identifier.c_str()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Make sure there is enough data provided to the constructor to build |
| // something of the type of the constructor. Also returns the type of |
| // the constructor. |
| bool TParseContext::checkConstructorArguments(const TSourceLoc &line, |
| TIntermNode *argumentsNode, |
| const TFunction &function, |
| TOperator op, |
| const TType &type) |
| { |
| bool constructingMatrix = false; |
| switch (op) |
| { |
| case EOpConstructMat2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4: |
| constructingMatrix = true; |
| break; |
| default: |
| break; |
| } |
| |
| // |
| // Note: It's okay to have too many components available, but not okay to have unused |
| // arguments. 'full' will go to true when enough args have been seen. If we loop |
| // again, there is an extra argument, so 'overfull' will become true. |
| // |
| |
| size_t size = 0; |
| bool full = false; |
| bool overFull = false; |
| bool matrixInMatrix = false; |
| bool arrayArg = false; |
| for (size_t i = 0; i < function.getParamCount(); ++i) |
| { |
| const TConstParameter ¶m = function.getParam(i); |
| size += param.type->getObjectSize(); |
| |
| if (constructingMatrix && param.type->isMatrix()) |
| matrixInMatrix = true; |
| if (full) |
| overFull = true; |
| if (op != EOpConstructStruct && !type.isArray() && size >= type.getObjectSize()) |
| full = true; |
| if (param.type->isArray()) |
| arrayArg = true; |
| } |
| |
| if (type.isArray()) |
| { |
| // The size of an unsized constructor should already have been determined. |
| ASSERT(!type.isUnsizedArray()); |
| if (static_cast<size_t>(type.getArraySize()) != function.getParamCount()) |
| { |
| error(line, "array constructor needs one argument per array element", "constructor"); |
| return false; |
| } |
| } |
| |
| if (arrayArg && op != EOpConstructStruct) |
| { |
| error(line, "constructing from a non-dereferenced array", "constructor"); |
| return false; |
| } |
| |
| if (matrixInMatrix && !type.isArray()) |
| { |
| if (function.getParamCount() != 1) |
| { |
| error(line, "constructing matrix from matrix can only take one argument", |
| "constructor"); |
| return false; |
| } |
| } |
| |
| if (overFull) |
| { |
| error(line, "too many arguments", "constructor"); |
| return false; |
| } |
| |
| if (op == EOpConstructStruct && !type.isArray() && |
| type.getStruct()->fields().size() != function.getParamCount()) |
| { |
| error(line, |
| "Number of constructor parameters does not match the number of structure fields", |
| "constructor"); |
| return false; |
| } |
| |
| if (!type.isMatrix() || !matrixInMatrix) |
| { |
| if ((op != EOpConstructStruct && size != 1 && size < type.getObjectSize()) || |
| (op == EOpConstructStruct && size < type.getObjectSize())) |
| { |
| error(line, "not enough data provided for construction", "constructor"); |
| return false; |
| } |
| } |
| |
| if (argumentsNode == nullptr) |
| { |
| error(line, "constructor does not have any arguments", "constructor"); |
| return false; |
| } |
| |
| TIntermAggregate *argumentsAgg = argumentsNode->getAsAggregate(); |
| for (TIntermNode *&argNode : *argumentsAgg->getSequence()) |
| { |
| TIntermTyped *argTyped = argNode->getAsTyped(); |
| ASSERT(argTyped != nullptr); |
| if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType())) |
| { |
| error(line, "cannot convert a sampler", "constructor"); |
| return false; |
| } |
| if (argTyped->getBasicType() == EbtVoid) |
| { |
| error(line, "cannot convert a void", "constructor"); |
| return false; |
| } |
| } |
| |
| if (type.isArray()) |
| { |
| // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of |
| // the array. |
| for (TIntermNode *&argNode : *argumentsAgg->getSequence()) |
| { |
| const TType &argType = argNode->getAsTyped()->getType(); |
| // It has already been checked that the argument is not an array. |
| ASSERT(!argType.isArray()); |
| if (!argType.sameElementType(type)) |
| { |
| error(line, "Array constructor argument has an incorrect type", "Error"); |
| return false; |
| } |
| } |
| } |
| else if (op == EOpConstructStruct) |
| { |
| const TFieldList &fields = type.getStruct()->fields(); |
| TIntermSequence *args = argumentsAgg->getSequence(); |
| |
| for (size_t i = 0; i < fields.size(); i++) |
| { |
| if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type()) |
| { |
| error(line, "Structure constructor arguments do not match structure fields", |
| "Error"); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // This function checks to see if a void variable has been declared and raise an error message for |
| // such a case |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::checkIsNonVoid(const TSourceLoc &line, |
| const TString &identifier, |
| const TBasicType &type) |
| { |
| if (type == EbtVoid) |
| { |
| error(line, "illegal use of type 'void'", identifier.c_str()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression |
| // or not. |
| void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type) |
| { |
| if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) |
| { |
| error(line, "boolean expression expected", ""); |
| } |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression |
| // or not. |
| void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType) |
| { |
| if (pType.type != EbtBool || pType.isAggregate()) |
| { |
| error(line, "boolean expression expected", ""); |
| } |
| } |
| |
| bool TParseContext::checkIsNotSampler(const TSourceLoc &line, |
| const TPublicType &pType, |
| const char *reason) |
| { |
| if (pType.type == EbtStruct) |
| { |
| if (containsSampler(*pType.userDef)) |
| { |
| error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); |
| return false; |
| } |
| |
| return true; |
| } |
| else if (IsSampler(pType.type)) |
| { |
| error(line, reason, getBasicString(pType.type)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line, |
| const TPublicType &pType) |
| { |
| if (pType.layoutQualifier.location != -1) |
| { |
| error(line, "location must only be specified for a single input or output variable", |
| "location"); |
| } |
| } |
| |
| void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| if (layoutQualifier.location != -1) |
| { |
| error(location, "invalid layout qualifier:", "location", |
| "only valid on program inputs and outputs"); |
| } |
| } |
| |
| void TParseContext::checkOutParameterIsNotSampler(const TSourceLoc &line, |
| TQualifier qualifier, |
| const TType &type) |
| { |
| if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct && |
| IsSampler(type.getBasicType())) |
| { |
| error(line, "samplers cannot be output parameters", type.getBasicString()); |
| } |
| } |
| |
| bool TParseContext::containsSampler(const TType &type) |
| { |
| if (IsSampler(type.getBasicType())) |
| return true; |
| |
| if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) |
| { |
| const TFieldList &fields = type.getStruct()->fields(); |
| for (unsigned int i = 0; i < fields.size(); ++i) |
| { |
| if (containsSampler(*fields[i]->type())) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Do size checking for an array type's size. |
| unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr) |
| { |
| TIntermConstantUnion *constant = expr->getAsConstantUnion(); |
| |
| // TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant |
| // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't |
| // fold as array size. |
| if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) |
| { |
| error(line, "array size must be a constant integer expression", ""); |
| return 1u; |
| } |
| |
| unsigned int size = 0u; |
| |
| if (constant->getBasicType() == EbtUInt) |
| { |
| size = constant->getUConst(0); |
| } |
| else |
| { |
| int signedSize = constant->getIConst(0); |
| |
| if (signedSize < 0) |
| { |
| error(line, "array size must be non-negative", ""); |
| return 1u; |
| } |
| |
| size = static_cast<unsigned int>(signedSize); |
| } |
| |
| if (size == 0u) |
| { |
| error(line, "array size must be greater than zero", ""); |
| return 1u; |
| } |
| |
| // The size of arrays is restricted here to prevent issues further down the |
| // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to |
| // 4096 registers so this should be reasonable even for aggressively optimizable code. |
| const unsigned int sizeLimit = 65536; |
| |
| if (size > sizeLimit) |
| { |
| error(line, "array size too large", ""); |
| return 1u; |
| } |
| |
| return size; |
| } |
| |
| // See if this qualifier can be an array. |
| bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line, |
| const TPublicType &elementQualifier) |
| { |
| if ((elementQualifier.qualifier == EvqAttribute) || |
| (elementQualifier.qualifier == EvqVertexIn) || |
| (elementQualifier.qualifier == EvqConst && mShaderVersion < 300)) |
| { |
| error(line, "cannot declare arrays of this qualifier", |
| TType(elementQualifier).getQualifierString()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // See if this element type can be formed into an array. |
| bool TParseContext::checkIsValidTypeForArray(const TSourceLoc &line, const TPublicType &elementType) |
| { |
| // |
| // Can the type be an array? |
| // |
| if (elementType.array) |
| { |
| error(line, "cannot declare arrays of arrays", |
| TType(elementType).getCompleteString().c_str()); |
| return false; |
| } |
| // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. |
| // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section |
| // 4.3.4). |
| if (mShaderVersion >= 300 && elementType.type == EbtStruct && |
| sh::IsVarying(elementType.qualifier)) |
| { |
| error(line, "cannot declare arrays of structs of this qualifier", |
| TType(elementType).getCompleteString().c_str()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Check if this qualified element type can be formed into an array. |
| bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation, |
| const TPublicType &elementType) |
| { |
| if (checkIsValidTypeForArray(indexLocation, elementType)) |
| { |
| return checkIsValidQualifierForArray(indexLocation, elementType); |
| } |
| return false; |
| } |
| |
| // Enforce non-initializer type/qualifier rules. |
| void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line, |
| const TString &identifier, |
| TPublicType *type) |
| { |
| ASSERT(type != nullptr); |
| if (type->qualifier == EvqConst) |
| { |
| // Make the qualifier make sense. |
| type->qualifier = EvqTemporary; |
| |
| // Generate informative error messages for ESSL1. |
| // In ESSL3 arrays and structures containing arrays can be constant. |
| if (mShaderVersion < 300 && type->isStructureContainingArrays()) |
| { |
| error(line, |
| "structures containing arrays may not be declared constant since they cannot be " |
| "initialized", |
| identifier.c_str()); |
| } |
| else |
| { |
| error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); |
| } |
| return; |
| } |
| if (type->isUnsizedArray()) |
| { |
| error(line, "implicitly sized arrays need to be initialized", identifier.c_str()); |
| } |
| } |
| |
| // Do some simple checks that are shared between all variable declarations, |
| // and update the symbol table. |
| // |
| // Returns true if declaring the variable succeeded. |
| // |
| bool TParseContext::declareVariable(const TSourceLoc &line, |
| const TString &identifier, |
| const TType &type, |
| TVariable **variable) |
| { |
| ASSERT((*variable) == nullptr); |
| |
| bool needsReservedCheck = true; |
| |
| // gl_LastFragData may be redeclared with a new precision qualifier |
| if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) |
| { |
| const TVariable *maxDrawBuffers = static_cast<const TVariable *>( |
| symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); |
| if (static_cast<int>(type.getArraySize()) == maxDrawBuffers->getConstPointer()->getIConst()) |
| { |
| if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) |
| { |
| needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension()); |
| } |
| } |
| else |
| { |
| error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", |
| identifier.c_str()); |
| return false; |
| } |
| } |
| |
| if (needsReservedCheck && !checkIsNotReserved(line, identifier)) |
| return false; |
| |
| (*variable) = new TVariable(&identifier, type); |
| if (!symbolTable.declare(*variable)) |
| { |
| error(line, "redefinition", identifier.c_str()); |
| *variable = nullptr; |
| return false; |
| } |
| |
| if (!checkIsNonVoid(line, identifier, type.getBasicType())) |
| return false; |
| |
| return true; |
| } |
| |
| void TParseContext::checkIsParameterQualifierValid(const TSourceLoc &line, |
| TQualifier qualifier, |
| TQualifier paramQualifier, |
| TType *type) |
| { |
| if (qualifier != EvqConst && qualifier != EvqTemporary) |
| { |
| error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier)); |
| return; |
| } |
| if (qualifier == EvqConst && paramQualifier != EvqIn) |
| { |
| error(line, "qualifier not allowed with ", getQualifierString(qualifier), |
| getQualifierString(paramQualifier)); |
| return; |
| } |
| |
| if (qualifier == EvqConst) |
| type->setQualifier(EvqConstReadOnly); |
| else |
| type->setQualifier(paramQualifier); |
| } |
| |
| bool TParseContext::checkCanUseExtension(const TSourceLoc &line, const TString &extension) |
| { |
| const TExtensionBehavior &extBehavior = extensionBehavior(); |
| TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); |
| if (iter == extBehavior.end()) |
| { |
| error(line, "extension", extension.c_str(), "is not supported"); |
| return false; |
| } |
| // In GLSL ES, an extension's default behavior is "disable". |
| if (iter->second == EBhDisable || iter->second == EBhUndefined) |
| { |
| error(line, "extension", extension.c_str(), "is disabled"); |
| return false; |
| } |
| if (iter->second == EBhWarn) |
| { |
| warning(line, "extension", extension.c_str(), "is being used"); |
| return true; |
| } |
| |
| return true; |
| } |
| |
| // These checks are common for all declarations starting a declarator list, and declarators that |
| // follow an empty declaration. |
| void TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation) |
| { |
| switch (publicType.qualifier) |
| { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| case EvqAttribute: |
| case EvqVertexIn: |
| case EvqFragmentOut: |
| case EvqComputeIn: |
| if (publicType.type == EbtStruct) |
| { |
| error(identifierLocation, "cannot be used with a structure", |
| getQualifierString(publicType.qualifier)); |
| return; |
| } |
| |
| default: |
| break; |
| } |
| |
| if (publicType.qualifier != EvqUniform && |
| !checkIsNotSampler(identifierLocation, publicType, "samplers must be uniform")) |
| { |
| return; |
| } |
| |
| // check for layout qualifier issues |
| const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; |
| |
| if (layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| error(identifierLocation, "layout qualifier", |
| getMatrixPackingString(layoutQualifier.matrixPacking), |
| "only valid for interface blocks"); |
| return; |
| } |
| |
| if (layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(identifierLocation, "layout qualifier", |
| getBlockStorageString(layoutQualifier.blockStorage), |
| "only valid for interface blocks"); |
| return; |
| } |
| |
| if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut) |
| { |
| checkLocationIsNotSpecified(identifierLocation, publicType.layoutQualifier); |
| } |
| } |
| |
| void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location, |
| const TString &layoutQualifierName, |
| int versionRequired) |
| { |
| |
| if (mShaderVersion < versionRequired) |
| { |
| error(location, "invalid layout qualifier:", layoutQualifierName.c_str(), "not supported"); |
| } |
| } |
| |
| bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| const TLocalSize &localSize = layoutQualifier.localSize; |
| for (size_t i = 0u; i < localSize.size(); ++i) |
| { |
| if (localSize[i] != -1) |
| { |
| error(location, "invalid layout qualifier:", getLocalSizeString(i), |
| "only valid when used with 'in' in a compute shader global layout declaration"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, |
| TIntermAggregate *fnCall) |
| { |
| for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) |
| { |
| TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); |
| if (qual == EvqOut || qual == EvqInOut) |
| { |
| TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped(); |
| if (!checkCanBeLValue(argument->getLine(), "assign", argument)) |
| { |
| error(argument->getLine(), |
| "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error"); |
| return; |
| } |
| } |
| } |
| } |
| |
| void TParseContext::checkInvariantIsOutVariableES3(const TQualifier qualifier, |
| const TSourceLoc &invariantLocation) |
| { |
| if (!sh::IsVaryingOut(qualifier) && qualifier != EvqFragmentOut) |
| { |
| error(invariantLocation, "Only out variables can be invariant.", "invariant"); |
| } |
| } |
| |
| bool TParseContext::supportsExtension(const char *extension) |
| { |
| const TExtensionBehavior &extbehavior = extensionBehavior(); |
| TExtensionBehavior::const_iterator iter = extbehavior.find(extension); |
| return (iter != extbehavior.end()); |
| } |
| |
| bool TParseContext::isExtensionEnabled(const char *extension) const |
| { |
| return ::IsExtensionEnabled(extensionBehavior(), extension); |
| } |
| |
| void TParseContext::handleExtensionDirective(const TSourceLoc &loc, |
| const char *extName, |
| const char *behavior) |
| { |
| pp::SourceLocation srcLoc; |
| srcLoc.file = loc.first_file; |
| srcLoc.line = loc.first_line; |
| mDirectiveHandler.handleExtension(srcLoc, extName, behavior); |
| } |
| |
| void TParseContext::handlePragmaDirective(const TSourceLoc &loc, |
| const char *name, |
| const char *value, |
| bool stdgl) |
| { |
| pp::SourceLocation srcLoc; |
| srcLoc.file = loc.first_file; |
| srcLoc.line = loc.first_line; |
| mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); |
| } |
| |
| TLocalSize TParseContext::getComputeShaderLocalSize() const |
| { |
| TLocalSize result; |
| for (size_t i = 0u; i < result.size(); ++i) |
| { |
| if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1) |
| { |
| result[i] = 1; |
| } |
| else |
| { |
| result[i] = mComputeShaderLocalSize[i]; |
| } |
| } |
| return result; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////// |
| // |
| // Non-Errors. |
| // |
| ///////////////////////////////////////////////////////////////////////////////// |
| |
| const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, |
| const TString *name, |
| const TSymbol *symbol) |
| { |
| const TVariable *variable = NULL; |
| |
| if (!symbol) |
| { |
| error(location, "undeclared identifier", name->c_str()); |
| } |
| else if (!symbol->isVariable()) |
| { |
| error(location, "variable expected", name->c_str()); |
| } |
| else |
| { |
| variable = static_cast<const TVariable *>(symbol); |
| |
| if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) && |
| !variable->getExtension().empty()) |
| { |
| checkCanUseExtension(location, variable->getExtension()); |
| } |
| |
| // Reject shaders using both gl_FragData and gl_FragColor |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT) |
| { |
| mUsesFragData = true; |
| } |
| else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT) |
| { |
| mUsesFragColor = true; |
| } |
| if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT) |
| { |
| mUsesSecondaryOutputs = true; |
| } |
| |
| // This validation is not quite correct - it's only an error to write to |
| // both FragData and FragColor. For simplicity, and because users shouldn't |
| // be rewarded for reading from undefined varaibles, return an error |
| // if they are both referenced, rather than assigned. |
| if (mUsesFragData && mUsesFragColor) |
| { |
| const char *errorMessage = "cannot use both gl_FragData and gl_FragColor"; |
| if (mUsesSecondaryOutputs) |
| { |
| errorMessage = |
| "cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)" |
| " and (gl_FragColor, gl_SecondaryFragColorEXT)"; |
| } |
| error(location, errorMessage, name->c_str()); |
| } |
| |
| // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables |
| if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared && |
| qualifier == EvqWorkGroupSize) |
| { |
| error(location, |
| "It is an error to use gl_WorkGroupSize before declaring the local group size", |
| "gl_WorkGroupSize"); |
| } |
| } |
| |
| if (!variable) |
| { |
| TType type(EbtFloat, EbpUndefined); |
| TVariable *fakeVariable = new TVariable(name, type); |
| symbolTable.declare(fakeVariable); |
| variable = fakeVariable; |
| } |
| |
| return variable; |
| } |
| |
| TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, |
| const TString *name, |
| const TSymbol *symbol) |
| { |
| const TVariable *variable = getNamedVariable(location, name, symbol); |
| |
| if (variable->getConstPointer()) |
| { |
| const TConstantUnion *constArray = variable->getConstPointer(); |
| return intermediate.addConstantUnion(constArray, variable->getType(), location); |
| } |
| else |
| { |
| return intermediate.addSymbol(variable->getUniqueId(), variable->getName(), |
| variable->getType(), location); |
| } |
| } |
| |
| // |
| // Look up a function name in the symbol table, and make sure it is a function. |
| // |
| // Return the function symbol if found, otherwise 0. |
| // |
| const TFunction *TParseContext::findFunction(const TSourceLoc &line, |
| TFunction *call, |
| int inputShaderVersion, |
| bool *builtIn) |
| { |
| // First find by unmangled name to check whether the function name has been |
| // hidden by a variable name or struct typename. |
| // If a function is found, check for one with a matching argument list. |
| const TSymbol *symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn); |
| if (symbol == 0 || symbol->isFunction()) |
| { |
| symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn); |
| } |
| |
| if (symbol == 0) |
| { |
| error(line, "no matching overloaded function found", call->getName().c_str()); |
| return 0; |
| } |
| |
| if (!symbol->isFunction()) |
| { |
| error(line, "function name expected", call->getName().c_str()); |
| return 0; |
| } |
| |
| return static_cast<const TFunction *>(symbol); |
| } |
| |
| // |
| // Initializers show up in several places in the grammar. Have one set of |
| // code to handle them here. |
| // |
| // Returns true on error, false if no error |
| // |
| bool TParseContext::executeInitializer(const TSourceLoc &line, |
| const TString &identifier, |
| const TPublicType &pType, |
| TIntermTyped *initializer, |
| TIntermNode **intermNode) |
| { |
| ASSERT(intermNode != nullptr); |
| TType type = TType(pType); |
| |
| TVariable *variable = nullptr; |
| if (type.isUnsizedArray()) |
| { |
| type.setArraySize(initializer->getArraySize()); |
| } |
| if (!declareVariable(line, identifier, type, &variable)) |
| { |
| return true; |
| } |
| |
| bool globalInitWarning = false; |
| if (symbolTable.atGlobalLevel() && |
| !ValidateGlobalInitializer(initializer, this, &globalInitWarning)) |
| { |
| // Error message does not completely match behavior with ESSL 1.00, but |
| // we want to steer developers towards only using constant expressions. |
| error(line, "global variable initializers must be constant expressions", "="); |
| return true; |
| } |
| if (globalInitWarning) |
| { |
| warning( |
| line, |
| "global variable initializers should be constant expressions " |
| "(uniforms and globals are allowed in global initializers for legacy compatibility)", |
| "="); |
| } |
| |
| // |
| // identifier must be of type constant, a global, or a temporary |
| // |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) |
| { |
| error(line, " cannot initialize this type of qualifier ", |
| variable->getType().getQualifierString()); |
| return true; |
| } |
| // |
| // test for and propagate constant |
| // |
| |
| if (qualifier == EvqConst) |
| { |
| if (qualifier != initializer->getType().getQualifier()) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " assigning non-constant to", "=", extraInfo.c_str()); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| if (type != initializer->getType()) |
| { |
| error(line, " non-matching types for const initializer ", |
| variable->getType().getQualifierString()); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| |
| // Save the constant folded value to the variable if possible. For example array |
| // initializers are not folded, since that way copying the array literal to multiple places |
| // in the shader is avoided. |
| // TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where |
| // it would be beneficial. |
| if (initializer->getAsConstantUnion()) |
| { |
| variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); |
| *intermNode = nullptr; |
| return false; |
| } |
| else if (initializer->getAsSymbolNode()) |
| { |
| const TSymbol *symbol = |
| symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); |
| const TVariable *tVar = static_cast<const TVariable *>(symbol); |
| |
| const TConstantUnion *constArray = tVar->getConstPointer(); |
| if (constArray) |
| { |
| variable->shareConstPointer(constArray); |
| *intermNode = nullptr; |
| return false; |
| } |
| } |
| } |
| |
| TIntermSymbol *intermSymbol = intermediate.addSymbol( |
| variable->getUniqueId(), variable->getName(), variable->getType(), line); |
| *intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line); |
| if (*intermNode == nullptr) |
| { |
| assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, |
| bool invariant, |
| TLayoutQualifier layoutQualifier, |
| const TPublicType &typeSpecifier) |
| { |
| TPublicType returnType = typeSpecifier; |
| returnType.qualifier = qualifier; |
| returnType.invariant = invariant; |
| returnType.layoutQualifier = layoutQualifier; |
| |
| checkWorkGroupSizeIsNotSpecified(typeSpecifier.line, layoutQualifier); |
| |
| if (mShaderVersion < 300) |
| { |
| if (typeSpecifier.array) |
| { |
| error(typeSpecifier.line, "not supported", "first-class array"); |
| returnType.clearArrayness(); |
| } |
| |
| if (qualifier == EvqAttribute && |
| (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) |
| { |
| error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); |
| } |
| |
| if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) && |
| (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) |
| { |
| error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); |
| } |
| } |
| else |
| { |
| if (!layoutQualifier.isEmpty()) |
| { |
| checkIsAtGlobalLevel(typeSpecifier.line, "layout"); |
| } |
| if (sh::IsVarying(qualifier) || qualifier == EvqVertexIn || qualifier == EvqFragmentOut) |
| { |
| checkInputOutputTypeIsValidES3(qualifier, typeSpecifier, typeSpecifier.line); |
| } |
| if (qualifier == EvqComputeIn) |
| { |
| error(typeSpecifier.line, "'in' can be only used to specify the local group size", |
| "in"); |
| } |
| } |
| |
| return returnType; |
| } |
| |
| void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, |
| const TPublicType &type, |
| const TSourceLoc &qualifierLocation) |
| { |
| // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. |
| if (type.type == EbtBool) |
| { |
| error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); |
| } |
| |
| // Specific restrictions apply for vertex shader inputs and fragment shader outputs. |
| switch (qualifier) |
| { |
| case EvqVertexIn: |
| // ESSL 3.00 section 4.3.4 |
| if (type.array) |
| { |
| error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); |
| } |
| // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck |
| return; |
| case EvqFragmentOut: |
| // ESSL 3.00 section 4.3.6 |
| if (type.isMatrix()) |
| { |
| error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); |
| } |
| // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck |
| return; |
| default: |
| break; |
| } |
| |
| // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of |
| // restrictions. |
| bool typeContainsIntegers = |
| (type.type == EbtInt || type.type == EbtUInt || type.isStructureContainingType(EbtInt) || |
| type.isStructureContainingType(EbtUInt)); |
| if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) |
| { |
| error(qualifierLocation, "must use 'flat' interpolation here", |
| getQualifierString(qualifier)); |
| } |
| |
| if (type.type == EbtStruct) |
| { |
| // ESSL 3.00 sections 4.3.4 and 4.3.6. |
| // These restrictions are only implied by the ESSL 3.00 spec, but |
| // the ESSL 3.10 spec lists these restrictions explicitly. |
| if (type.array) |
| { |
| error(qualifierLocation, "cannot be an array of structures", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingArrays()) |
| { |
| error(qualifierLocation, "cannot be a structure containing an array", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingType(EbtStruct)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a structure", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingType(EbtBool)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a bool", |
| getQualifierString(qualifier)); |
| } |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType, |
| const TSourceLoc &identifierOrTypeLocation, |
| const TString &identifier) |
| { |
| TType type(publicType); |
| if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) && |
| mDirectiveHandler.pragma().stdgl.invariantAll) |
| { |
| TQualifier qualifier = type.getQualifier(); |
| |
| // The directive handler has already taken care of rejecting invalid uses of this pragma |
| // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all |
| // affected variable declarations: |
| // |
| // 1. Built-in special variables which are inputs to the fragment shader. (These are handled |
| // elsewhere, in TranslatorGLSL.) |
| // |
| // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It |
| // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but |
| // the way this is currently implemented we have to enable this compiler option before |
| // parsing the shader and determining the shading language version it uses. If this were |
| // implemented as a post-pass, the workaround could be more targeted. |
| // |
| // 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of |
| // the specification, but there are desktop OpenGL drivers that expect that this is the |
| // behavior of the #pragma when specified in ESSL 1.00 fragment shaders. |
| if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn) |
| { |
| type.setInvariant(true); |
| } |
| } |
| |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, type, identifierOrTypeLocation); |
| |
| bool emptyDeclaration = (identifier == ""); |
| |
| mDeferredSingleDeclarationErrorCheck = emptyDeclaration; |
| |
| if (emptyDeclaration) |
| { |
| if (publicType.isUnsizedArray()) |
| { |
| // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an |
| // error. It is assumed that this applies to empty declarations as well. |
| error(identifierOrTypeLocation, "empty array declaration needs to specify a size", |
| identifier.c_str()); |
| } |
| } |
| else |
| { |
| singleDeclarationErrorCheck(publicType, identifierOrTypeLocation); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &publicType); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierOrTypeLocation, identifier, type, &variable); |
| |
| if (variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| } |
| |
| return intermediate.makeAggregate(symbol, identifierOrTypeLocation); |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression) |
| { |
| mDeferredSingleDeclarationErrorCheck = false; |
| |
| singleDeclarationErrorCheck(publicType, identifierLocation); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, publicType); |
| |
| TType arrayType(publicType); |
| |
| unsigned int size = checkIsValidArraySize(identifierLocation, indexExpression); |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArraySize(size); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierLocation, identifier, arrayType, &variable); |
| |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); |
| if (variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| |
| return intermediate.makeAggregate(symbol, identifierLocation); |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredSingleDeclarationErrorCheck = false; |
| |
| singleDeclarationErrorCheck(publicType, identifierLocation); |
| |
| TIntermNode *intermNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) |
| { |
| // |
| // Build intermediate representation |
| // |
| return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr; |
| } |
| else |
| { |
| return nullptr; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration( |
| TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredSingleDeclarationErrorCheck = false; |
| |
| singleDeclarationErrorCheck(publicType, identifierLocation); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, publicType); |
| |
| TPublicType arrayType(publicType); |
| |
| unsigned int size = 0u; |
| // If indexExpression is nullptr, then the array will eventually get its size implicitly from |
| // the initializer. |
| if (indexExpression != nullptr) |
| { |
| size = checkIsValidArraySize(identifierLocation, indexExpression); |
| } |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArraySize(size); |
| |
| // initNode will correspond to the whole of "type b[n] = initializer". |
| TIntermNode *initNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr; |
| } |
| else |
| { |
| return nullptr; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc, |
| const TSourceLoc &identifierLoc, |
| const TString *identifier, |
| const TSymbol *symbol) |
| { |
| // invariant declaration |
| checkIsAtGlobalLevel(invariantLoc, "invariant varying"); |
| |
| if (!symbol) |
| { |
| error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); |
| return nullptr; |
| } |
| else |
| { |
| const TString kGlFrontFacing("gl_FrontFacing"); |
| if (*identifier == kGlFrontFacing) |
| { |
| error(identifierLoc, "identifier should not be declared as invariant", |
| identifier->c_str()); |
| return nullptr; |
| } |
| symbolTable.addInvariantVarying(std::string(identifier->c_str())); |
| const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); |
| ASSERT(variable); |
| const TType &type = variable->getType(); |
| TIntermSymbol *intermSymbol = |
| intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc); |
| |
| TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc); |
| aggregate->setOp(EOpInvariantDeclaration); |
| return aggregate; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, |
| TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredSingleDeclarationErrorCheck) |
| { |
| singleDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierLocation, identifier, TType(publicType), &variable); |
| |
| TIntermSymbol *symbol = |
| intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); |
| if (variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| |
| return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); |
| } |
| |
| TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, |
| TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &arrayLocation, |
| TIntermTyped *indexExpression) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredSingleDeclarationErrorCheck) |
| { |
| singleDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); |
| |
| if (checkIsValidTypeAndQualifierForArray(arrayLocation, publicType)) |
| { |
| TType arrayType = TType(publicType); |
| unsigned int size = checkIsValidArraySize(arrayLocation, indexExpression); |
| arrayType.setArraySize(size); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierLocation, identifier, arrayType, &variable); |
| |
| TIntermSymbol *symbol = |
| intermediate.addSymbol(0, identifier, arrayType, identifierLocation); |
| if (variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| |
| return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); |
| } |
| |
| return nullptr; |
| } |
| |
| TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, |
| TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredSingleDeclarationErrorCheck) |
| { |
| singleDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| TIntermNode *intermNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) |
| { |
| // |
| // build the intermediate representation |
| // |
| if (intermNode) |
| { |
| return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation); |
| } |
| else |
| { |
| return aggregateDeclaration; |
| } |
| } |
| else |
| { |
| return nullptr; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType, |
| TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredSingleDeclarationErrorCheck) |
| { |
| singleDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, publicType); |
| |
| TPublicType arrayType(publicType); |
| |
| unsigned int size = 0u; |
| // If indexExpression is nullptr, then the array will eventually get its size implicitly from |
| // the initializer. |
| if (indexExpression != nullptr) |
| { |
| size = checkIsValidArraySize(identifierLocation, indexExpression); |
| } |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArraySize(size); |
| |
| // initNode will correspond to the whole of "b[n] = initializer". |
| TIntermNode *initNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| if (initNode) |
| { |
| return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation); |
| } |
| else |
| { |
| return aggregateDeclaration; |
| } |
| } |
| else |
| { |
| return nullptr; |
| } |
| } |
| |
| void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier) |
| { |
| const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; |
| |
| // It should never be the case, but some strange parser errors can send us here. |
| if (layoutQualifier.isEmpty()) |
| { |
| error(typeQualifier.line, "Error during layout qualifier parsing.", "?"); |
| return; |
| } |
| |
| if (!layoutQualifier.isCombinationValid()) |
| { |
| error(typeQualifier.line, "invalid combination:", "layout"); |
| return; |
| } |
| |
| if (typeQualifier.qualifier == EvqComputeIn) |
| { |
| if (mComputeShaderLocalSizeDeclared && |
| !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize)) |
| { |
| error(typeQualifier.line, "Work group size does not match the previous declaration", |
| "layout"); |
| return; |
| } |
| |
| if (mShaderVersion < 310) |
| { |
| error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); |
| return; |
| } |
| |
| if (!layoutQualifier.isGroupSizeSpecified()) |
| { |
| error(typeQualifier.line, "No local work group size specified", "layout"); |
| return; |
| } |
| |
| const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>( |
| symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion)); |
| |
| const TConstantUnion *maxComputeWorkGroupSizeData = |
| maxComputeWorkGroupSize->getConstPointer(); |
| |
| for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i) |
| { |
| if (layoutQualifier.localSize[i] != -1) |
| { |
| mComputeShaderLocalSize[i] = layoutQualifier.localSize[i]; |
| const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst(); |
| if (mComputeShaderLocalSize[i] < 1 || |
| mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue) |
| { |
| std::stringstream errorMessageStream; |
| errorMessageStream << "Value must be at least 1 and no greater than " |
| << maxComputeWorkGroupSizeValue; |
| const std::string &errorMessage = errorMessageStream.str(); |
| |
| error(typeQualifier.line, "invalid value:", getLocalSizeString(i), |
| errorMessage.c_str()); |
| return; |
| } |
| } |
| } |
| |
| mComputeShaderLocalSizeDeclared = true; |
| } |
| else |
| { |
| |
| if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier)) |
| { |
| return; |
| } |
| |
| if (typeQualifier.qualifier != EvqUniform) |
| { |
| error(typeQualifier.line, "invalid qualifier:", |
| getQualifierString(typeQualifier.qualifier), "global layout must be uniform"); |
| return; |
| } |
| |
| if (mShaderVersion < 300) |
| { |
| error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above", |
| "layout"); |
| return; |
| } |
| |
| checkLocationIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier); |
| |
| if (layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| mDefaultMatrixPacking = layoutQualifier.matrixPacking; |
| } |
| |
| if (layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| mDefaultBlockStorage = layoutQualifier.blockStorage; |
| } |
| } |
| } |
| |
| TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, |
| const TSourceLoc &location) |
| { |
| // Note: symbolTableFunction could be the same as function if this is the first declaration. |
| // Either way the instance in the symbol table is used to track whether the function is declared |
| // multiple times. |
| TFunction *symbolTableFunction = |
| static_cast<TFunction *>(symbolTable.find(function.getMangledName(), getShaderVersion())); |
| if (symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100) |
| { |
| // ESSL 1.00.17 section 4.2.7. |
| // Doesn't apply to ESSL 3.00.4: see section 4.2.3. |
| error(location, "duplicate function prototype declarations are not allowed", "function"); |
| } |
| symbolTableFunction->setHasPrototypeDeclaration(); |
| |
| TIntermAggregate *prototype = new TIntermAggregate; |
| prototype->setType(function.getReturnType()); |
| prototype->setName(function.getMangledName()); |
| prototype->setFunctionId(function.getUniqueId()); |
| |
| for (size_t i = 0; i < function.getParamCount(); i++) |
| { |
| const TConstParameter ¶m = function.getParam(i); |
| if (param.name != 0) |
| { |
| TVariable variable(param.name, *param.type); |
| |
| TIntermSymbol *paramSymbol = intermediate.addSymbol( |
| variable.getUniqueId(), variable.getName(), variable.getType(), location); |
| prototype = intermediate.growAggregate(prototype, paramSymbol, location); |
| } |
| else |
| { |
| TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location); |
| prototype = intermediate.growAggregate(prototype, paramSymbol, location); |
| } |
| } |
| |
| prototype->setOp(EOpPrototype); |
| |
| symbolTable.pop(); |
| |
| if (!symbolTable.atGlobalLevel()) |
| { |
| // ESSL 3.00.4 section 4.2.4. |
| error(location, "local function prototype declarations are not allowed", "function"); |
| } |
| |
| return prototype; |
| } |
| |
| TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, |
| TIntermAggregate *functionPrototype, |
| TIntermAggregate *functionBody, |
| const TSourceLoc &location) |
| { |
| //?? Check that all paths return a value if return type != void ? |
| // May be best done as post process phase on intermediate code |
| if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) |
| { |
| error(location, "function does not return a value:", "", function.getName().c_str()); |
| } |
| |
| TIntermAggregate *aggregate = |
| intermediate.growAggregate(functionPrototype, functionBody, location); |
| intermediate.setAggregateOperator(aggregate, EOpFunction, location); |
| aggregate->setName(function.getMangledName().c_str()); |
| aggregate->setType(function.getReturnType()); |
| aggregate->setFunctionId(function.getUniqueId()); |
| |
| symbolTable.pop(); |
| return aggregate; |
| } |
| |
| void TParseContext::parseFunctionPrototype(const TSourceLoc &location, |
| TFunction *function, |
| TIntermAggregate **aggregateOut) |
| { |
| const TSymbol *builtIn = |
| symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion()); |
| |
| if (builtIn) |
| { |
| error(location, "built-in functions cannot be redefined", function->getName().c_str()); |
| } |
| |
| TFunction *prevDec = |
| static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion())); |
| // |
| // Note: 'prevDec' could be 'function' if this is the first time we've seen function |
| // as it would have just been put in the symbol table. Otherwise, we're looking up |
| // an earlier occurance. |
| // |
| if (prevDec->isDefined()) |
| { |
| // Then this function already has a body. |
| error(location, "function already has a body", function->getName().c_str()); |
| } |
| prevDec->setDefined(); |
| // |
| // Overload the unique ID of the definition to be the same unique ID as the declaration. |
| // Eventually we will probably want to have only a single definition and just swap the |
| // arguments to be the definition's arguments. |
| // |
| function->setUniqueId(prevDec->getUniqueId()); |
| |
| // Raise error message if main function takes any parameters or return anything other than void |
| if (function->getName() == "main") |
| { |
| if (function->getParamCount() > 0) |
| { |
| error(location, "function cannot take any parameter(s)", function->getName().c_str()); |
| } |
| if (function->getReturnType().getBasicType() != EbtVoid) |
| { |
| error(location, "", function->getReturnType().getBasicString(), |
| "main function cannot return a value"); |
| } |
| } |
| |
| // |
| // Remember the return type for later checking for RETURN statements. |
| // |
| mCurrentFunctionType = &(prevDec->getReturnType()); |
| mFunctionReturnsValue = false; |
| |
| // |
| // Insert parameters into the symbol table. |
| // If the parameter has no name, it's not an error, just don't insert it |
| // (could be used for unused args). |
| // |
| // Also, accumulate the list of parameters into the HIL, so lower level code |
| // knows where to find parameters. |
| // |
| TIntermAggregate *paramNodes = new TIntermAggregate; |
| for (size_t i = 0; i < function->getParamCount(); i++) |
| { |
| const TConstParameter ¶m = function->getParam(i); |
| if (param.name != 0) |
| { |
| TVariable *variable = new TVariable(param.name, *param.type); |
| // |
| // Insert the parameters with name in the symbol table. |
| // |
| if (!symbolTable.declare(variable)) |
| { |
| error(location, "redefinition", variable->getName().c_str()); |
| paramNodes = intermediate.growAggregate( |
| paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); |
| continue; |
| } |
| |
| // |
| // Add the parameter to the HIL |
| // |
| TIntermSymbol *symbol = intermediate.addSymbol( |
| variable->getUniqueId(), variable->getName(), variable->getType(), location); |
| |
| paramNodes = intermediate.growAggregate(paramNodes, symbol, location); |
| } |
| else |
| { |
| paramNodes = intermediate.growAggregate( |
| paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); |
| } |
| } |
| intermediate.setAggregateOperator(paramNodes, EOpParameters, location); |
| *aggregateOut = paramNodes; |
| setLoopNestingLevel(0); |
| } |
| |
| TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) |
| { |
| // |
| // We don't know at this point whether this is a function definition or a prototype. |
| // The definition production code will check for redefinitions. |
| // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. |
| // |
| // Return types and parameter qualifiers must match in all redeclarations, so those are checked |
| // here. |
| // |
| TFunction *prevDec = |
| static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion())); |
| |
| if (getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str())) |
| { |
| // With ESSL 3.00, names of built-in functions cannot be redeclared as functions. |
| // Therefore overloading or redefining builtin functions is an error. |
| error(location, "Name of a built-in function cannot be redeclared as function", |
| function->getName().c_str()); |
| } |
| else if (prevDec) |
| { |
| if (prevDec->getReturnType() != function->getReturnType()) |
| { |
| error(location, "overloaded functions must have the same return type", |
| function->getReturnType().getBasicString()); |
| } |
| for (size_t i = 0; i < prevDec->getParamCount(); ++i) |
| { |
| if (prevDec->getParam(i).type->getQualifier() != |
| function->getParam(i).type->getQualifier()) |
| { |
| error(location, "overloaded functions must have the same parameter qualifiers", |
| function->getParam(i).type->getQualifierString()); |
| } |
| } |
| } |
| |
| // |
| // Check for previously declared variables using the same name. |
| // |
| TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); |
| if (prevSym) |
| { |
| if (!prevSym->isFunction()) |
| { |
| error(location, "redefinition", function->getName().c_str(), "function"); |
| } |
| } |
| else |
| { |
| // Insert the unmangled name to detect potential future redefinition as a variable. |
| TFunction *newFunction = |
| new TFunction(NewPoolTString(function->getName().c_str()), &function->getReturnType()); |
| symbolTable.getOuterLevel()->insertUnmangled(newFunction); |
| } |
| |
| // We're at the inner scope level of the function's arguments and body statement. |
| // Add the function prototype to the surrounding scope instead. |
| symbolTable.getOuterLevel()->insert(function); |
| |
| // |
| // If this is a redeclaration, it could also be a definition, in which case, we want to use the |
| // variable names from this one, and not the one that's |
| // being redeclared. So, pass back up this declaration, not the one in the symbol table. |
| // |
| return function; |
| } |
| |
| TFunction *TParseContext::parseFunctionHeader(const TPublicType &type, |
| const TString *name, |
| const TSourceLoc &location) |
| { |
| if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary) |
| { |
| error(location, "no qualifiers allowed for function return", |
| getQualifierString(type.qualifier)); |
| } |
| if (!type.layoutQualifier.isEmpty()) |
| { |
| error(location, "no qualifiers allowed for function return", "layout"); |
| } |
| // make sure a sampler is not involved as well... |
| checkIsNotSampler(location, type, "samplers can't be function return values"); |
| if (mShaderVersion < 300) |
| { |
| // Array return values are forbidden, but there's also no valid syntax for declaring array |
| // return values in ESSL 1.00. |
| ASSERT(type.arraySize == 0 || mDiagnostics.numErrors() > 0); |
| |
| if (type.isStructureContainingArrays()) |
| { |
| // ESSL 1.00.17 section 6.1 Function Definitions |
| error(location, "structures containing arrays can't be function return values", |
| TType(type).getCompleteString().c_str()); |
| } |
| } |
| |
| // Add the function as a prototype after parsing it (we do not support recursion) |
| return new TFunction(name, new TType(type)); |
| } |
| |
| TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn) |
| { |
| TPublicType publicType = publicTypeIn; |
| if (publicType.isStructSpecifier) |
| { |
| error(publicType.line, "constructor can't be a structure definition", |
| getBasicString(publicType.type)); |
| } |
| |
| TOperator op = EOpNull; |
| if (publicType.userDef) |
| { |
| op = EOpConstructStruct; |
| } |
| else |
| { |
| op = sh::TypeToConstructorOperator(TType(publicType)); |
| if (op == EOpNull) |
| { |
| error(publicType.line, "cannot construct this type", getBasicString(publicType.type)); |
| publicType.type = EbtFloat; |
| op = EOpConstructFloat; |
| } |
| } |
| |
| TString tempString; |
| const TType *type = new TType(publicType); |
| return new TFunction(&tempString, type, op); |
| } |
| |
| // This function is used to test for the correctness of the parameters passed to various constructor |
| // functions and also convert them to the right datatype if it is allowed and required. |
| // |
| // Returns a node to add to the tree regardless of if an error was generated or not. |
| // |
| TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments, |
| TOperator op, |
| TFunction *fnCall, |
| const TSourceLoc &line) |
| { |
| TType type = fnCall->getReturnType(); |
| if (type.isUnsizedArray()) |
| { |
| type.setArraySize(static_cast<unsigned int>(fnCall->getParamCount())); |
| } |
| bool constType = true; |
| for (size_t i = 0; i < fnCall->getParamCount(); ++i) |
| { |
| const TConstParameter ¶m = fnCall->getParam(i); |
| if (param.type->getQualifier() != EvqConst) |
| constType = false; |
| } |
| if (constType) |
| type.setQualifier(EvqConst); |
| |
| if (!checkConstructorArguments(line, arguments, *fnCall, op, type)) |
| { |
| TIntermTyped *dummyNode = intermediate.setAggregateOperator(nullptr, op, line); |
| dummyNode->setType(type); |
| return dummyNode; |
| } |
| TIntermAggregate *constructor = arguments->getAsAggregate(); |
| ASSERT(constructor != nullptr); |
| |
| // Turn the argument list itself into a constructor |
| constructor->setOp(op); |
| constructor->setLine(line); |
| ASSERT(constructor->isConstructor()); |
| |
| // Need to set type before setPrecisionFromChildren() because bool doesn't have precision. |
| constructor->setType(type); |
| |
| // Structs should not be precision qualified, the individual members may be. |
| // Built-in types on the other hand should be precision qualified. |
| if (op != EOpConstructStruct) |
| { |
| constructor->setPrecisionFromChildren(); |
| type.setPrecision(constructor->getPrecision()); |
| } |
| |
| constructor->setType(type); |
| |
| TIntermTyped *constConstructor = intermediate.foldAggregateBuiltIn(constructor); |
| if (constConstructor) |
| { |
| return constConstructor; |
| } |
| |
| return constructor; |
| } |
| |
| // This function returns vector field(s) being accessed from a constant vector. |
| TIntermConstantUnion *TParseContext::foldVectorSwizzle(TVectorFields &fields, |
| TIntermConstantUnion *baseNode, |
| const TSourceLoc &location) |
| { |
| const TConstantUnion *unionArray = baseNode->getUnionArrayPointer(); |
| ASSERT(unionArray); |
| |
| TConstantUnion *constArray = new TConstantUnion[fields.num]; |
| const auto &type = baseNode->getType(); |
| |
| for (int i = 0; i < fields.num; i++) |
| { |
| // Out-of-range indices should already be checked. |
| ASSERT(fields.offsets[i] < type.getNominalSize()); |
| constArray[i] = unionArray[fields.offsets[i]]; |
| } |
| return intermediate.addConstantUnion(constArray, type, location); |
| } |
| |
| // This function returns the column vector being accessed from a constant matrix. |
| TIntermConstantUnion *TParseContext::foldMatrixSubscript(int index, |
| TIntermConstantUnion *baseNode, |
| const TSourceLoc &location) |
| { |
| ASSERT(index < baseNode->getType().getCols()); |
| |
| const TConstantUnion *unionArray = baseNode->getUnionArrayPointer(); |
| int size = baseNode->getType().getRows(); |
| return intermediate.addConstantUnion(&unionArray[size * index], baseNode->getType(), location); |
| } |
| |
| // This function returns an element of an array accessed from a constant array. |
| TIntermConstantUnion *TParseContext::foldArraySubscript(int index, |
| TIntermConstantUnion *baseNode, |
| const TSourceLoc &location) |
| { |
| ASSERT(index < static_cast<int>(baseNode->getArraySize())); |
| |
| TType arrayElementType = baseNode->getType(); |
| arrayElementType.clearArrayness(); |
| size_t arrayElementSize = arrayElementType.getObjectSize(); |
| const TConstantUnion *unionArray = baseNode->getUnionArrayPointer(); |
| return intermediate.addConstantUnion(&unionArray[arrayElementSize * index], baseNode->getType(), |
| location); |
| } |
| |
| // |
| // This function returns the value of a particular field inside a constant structure from the symbol |
| // table. |
| // If there is an embedded/nested struct, it appropriately calls addConstStructNested or |
| // addConstStructFromAggr function and returns the parse-tree with the values of the embedded/nested |
| // struct. |
| // |
| TIntermTyped *TParseContext::addConstStruct(const TString &identifier, |
| TIntermTyped *node, |
| const TSourceLoc &line) |
| { |
| const TFieldList &fields = node->getType().getStruct()->fields(); |
| size_t instanceSize = 0; |
| |
| for (size_t index = 0; index < fields.size(); ++index) |
| { |
| if (fields[index]->name() == identifier) |
| { |
| break; |
| } |
| else |
| { |
| instanceSize += fields[index]->type()->getObjectSize(); |
| } |
| } |
| |
| TIntermTyped *typedNode; |
| TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); |
| if (tempConstantNode) |
| { |
| const TConstantUnion *constArray = tempConstantNode->getUnionArrayPointer(); |
| |
| // type will be changed in the calling function |
| typedNode = intermediate.addConstantUnion(constArray + instanceSize, |
| tempConstantNode->getType(), line); |
| } |
| else |
| { |
| error(line, "Cannot offset into the structure", "Error"); |
| return nullptr; |
| } |
| |
| return typedNode; |
| } |
| |
| // |
| // Interface/uniform blocks |
| // |
| TIntermAggregate *TParseContext::addInterfaceBlock(const TPublicType &typeQualifier, |
| const TSourceLoc &nameLine, |
| const TString &blockName, |
| TFieldList *fieldList, |
| const TString *instanceName, |
| const TSourceLoc &instanceLine, |
| TIntermTyped *arrayIndex, |
| const TSourceLoc &arrayIndexLine) |
| { |
| checkIsNotReserved(nameLine, blockName); |
| |
| if (typeQualifier.qualifier != EvqUniform) |
| { |
| error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), |
| "interface blocks must be uniform"); |
| } |
| |
| TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; |
| checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier); |
| |
| if (blockLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking; |
| } |
| |
| if (blockLayoutQualifier.blockStorage == EbsUnspecified) |
| { |
| blockLayoutQualifier.blockStorage = mDefaultBlockStorage; |
| } |
| |
| checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier); |
| |
| TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName); |
| if (!symbolTable.declare(blockNameSymbol)) |
| { |
| error(nameLine, "redefinition", blockName.c_str(), "interface block name"); |
| } |
| |
| // check for sampler types and apply layout qualifiers |
| for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) |
| { |
| TField *field = (*fieldList)[memberIndex]; |
| TType *fieldType = field->type(); |
| if (IsSampler(fieldType->getBasicType())) |
| { |
| error(field->line(), "unsupported type", fieldType->getBasicString(), |
| "sampler types are not allowed in interface blocks"); |
| } |
| |
| const TQualifier qualifier = fieldType->getQualifier(); |
| switch (qualifier) |
| { |
| case EvqGlobal: |
| case EvqUniform: |
| break; |
| default: |
| error(field->line(), "invalid qualifier on interface block member", |
| getQualifierString(qualifier)); |
| break; |
| } |
| |
| // check layout qualifiers |
| TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); |
| checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier); |
| |
| if (fieldLayoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(field->line(), "invalid layout qualifier:", |
| getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here"); |
| } |
| |
| if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; |
| } |
| else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) |
| { |
| warning(field->line(), "extraneous layout qualifier:", |
| getMatrixPackingString(fieldLayoutQualifier.matrixPacking), |
| "only has an effect on matrix types"); |
| } |
| |
| fieldType->setLayoutQualifier(fieldLayoutQualifier); |
| } |
| |
| // add array index |
| unsigned int arraySize = 0; |
| if (arrayIndex != nullptr) |
| { |
| arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex); |
| } |
| |
| TInterfaceBlock *interfaceBlock = |
| new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); |
| TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, |
| arraySize); |
| |
| TString symbolName = ""; |
| int symbolId = 0; |
| |
| if (!instanceName) |
| { |
| // define symbols for the members of the interface block |
| for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) |
| { |
| TField *field = (*fieldList)[memberIndex]; |
| TType *fieldType = field->type(); |
| |
| // set parent pointer of the field variable |
| fieldType->setInterfaceBlock(interfaceBlock); |
| |
| TVariable *fieldVariable = new TVariable(&field->name(), *fieldType); |
| fieldVariable->setQualifier(typeQualifier.qualifier); |
| |
| if (!symbolTable.declare(fieldVariable)) |
| { |
| error(field->line(), "redefinition", field->name().c_str(), |
| "interface block member name"); |
| } |
| } |
| } |
| else |
| { |
| checkIsNotReserved(instanceLine, *instanceName); |
| |
| // add a symbol for this interface block |
| TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); |
| instanceTypeDef->setQualifier(typeQualifier.qualifier); |
| |
| if (!symbolTable.declare(instanceTypeDef)) |
| { |
| error(instanceLine, "redefinition", instanceName->c_str(), |
| "interface block instance name"); |
| } |
| |
| symbolId = instanceTypeDef->getUniqueId(); |
| symbolName = instanceTypeDef->getName(); |
| } |
| |
| TIntermAggregate *aggregate = intermediate.makeAggregate( |
| intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), |
| nameLine); |
| aggregate->setOp(EOpDeclaration); |
| |
| exitStructDeclaration(); |
| return aggregate; |
| } |
| |
| void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier) |
| { |
| ++mStructNestingLevel; |
| |
| // Embedded structure definitions are not supported per GLSL ES spec. |
| // They aren't allowed in GLSL either, but we need to detect this here |
| // so we don't rely on the GLSL compiler to catch it. |
| if (mStructNestingLevel > 1) |
| { |
| error(line, "", "Embedded struct definitions are not allowed"); |
| } |
| } |
| |
| void TParseContext::exitStructDeclaration() |
| { |
| --mStructNestingLevel; |
| } |
| |
| namespace |
| { |
| const int kWebGLMaxStructNesting = 4; |
| |
| } // namespace |
| |
| void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field) |
| { |
| if (!IsWebGLBasedSpec(mShaderSpec)) |
| { |
| return; |
| } |
| |
| if (field.type()->getBasicType() != EbtStruct) |
| { |
| return; |
| } |
| |
| // We're already inside a structure definition at this point, so add |
| // one to the field's struct nesting. |
| if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() |
| << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), field.name().c_str(), ""); |
| return; |
| } |
| } |
| |
| // |
| // Parse an array index expression |
| // |
| TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, |
| const TSourceLoc &location, |
| TIntermTyped *indexExpression) |
| { |
| TIntermTyped *indexedExpression = NULL; |
| |
| if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) |
| { |
| if (baseExpression->getAsSymbolNode()) |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", |
| baseExpression->getAsSymbolNode()->getSymbol().c_str()); |
| } |
| else |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); |
| } |
| } |
| |
| TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); |
| |
| // TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able |
| // to constant fold all constant expressions. Right now we don't allow indexing interface blocks |
| // or fragment outputs with expressions that ANGLE is not able to constant fold, even if the |
| // index is a constant expression. |
| if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr) |
| { |
| if (baseExpression->isInterfaceBlock()) |
| { |
| error( |
| location, "", "[", |
| "array indexes for interface blocks arrays must be constant integral expressions"); |
| } |
| else if (baseExpression->getQualifier() == EvqFragmentOut) |
| { |
| error(location, "", "[", |
| "array indexes for fragment outputs must be constant integral expressions"); |
| } |
| else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData) |
| { |
| error(location, "", "[", "array index for gl_FragData must be constant zero"); |
| } |
| } |
| |
| if (indexConstantUnion) |
| { |
| // If the index is not qualified as constant, the behavior in the spec is undefined. This |
| // applies even if ANGLE has been able to constant fold it (ANGLE may constant fold |
| // expressions that are not constant expressions). The most compatible way to handle this |
| // case is to report a warning instead of an error and force the index to be in the |
| // correct range. |
| bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst; |
| int index = indexConstantUnion->getIConst(0); |
| if (!baseExpression->isArray()) |
| { |
| // Array checks are done later because a different error message might be generated |
| // based on the index in some cases. |
| if (baseExpression->isVector()) |
| { |
| index = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, |
| baseExpression->getType().getNominalSize(), |
| "vector field selection out of range", "[]"); |
| } |
| else if (baseExpression->isMatrix()) |
| { |
| index = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, |
| baseExpression->getType().getCols(), |
| "matrix field selection out of range", "[]"); |
| } |
| } |
| |
| TIntermConstantUnion *baseConstantUnion = baseExpression->getAsConstantUnion(); |
| if (baseConstantUnion) |
| { |
| if (baseExpression->isArray()) |
| { |
| index = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, |
| baseExpression->getArraySize(), |
| "array index out of range", "[]"); |
| // Constant folding for array indexing. |
| indexedExpression = foldArraySubscript(index, baseConstantUnion, location); |
| } |
| else if (baseExpression->isVector()) |
| { |
| // Constant folding for vector indexing - reusing vector swizzle folding. |
| TVectorFields fields; |
| fields.num = 1; |
| fields.offsets[0] = index; |
| indexedExpression = foldVectorSwizzle(fields, baseConstantUnion, location); |
| } |
| else if (baseExpression->isMatrix()) |
| { |
| // Constant folding for matrix indexing. |
| indexedExpression = foldMatrixSubscript(index, baseConstantUnion, location); |
| } |
| } |
| else |
| { |
| int safeIndex = -1; |
| |
| if (baseExpression->isArray()) |
| { |
| if (baseExpression->getQualifier() == EvqFragData && index > 0) |
| { |
| if (mShaderSpec == SH_WEBGL2_SPEC) |
| { |
| // Error has been already generated if index is not const. |
| if (indexExpression->getQualifier() == EvqConst) |
| { |
| error(location, "", "[", |
| "array index for gl_FragData must be constant zero"); |
| } |
| safeIndex = 0; |
| } |
| else if (!isExtensionEnabled("GL_EXT_draw_buffers")) |
| { |
| outOfRangeError(outOfRangeIndexIsError, location, "", "[", |
| "array index for gl_FragData must be zero when " |
| "GL_EXT_draw_buffers is disabled"); |
| safeIndex = 0; |
| } |
| } |
| // Only do generic out-of-range check if similar error hasn't already been reported. |
| if (safeIndex < 0) |
| { |
| safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, |
| baseExpression->getArraySize(), |
| "array index out of range", "[]"); |
| } |
| } |
| |
| // Data of constant unions can't be changed, because it may be shared with other |
| // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new |
| // sanitized object. |
| if (safeIndex != -1) |
| { |
| TConstantUnion *safeConstantUnion = new TConstantUnion(); |
| safeConstantUnion->setIConst(safeIndex); |
| indexConstantUnion->replaceConstantUnion(safeConstantUnion); |
| } |
| |
| indexedExpression = |
| intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location); |
| } |
| } |
| else |
| { |
| indexedExpression = |
| intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location); |
| } |
| |
| if (indexedExpression == 0) |
| { |
| TConstantUnion *unionArray = new TConstantUnion[1]; |
| unionArray->setFConst(0.0f); |
| indexedExpression = |
| intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location); |
| } |
| else if (baseExpression->isArray()) |
| { |
| TType indexedType = baseExpression->getType(); |
| indexedType.clearArrayness(); |
| indexedExpression->setType(indexedType); |
| } |
| else if (baseExpression->isMatrix()) |
| { |
| indexedExpression->setType(TType(baseExpression->getBasicType(), |
| baseExpression->getPrecision(), EvqTemporary, |
| static_cast<unsigned char>(baseExpression->getRows()))); |
| } |
| else if (baseExpression->isVector()) |
| { |
| indexedExpression->setType( |
| TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary)); |
| } |
| else |
| { |
| indexedExpression->setType(baseExpression->getType()); |
| } |
| |
| if (baseExpression->getType().getQualifier() == EvqConst && |
| indexExpression->getType().getQualifier() == EvqConst) |
| { |
| indexedExpression->getTypePointer()->setQualifier(EvqConst); |
| } |
| else |
| { |
| indexedExpression->getTypePointer()->setQualifier(EvqTemporary); |
| } |
| |
| return indexedExpression; |
| } |
| |
| int TParseContext::checkIndexOutOfRange(bool outOfRangeIndexIsError, |
| const TSourceLoc &location, |
| int index, |
| int arraySize, |
| const char *reason, |
| const char *token) |
| { |
| if (index >= arraySize || index < 0) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "'" << index << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| outOfRangeError(outOfRangeIndexIsError, location, reason, token, extraInfo.c_str()); |
| if (index < 0) |
| { |
| return 0; |
| } |
| else |
| { |
| return arraySize - 1; |
| } |
| } |
| return index; |
| } |
| |
| TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, |
| const TSourceLoc &dotLocation, |
| const TString &fieldString, |
| const TSourceLoc &fieldLocation) |
| { |
| TIntermTyped *indexedExpression = NULL; |
| |
| if (baseExpression->isArray()) |
| { |
| error(fieldLocation, "cannot apply dot operator to an array", "."); |
| } |
| |
| if (baseExpression->isVector()) |
| { |
| TVectorFields fields; |
| if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, |
| fieldLocation)) |
| { |
| fields.num = 1; |
| fields.offsets[0] = 0; |
| } |
| |
| if (baseExpression->getAsConstantUnion()) |
| { |
| // constant folding for vector fields |
| indexedExpression = |
| foldVectorSwizzle(fields, baseExpression->getAsConstantUnion(), fieldLocation); |
| } |
| else |
| { |
| TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation); |
| indexedExpression = |
| intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation); |
| } |
| if (indexedExpression == nullptr) |
| { |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| // Note that the qualifier set here will be corrected later. |
| indexedExpression->setType(TType(baseExpression->getBasicType(), |
| baseExpression->getPrecision(), EvqTemporary, |
| static_cast<unsigned char>(fields.num))); |
| } |
| } |
| else if (baseExpression->getBasicType() == EbtStruct) |
| { |
| bool fieldFound = false; |
| const TFieldList &fields = baseExpression->getType().getStruct()->fields(); |
| if (fields.empty()) |
| { |
| error(dotLocation, "structure has no fields", "Internal Error"); |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| unsigned int i; |
| for (i = 0; i < fields.size(); ++i) |
| { |
| if (fields[i]->name() == fieldString) |
| { |
| fieldFound = true; |
| break; |
| } |
| } |
| if (fieldFound) |
| { |
| if (baseExpression->getAsConstantUnion()) |
| { |
| indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation); |
| if (indexedExpression == 0) |
| { |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| indexedExpression->setType(*fields[i]->type()); |
| } |
| } |
| else |
| { |
| TConstantUnion *unionArray = new TConstantUnion[1]; |
| unionArray->setIConst(i); |
| TIntermTyped *index = intermediate.addConstantUnion( |
| unionArray, *fields[i]->type(), fieldLocation); |
| indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, |
| index, dotLocation); |
| indexedExpression->setType(*fields[i]->type()); |
| } |
| } |
| else |
| { |
| error(dotLocation, " no such field in structure", fieldString.c_str()); |
| indexedExpression = baseExpression; |
| } |
| } |
| } |
| else if (baseExpression->isInterfaceBlock()) |
| { |
| bool fieldFound = false; |
| const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); |
| if (fields.empty()) |
| { |
| error(dotLocation, "interface block has no fields", "Internal Error"); |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| unsigned int i; |
| for (i = 0; i < fields.size(); ++i) |
| { |
| if (fields[i]->name() == fieldString) |
| { |
| fieldFound = true; |
| break; |
| } |
| } |
| if (fieldFound) |
| { |
| TConstantUnion *unionArray = new TConstantUnion[1]; |
| unionArray->setIConst(i); |
| TIntermTyped *index = |
| intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation); |
| indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, |
| baseExpression, index, dotLocation); |
| indexedExpression->setType(*fields[i]->type()); |
| } |
| else |
| { |
| error(dotLocation, " no such field in interface block", fieldString.c_str()); |
| indexedExpression = baseExpression; |
| } |
| } |
| } |
| else |
| { |
| if (mShaderVersion < 300) |
| { |
| error(dotLocation, " field selection requires structure or vector on left hand side", |
| fieldString.c_str()); |
| } |
| else |
| { |
| error(dotLocation, |
| " field selection requires structure, vector, or interface block on left hand " |
| "side", |
| fieldString.c_str()); |
| } |
| indexedExpression = baseExpression; |
| } |
| |
| if (baseExpression->getQualifier() == EvqConst) |
| { |
| indexedExpression->getTypePointer()->setQualifier(EvqConst); |
| } |
| else |
| { |
| indexedExpression->getTypePointer()->setQualifier(EvqTemporary); |
| } |
| |
| return indexedExpression; |
| } |
| |
| TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, |
| const TSourceLoc &qualifierTypeLine) |
| { |
| TLayoutQualifier qualifier = TLayoutQualifier::create(); |
| |
| if (qualifierType == "shared") |
| { |
| qualifier.blockStorage = EbsShared; |
| } |
| else if (qualifierType == "packed") |
| { |
| qualifier.blockStorage = EbsPacked; |
| } |
| else if (qualifierType == "std140") |
| { |
| qualifier.blockStorage = EbsStd140; |
| } |
| else if (qualifierType == "row_major") |
| { |
| qualifier.matrixPacking = EmpRowMajor; |
| } |
| else if (qualifierType == "column_major") |
| { |
| qualifier.matrixPacking = EmpColumnMajor; |
| } |
| else if (qualifierType == "location") |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), |
| "location requires an argument"); |
| } |
| else |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); |
| } |
| |
| return qualifier; |
| } |
| |
| void TParseContext::parseLocalSize(const TString &qualifierType, |
| const TSourceLoc &qualifierTypeLine, |
| int intValue, |
| const TSourceLoc &intValueLine, |
| const std::string &intValueString, |
| size_t index, |
| TLocalSize *localSize) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| if (intValue < 1) |
| { |
| std::string errorMessage = std::string(getLocalSizeString(index)) + " must be positive"; |
| error(intValueLine, "out of range:", intValueString.c_str(), errorMessage.c_str()); |
| } |
| (*localSize)[index] = intValue; |
| } |
| |
| TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, |
| const TSourceLoc &qualifierTypeLine, |
| int intValue, |
| const TSourceLoc &intValueLine) |
| { |
| TLayoutQualifier qualifier = TLayoutQualifier::create(); |
| |
| std::string intValueString = Str(intValue); |
| |
| if (qualifierType == "location") |
| { |
| // must check that location is non-negative |
| if (intValue < 0) |
| { |
| error(intValueLine, "out of range:", intValueString.c_str(), |
| "location must be non-negative"); |
| } |
| else |
| { |
| qualifier.location = intValue; |
| } |
| } |
| else if (qualifierType == "local_size_x") |
| { |
| parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u, |
| &qualifier.localSize); |
| } |
| else if (qualifierType == "local_size_y") |
| { |
| parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u, |
| &qualifier.localSize); |
| } |
| else if (qualifierType == "local_size_z") |
| { |
| parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u, |
| &qualifier.localSize); |
| } |
| else |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); |
| } |
| |
| return qualifier; |
| } |
| |
| TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, |
| TLayoutQualifier rightQualifier, |
| const TSourceLoc &rightQualifierLocation) |
| { |
| TLayoutQualifier joinedQualifier = leftQualifier; |
| |
| if (rightQualifier.location != -1) |
| { |
| joinedQualifier.location = rightQualifier.location; |
| } |
| if (rightQualifier.matrixPacking != EmpUnspecified) |
| { |
| joinedQualifier.matrixPacking = rightQualifier.matrixPacking; |
| } |
| if (rightQualifier.blockStorage != EbsUnspecified) |
| { |
| joinedQualifier.blockStorage = rightQualifier.blockStorage; |
| } |
| |
| for (size_t i = 0u; i < rightQualifier.localSize.size(); ++i) |
| { |
| if (rightQualifier.localSize[i] != -1) |
| { |
| if (joinedQualifier.localSize[i] != -1 && |
| joinedQualifier.localSize[i] != rightQualifier.localSize[i]) |
| { |
| error(rightQualifierLocation, |
| "Cannot have multiple different work group size specifiers", |
| getLocalSizeString(i)); |
| } |
| joinedQualifier.localSize[i] = rightQualifier.localSize[i]; |
| } |
| } |
| |
| return joinedQualifier; |
| } |
| |
| TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, |
| TQualifier interpolationQualifier, |
| const TSourceLoc &storageLoc, |
| TQualifier storageQualifier) |
| { |
| TQualifier mergedQualifier = EvqSmoothIn; |
| |
| if (storageQualifier == EvqFragmentIn) |
| { |
| if (interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqSmoothIn; |
| else if (interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatIn; |
| else |
| UNREACHABLE(); |
| } |
| else if (storageQualifier == EvqCentroidIn) |
| { |
| if (interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqCentroidIn; |
| else if (interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatIn; |
| else |
| UNREACHABLE(); |
| } |
| else if (storageQualifier == EvqVertexOut) |
| { |
| if (interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqSmoothOut; |
| else if (interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatOut; |
| else |
| UNREACHABLE(); |
| } |
| else if (storageQualifier == EvqCentroidOut) |
| { |
| if (interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqCentroidOut; |
| else if (interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatOut; |
| else |
| UNREACHABLE(); |
| } |
| else |
| { |
| error(interpolationLoc, |
| "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", |
| getInterpolationString(interpolationQualifier)); |
| |
| mergedQualifier = storageQualifier; |
| } |
| |
| TPublicType type; |
| type.setBasic(EbtVoid, mergedQualifier, storageLoc); |
| return type; |
| } |
| |
| TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, |
| TFieldList *fieldList) |
| { |
| checkIsNonVoid(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type); |
| |
| checkWorkGroupSizeIsNotSpecified(typeSpecifier.line, typeSpecifier.layoutQualifier); |
| |
| for (unsigned int i = 0; i < fieldList->size(); ++i) |
| { |
| // |
| // Careful not to replace already known aspects of type, like array-ness |
| // |
| TType *type = (*fieldList)[i]->type(); |
| type->setBasicType(typeSpecifier.type); |
| type->setPrimarySize(typeSpecifier.primarySize); |
| type->setSecondarySize(typeSpecifier.secondarySize); |
| type->setPrecision(typeSpecifier.precision); |
| type->setQualifier(typeSpecifier.qualifier); |
| type->setLayoutQualifier(typeSpecifier.layoutQualifier); |
| |
| // don't allow arrays of arrays |
| if (type->isArray()) |
| { |
| checkIsValidTypeForArray(typeSpecifier.line, typeSpecifier); |
| } |
| if (typeSpecifier.array) |
| type->setArraySize(static_cast<unsigned int>(typeSpecifier.arraySize)); |
| if (typeSpecifier.userDef) |
| { |
| type->setStruct(typeSpecifier.userDef->getStruct()); |
| } |
| |
| checkIsBelowStructNestingLimit(typeSpecifier.line, *(*fieldList)[i]); |
| } |
| |
| return fieldList; |
| } |
| |
| TPublicType TParseContext::addStructure(const TSourceLoc &structLine, |
| const TSourceLoc &nameLine, |
| const TString *structName, |
| TFieldList *fieldList) |
| { |
| TStructure *structure = new TStructure(structName, fieldList); |
| TType *structureType = new TType(structure); |
| |
| // Store a bool in the struct if we're at global scope, to allow us to |
| // skip the local struct scoping workaround in HLSL. |
| structure->setUniqueId(TSymbolTable::nextUniqueId()); |
| structure->setAtGlobalScope(symbolTable.atGlobalLevel()); |
| |
| if (!structName->empty()) |
| { |
| checkIsNotReserved(nameLine, *structName); |
| TVariable *userTypeDef = new TVariable(structName, *structureType, true); |
| if (!symbolTable.declare(userTypeDef)) |
| { |
| error(nameLine, "redefinition", structName->c_str(), "struct"); |
| } |
| } |
| |
| // ensure we do not specify any storage qualifiers on the struct members |
| for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) |
| { |
| const TField &field = *(*fieldList)[typeListIndex]; |
| const TQualifier qualifier = field.type()->getQualifier(); |
| switch (qualifier) |
| { |
| case EvqGlobal: |
| case EvqTemporary: |
| break; |
| default: |
| error(field.line(), "invalid qualifier on struct member", |
| getQualifierString(qualifier)); |
| break; |
| } |
| } |
| |
| TPublicType publicType; |
| publicType.setBasic(EbtStruct, EvqTemporary, structLine); |
| publicType.userDef = structureType; |
| publicType.isStructSpecifier = true; |
| exitStructDeclaration(); |
| |
| return publicType; |
| } |
| |
| TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, |
| TIntermAggregate *statementList, |
| const TSourceLoc &loc) |
| { |
| TBasicType switchType = init->getBasicType(); |
| if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || |
| init->isVector()) |
| { |
| error(init->getLine(), "init-expression in a switch statement must be a scalar integer", |
| "switch"); |
| return nullptr; |
| } |
| |
| if (statementList) |
| { |
| if (!ValidateSwitch::validate(switchType, this, statementList, loc)) |
| { |
| return nullptr; |
| } |
| } |
| |
| TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc); |
| if (node == nullptr) |
| { |
| error(loc, "erroneous switch statement", "switch"); |
| return nullptr; |
| } |
| return node; |
| } |
| |
| TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) |
| { |
| if (mSwitchNestingLevel == 0) |
| { |
| error(loc, "case labels need to be inside switch statements", "case"); |
| return nullptr; |
| } |
| if (condition == nullptr) |
| { |
| error(loc, "case label must have a condition", "case"); |
| return nullptr; |
| } |
| if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || |
| condition->isMatrix() || condition->isArray() || condition->isVector()) |
| { |
| error(condition->getLine(), "case label must be a scalar integer", "case"); |
| } |
| TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); |
| // TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant |
| // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't |
| // fold in case labels. |
| if (condition->getQualifier() != EvqConst || conditionConst == nullptr) |
| { |
| error(condition->getLine(), "case label must be constant", "case"); |
| } |
| TIntermCase *node = intermediate.addCase(condition, loc); |
| if (node == nullptr) |
| { |
| error(loc, "erroneous case statement", "case"); |
| return nullptr; |
| } |
| return node; |
| } |
| |
| TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) |
| { |
| if (mSwitchNestingLevel == 0) |
| { |
| error(loc, "default labels need to be inside switch statements", "default"); |
| return nullptr; |
| } |
| TIntermCase *node = intermediate.addCase(nullptr, loc); |
| if (node == nullptr) |
| { |
| error(loc, "erroneous default statement", "default"); |
| return nullptr; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::createUnaryMath(TOperator op, |
| TIntermTyped *child, |
| const TSourceLoc &loc, |
| const TType *funcReturnType) |
| { |
| if (child == nullptr) |
| { |
| return nullptr; |
| } |
| |
| switch (op) |
| { |
| case EOpLogicalNot: |
| if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || |
| child->isVector()) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpBitwiseNot: |
| if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || |
| child->isMatrix() || child->isArray()) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpPostIncrement: |
| case EOpPreIncrement: |
| case EOpPostDecrement: |
| case EOpPreDecrement: |
| case EOpNegative: |
| case EOpPositive: |
| if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool || |
| child->isArray()) |
| { |
| return nullptr; |
| } |
| // Operators for built-ins are already type checked against their prototype. |
| default: |
| break; |
| } |
| |
| return intermediate.addUnaryMath(op, child, loc, funcReturnType); |
| } |
| |
| TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) |
| { |
| TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); |
| if (node == nullptr) |
| { |
| unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); |
| return child; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, |
| TIntermTyped *child, |
| const TSourceLoc &loc) |
| { |
| checkCanBeLValue(loc, GetOperatorString(op), child); |
| return addUnaryMath(op, child, loc); |
| } |
| |
| bool TParseContext::binaryOpCommonCheck(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| if (left->getType().getStruct() || right->getType().getStruct()) |
| { |
| switch (op) |
| { |
| case EOpIndexDirectStruct: |
| ASSERT(left->getType().getStruct()); |
| break; |
| case EOpEqual: |
| case EOpNotEqual: |
| case EOpAssign: |
| case EOpInitialize: |
| if (left->getType() != right->getType()) |
| { |
| return false; |
| } |
| break; |
| default: |
| error(loc, "Invalid operation for structs", GetOperatorString(op)); |
| return false; |
| } |
| } |
| |
| if (left->isArray() || right->isArray()) |
| { |
| if (mShaderVersion < 300) |
| { |
| error(loc, "Invalid operation for arrays", GetOperatorString(op)); |
| return false; |
| } |
| |
| if (left->isArray() != right->isArray()) |
| { |
| error(loc, "array / non-array mismatch", GetOperatorString(op)); |
| return false; |
| } |
| |
| switch (op) |
| { |
| case EOpEqual: |
| case EOpNotEqual: |
| case EOpAssign: |
| case EOpInitialize: |
| break; |
| default: |
| error(loc, "Invalid operation for arrays", GetOperatorString(op)); |
| return false; |
| } |
| // At this point, size of implicitly sized arrays should be resolved. |
| if (left->getArraySize() != right->getArraySize()) |
| { |
| error(loc, "array size mismatch", GetOperatorString(op)); |
| return false; |
| } |
| } |
| |
| // Check ops which require integer / ivec parameters |
| bool isBitShift = false; |
| switch (op) |
| { |
| case EOpBitShiftLeft: |
| case EOpBitShiftRight: |
| case EOpBitShiftLeftAssign: |
| case EOpBitShiftRightAssign: |
| // Unsigned can be bit-shifted by signed and vice versa, but we need to |
| // check that the basic type is an integer type. |
| isBitShift = true; |
| if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) |
| { |
| return false; |
| } |
| break; |
| case EOpBitwiseAnd: |
| case EOpBitwiseXor: |
| case EOpBitwiseOr: |
| case EOpBitwiseAndAssign: |
| case EOpBitwiseXorAssign: |
| case EOpBitwiseOrAssign: |
| // It is enough to check the type of only one operand, since later it |
| // is checked that the operand types match. |
| if (!IsInteger(left->getBasicType())) |
| { |
| return false; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| // GLSL ES 1.00 and 3.00 do not support implicit type casting. |
| // So the basic type should usually match. |
| if (!isBitShift && left->getBasicType() != right->getBasicType()) |
| { |
| return false; |
| } |
| |
| // Check that type sizes match exactly on ops that require that. |
| // Also check restrictions for structs that contain arrays or samplers. |
| switch (op) |
| { |
| case EOpAssign: |
| case EOpInitialize: |
| case EOpEqual: |
| case EOpNotEqual: |
| // ESSL 1.00 sections 5.7, 5.8, 5.9 |
| if (mShaderVersion < 300 && left->getType().isStructureContainingArrays()) |
| { |
| error(loc, "undefined operation for structs containing arrays", |
| GetOperatorString(op)); |
| return false; |
| } |
| // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, |
| // we interpret the spec so that this extends to structs containing samplers, |
| // similarly to ESSL 1.00 spec. |
| if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && |
| left->getType().isStructureContainingSamplers()) |
| { |
| error(loc, "undefined operation for structs containing samplers", |
| GetOperatorString(op)); |
| return false; |
| } |
| case EOpLessThan: |
| case EOpGreaterThan: |
| case EOpLessThanEqual: |
| case EOpGreaterThanEqual: |
| if ((left->getNominalSize() != right->getNominalSize()) || |
| (left->getSecondarySize() != right->getSecondarySize())) |
| { |
| return false; |
| } |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| if (!binaryOpCommonCheck(op, left, right, loc)) |
| return nullptr; |
| |
| switch (op) |
| { |
| case EOpEqual: |
| case EOpNotEqual: |
| break; |
| case EOpLessThan: |
| case EOpGreaterThan: |
| case EOpLessThanEqual: |
| case EOpGreaterThanEqual: |
| ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && |
| !right->getType().getStruct()); |
| if (left->isMatrix() || left->isVector()) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpLogicalOr: |
| case EOpLogicalXor: |
| case EOpLogicalAnd: |
| ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && |
| !right->getType().getStruct()); |
| if (left->getBasicType() != EbtBool || left->isMatrix() || left->isVector()) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpAdd: |
| case EOpSub: |
| case EOpDiv: |
| case EOpMul: |
| ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && |
| !right->getType().getStruct()); |
| if (left->getBasicType() == EbtBool) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpIMod: |
| ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && |
| !right->getType().getStruct()); |
| // Note that this is only for the % operator, not for mod() |
| if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) |
| { |
| return nullptr; |
| } |
| break; |
| // Note that for bitwise ops, type checking is done in promote() to |
| // share code between ops and compound assignment |
| default: |
| break; |
| } |
| |
| return intermediate.addBinaryMath(op, left, right, loc); |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMath(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); |
| if (node == 0) |
| { |
| binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), |
| right->getCompleteString()); |
| return left; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); |
| if (node == 0) |
| { |
| binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), |
| right->getCompleteString()); |
| TConstantUnion *unionArray = new TConstantUnion[1]; |
| unionArray->setBConst(false); |
| return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), |
| loc); |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::createAssign(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| if (binaryOpCommonCheck(op, left, right, loc)) |
| { |
| return intermediate.addAssign(op, left, right, loc); |
| } |
| return nullptr; |
| } |
| |
| TIntermTyped *TParseContext::addAssign(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| TIntermTyped *node = createAssign(op, left, right, loc); |
| if (node == nullptr) |
| { |
| assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); |
| return left; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addComma(TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| // WebGL2 section 5.26, the following results in an error: |
| // "Sequence operator applied to void, arrays, or structs containing arrays" |
| if (mShaderSpec == SH_WEBGL2_SPEC && (left->isArray() || left->getBasicType() == EbtVoid || |
| left->getType().isStructureContainingArrays() || |
| right->isArray() || right->getBasicType() == EbtVoid || |
| right->getType().isStructureContainingArrays())) |
| { |
| error(loc, |
| "sequence operator is not allowed for void, arrays, or structs containing arrays", |
| ","); |
| } |
| |
| return intermediate.addComma(left, right, loc, mShaderVersion); |
| } |
| |
| TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) |
| { |
| switch (op) |
| { |
| case EOpContinue: |
| if (mLoopNestingLevel <= 0) |
| { |
| error(loc, "continue statement only allowed in loops", ""); |
| } |
| break; |
| case EOpBreak: |
| if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) |
| { |
| error(loc, "break statement only allowed in loops and switch statements", ""); |
| } |
| break; |
| case EOpReturn: |
| if (mCurrentFunctionType->getBasicType() != EbtVoid) |
| { |
| error(loc, "non-void function must return a value", "return"); |
| } |
| break; |
| default: |
| // No checks for discard |
| break; |
| } |
| return intermediate.addBranch(op, loc); |
| } |
| |
| TIntermBranch *TParseContext::addBranch(TOperator op, |
| TIntermTyped *returnValue, |
| const TSourceLoc &loc) |
| { |
| ASSERT(op == EOpReturn); |
| mFunctionReturnsValue = true; |
| if (mCurrentFunctionType->getBasicType() == EbtVoid) |
| { |
| error(loc, "void function cannot return a value", "return"); |
| } |
| else if (*mCurrentFunctionType != returnValue->getType()) |
| { |
| error(loc, "function return is not matching type:", "return"); |
| } |
| return intermediate.addBranch(op, returnValue, loc); |
| } |
| |
| void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall) |
| { |
| ASSERT(!functionCall->isUserDefined()); |
| const TString &name = functionCall->getName(); |
| TIntermNode *offset = nullptr; |
| TIntermSequence *arguments = functionCall->getSequence(); |
| if (name.compare(0, 16, "texelFetchOffset") == 0 || |
| name.compare(0, 16, "textureLodOffset") == 0 || |
| name.compare(0, 20, "textureProjLodOffset") == 0 || |
| name.compare(0, 17, "textureGradOffset") == 0 || |
| name.compare(0, 21, "textureProjGradOffset") == 0) |
| { |
| offset = arguments->back(); |
| } |
| else if (name.compare(0, 13, "textureOffset") == 0 || |
| name.compare(0, 17, "textureProjOffset") == 0) |
| { |
| // A bias parameter might follow the offset parameter. |
| ASSERT(arguments->size() >= 3); |
| offset = (*arguments)[2]; |
| } |
| if (offset != nullptr) |
| { |
| TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion(); |
| if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion) |
| { |
| TString unmangledName = TFunction::unmangleName(name); |
| error(functionCall->getLine(), "Texture offset must be a constant expression", |
| unmangledName.c_str()); |
| } |
| else |
| { |
| ASSERT(offsetConstantUnion->getBasicType() == EbtInt); |
| size_t size = offsetConstantUnion->getType().getObjectSize(); |
| const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer(); |
| for (size_t i = 0u; i < size; ++i) |
| { |
| int offsetValue = values[i].getIConst(); |
| if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset) |
| { |
| std::stringstream tokenStream; |
| tokenStream << offsetValue; |
| std::string token = tokenStream.str(); |
| error(offset->getLine(), "Texture offset value out of valid range", |
| token.c_str()); |
| } |
| } |
| } |
| } |
| } |
| |
| TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, |
| TIntermNode *paramNode, |
| TIntermNode *thisNode, |
| const TSourceLoc &loc, |
| bool *fatalError) |
| { |
| *fatalError = false; |
| TOperator op = fnCall->getBuiltInOp(); |
| TIntermTyped *callNode = nullptr; |
| |
| if (thisNode != nullptr) |
| { |
| TConstantUnion *unionArray = new TConstantUnion[1]; |
| int arraySize = 0; |
| TIntermTyped *typedThis = thisNode->getAsTyped(); |
| if (fnCall->getName() != "length") |
| { |
| error(loc, "invalid method", fnCall->getName().c_str()); |
| } |
| else if (paramNode != nullptr) |
| { |
| error(loc, "method takes no parameters", "length"); |
| } |
| else if (typedThis == nullptr || !typedThis->isArray()) |
| { |
| error(loc, "length can only be called on arrays", "length"); |
| } |
| else |
| { |
| arraySize = typedThis->getArraySize(); |
| if (typedThis->getAsSymbolNode() == nullptr) |
| { |
| // This code path can be hit with expressions like these: |
| // (a = b).length() |
| // (func()).length() |
| // (int[3](0, 1, 2)).length() |
| // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid |
| // expression. |
| // It allows "An array name with the length method applied" in contrast to GLSL 4.4 |
| // spec section 5.9 which allows "An array, vector or matrix expression with the |
| // length method applied". |
| error(loc, "length can only be called on array names, not on array expressions", |
| "length"); |
| } |
| } |
| unionArray->setIConst(arraySize); |
| callNode = |
| intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc); |
| } |
| else if (op != EOpNull) |
| { |
| // Then this should be a constructor. |
| callNode = addConstructor(paramNode, op, fnCall, loc); |
| } |
| else |
| { |
| // |
| // Not a constructor. Find it in the symbol table. |
| // |
| const TFunction *fnCandidate; |
| bool builtIn; |
| fnCandidate = findFunction(loc, fnCall, mShaderVersion, &builtIn); |
| if (fnCandidate) |
| { |
| // |
| // A declared function. |
| // |
| if (builtIn && !fnCandidate->getExtension().empty()) |
| { |
| checkCanUseExtension(loc, fnCandidate->getExtension()); |
| } |
| op = fnCandidate->getBuiltInOp(); |
| if (builtIn && op != EOpNull) |
| { |
| // |
| // A function call mapped to a built-in operation. |
| // |
| if (fnCandidate->getParamCount() == 1) |
| { |
| // |
| // Treat it like a built-in unary operator. |
| // |
| TIntermAggregate *paramAgg = paramNode->getAsAggregate(); |
| paramNode = paramAgg->getSequence()->front(); |
| callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, |
| &fnCandidate->getReturnType()); |
| if (callNode == nullptr) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream |
| << "built in unary operator function. Type: " |
| << static_cast<TIntermTyped *>(paramNode)->getCompleteString(); |
| std::string extraInfo = extraInfoStream.str(); |
| error(paramNode->getLine(), " wrong operand type", "Internal Error", |
| extraInfo.c_str()); |
| *fatalError = true; |
| return nullptr; |
| } |
| } |
| else |
| { |
| TIntermAggregate *aggregate = |
| intermediate.setAggregateOperator(paramNode, op, loc); |
| aggregate->setType(fnCandidate->getReturnType()); |
| aggregate->setPrecisionFromChildren(); |
| if (aggregate->areChildrenConstQualified()) |
| { |
| aggregate->getTypePointer()->setQualifier(EvqConst); |
| } |
| |
| // Some built-in functions have out parameters too. |
| functionCallLValueErrorCheck(fnCandidate, aggregate); |
| |
| // See if we can constant fold a built-in. Note that this may be possible even |
| // if it is not const-qualified. |
| TIntermTyped *foldedNode = intermediate.foldAggregateBuiltIn(aggregate); |
| if (foldedNode) |
| { |
| callNode = foldedNode; |
| } |
| else |
| { |
| callNode = aggregate; |
| } |
| } |
| } |
| else |
| { |
| // This is a real function call |
| TIntermAggregate *aggregate = |
| intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc); |
| aggregate->setType(fnCandidate->getReturnType()); |
| |
| // this is how we know whether the given function is a builtIn function or a user |
| // defined function |
| // if builtIn == false, it's a userDefined -> could be an overloaded |
| // builtIn function also |
| // if builtIn == true, it's definitely a builtIn function with EOpNull |
| if (!builtIn) |
| aggregate->setUserDefined(); |
| aggregate->setName(fnCandidate->getMangledName()); |
| aggregate->setFunctionId(fnCandidate->getUniqueId()); |
| |
| // This needs to happen after the name is set |
| if (builtIn) |
| { |
| aggregate->setBuiltInFunctionPrecision(); |
| |
| checkTextureOffsetConst(aggregate); |
| } |
| |
| callNode = aggregate; |
| |
| functionCallLValueErrorCheck(fnCandidate, aggregate); |
| } |
| } |
| else |
| { |
| // error message was put out by findFunction() |
| // Put on a dummy node for error recovery |
| TConstantUnion *unionArray = new TConstantUnion[1]; |
| unionArray->setFConst(0.0f); |
| callNode = intermediate.addConstantUnion(unionArray, |
| TType(EbtFloat, EbpUndefined, EvqConst), loc); |
| } |
| } |
| return callNode; |
| } |
| |
| TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, |
| TIntermTyped *trueBlock, |
| TIntermTyped *falseBlock, |
| const TSourceLoc &loc) |
| { |
| checkIsScalarBool(loc, cond); |
| |
| if (trueBlock->getType() != falseBlock->getType()) |
| { |
| binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString()); |
| return falseBlock; |
| } |
| // ESSL1 sections 5.2 and 5.7: |
| // ESSL3 section 5.7: |
| // Ternary operator is not among the operators allowed for structures/arrays. |
| if (trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct) |
| { |
| error(loc, "ternary operator is not allowed for structures or arrays", ":"); |
| return falseBlock; |
| } |
| // WebGL2 section 5.26, the following results in an error: |
| // "Ternary operator applied to void, arrays, or structs containing arrays" |
| if (mShaderSpec == SH_WEBGL2_SPEC && trueBlock->getBasicType() == EbtVoid) |
| { |
| error(loc, "ternary operator is not allowed for void", ":"); |
| return falseBlock; |
| } |
| |
| return intermediate.addSelection(cond, trueBlock, falseBlock, loc); |
| } |
| |
| // |
| // Parse an array of strings using yyparse. |
| // |
| // Returns 0 for success. |
| // |
| int PaParseStrings(size_t count, |
| const char *const string[], |
| const int length[], |
| TParseContext *context) |
| { |
| if ((count == 0) || (string == NULL)) |
| return 1; |
| |
| if (glslang_initialize(context)) |
| return 1; |
| |
| int error = glslang_scan(count, string, length, context); |
| if (!error) |
| error = glslang_parse(context); |
| |
| glslang_finalize(context); |
| |
| return (error == 0) && (context->numErrors() == 0) ? 0 : 1; |
| } |