blob: a693e8cc73f5e52a9a72f546ecc6683e724dc569 [file] [log] [blame]
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "test_utils/ANGLETest.h"
using namespace angle;
namespace
{
class TextureTest : public ANGLETest
{
protected:
TextureTest()
{
setWindowWidth(128);
setWindowHeight(128);
setConfigRedBits(8);
setConfigGreenBits(8);
setConfigBlueBits(8);
setConfigAlphaBits(8);
}
void SetUp() override
{
ANGLETest::SetUp();
glGenTextures(1, &mTexture2D);
glGenTextures(1, &mTextureCube);
glBindTexture(GL_TEXTURE_2D, mTexture2D);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
EXPECT_GL_NO_ERROR();
glBindTexture(GL_TEXTURE_CUBE_MAP, mTextureCube);
glTexStorage2DEXT(GL_TEXTURE_CUBE_MAP, 1, GL_RGBA8, 1, 1);
EXPECT_GL_NO_ERROR();
ASSERT_GL_NO_ERROR();
const std::string vertexShaderSource = SHADER_SOURCE
(
precision highp float;
attribute vec4 position;
varying vec2 texcoord;
uniform vec2 textureScale;
void main()
{
gl_Position = vec4(position.xy * textureScale, 0.0, 1.0);
texcoord = (position.xy * 0.5) + 0.5;
}
);
const std::string fragmentShaderSource2D = SHADER_SOURCE
(
precision highp float;
uniform sampler2D tex;
varying vec2 texcoord;
void main()
{
gl_FragColor = texture2D(tex, texcoord);
}
);
const std::string fragmentShaderSourceCube = SHADER_SOURCE
(
precision highp float;
uniform sampler2D tex2D;
uniform samplerCube texCube;
varying vec2 texcoord;
void main()
{
gl_FragColor = texture2D(tex2D, texcoord);
gl_FragColor += textureCube(texCube, vec3(texcoord, 0));
}
);
m2DProgram = CompileProgram(vertexShaderSource, fragmentShaderSource2D);
mCubeProgram = CompileProgram(vertexShaderSource, fragmentShaderSourceCube);
ASSERT_NE(0u, m2DProgram);
ASSERT_NE(0u, mCubeProgram);
mTexture2DUniformLocation = glGetUniformLocation(m2DProgram, "tex");
ASSERT_NE(-1, mTexture2DUniformLocation);
mTextureScaleUniformLocation = glGetUniformLocation(m2DProgram, "textureScale");
ASSERT_NE(-1, mTextureScaleUniformLocation);
glUseProgram(m2DProgram);
glUniform2f(mTextureScaleUniformLocation, 1.0f, 1.0f);
glUseProgram(0);
ASSERT_GL_NO_ERROR();
}
void TearDown() override
{
glDeleteTextures(1, &mTexture2D);
glDeleteTextures(1, &mTextureCube);
glDeleteProgram(m2DProgram);
glDeleteProgram(mCubeProgram);
ANGLETest::TearDown();
}
// Tests CopyTexSubImage with floating point textures of various formats.
void testFloatCopySubImage(int sourceImageChannels, int destImageChannels)
{
// TODO(jmadill): Figure out why this is broken on Intel D3D11
if (isIntel() && getPlatformRenderer() == EGL_PLATFORM_ANGLE_TYPE_D3D11_ANGLE)
{
std::cout << "Test skipped on Intel D3D11." << std::endl;
return;
}
if (getClientVersion() < 3)
{
if (!extensionEnabled("GL_OES_texture_float"))
{
std::cout << "Test skipped due to missing GL_OES_texture_float." << std::endl;
return;
}
if ((sourceImageChannels < 3 || destImageChannels < 3) && !extensionEnabled("GL_EXT_texture_rg"))
{
std::cout << "Test skipped due to missing GL_EXT_texture_rg." << std::endl;
return;
}
}
GLfloat sourceImageData[4][16] =
{
{ // R
1.0f,
0.0f,
0.0f,
1.0f
},
{ // RG
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 1.0f
},
{ // RGB
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f
},
{ // RGBA
1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f
},
};
GLenum imageFormats[] =
{
GL_R32F,
GL_RG32F,
GL_RGB32F,
GL_RGBA32F,
};
GLenum sourceUnsizedFormats[] =
{
GL_RED,
GL_RG,
GL_RGB,
GL_RGBA,
};
GLuint textures[2];
glGenTextures(2, textures);
GLfloat *imageData = sourceImageData[sourceImageChannels - 1];
GLenum sourceImageFormat = imageFormats[sourceImageChannels - 1];
GLenum sourceUnsizedFormat = sourceUnsizedFormats[sourceImageChannels - 1];
GLenum destImageFormat = imageFormats[destImageChannels - 1];
glBindTexture(GL_TEXTURE_2D, textures[0]);
glTexStorage2DEXT(GL_TEXTURE_2D, 1, sourceImageFormat, 2, 2);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 2, 2, sourceUnsizedFormat, GL_FLOAT, imageData);
if (sourceImageChannels < 3 && !extensionEnabled("GL_EXT_texture_rg"))
{
// This is not supported
ASSERT_GL_ERROR(GL_INVALID_OPERATION);
}
else
{
ASSERT_GL_NO_ERROR();
}
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textures[0], 0);
glBindTexture(GL_TEXTURE_2D, textures[1]);
glTexStorage2DEXT(GL_TEXTURE_2D, 1, destImageFormat, 2, 2);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, 2, 2);
ASSERT_GL_NO_ERROR();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
drawQuad(m2DProgram, "position", 0.5f);
int testImageChannels = std::min(sourceImageChannels, destImageChannels);
EXPECT_PIXEL_EQ(0, 0, 255, 0, 0, 255);
if (testImageChannels > 1)
{
EXPECT_PIXEL_EQ(getWindowHeight() - 1, 0, 0, 255, 0, 255);
EXPECT_PIXEL_EQ(getWindowHeight() - 1, getWindowWidth() - 1, 255, 255, 0, 255);
if (testImageChannels > 2)
{
EXPECT_PIXEL_EQ(0, getWindowWidth() - 1, 0, 0, 255, 255);
}
}
glDeleteFramebuffers(1, &fbo);
glDeleteTextures(2, textures);
ASSERT_GL_NO_ERROR();
}
GLuint mTexture2D;
GLuint mTextureCube;
GLuint m2DProgram;
GLuint mCubeProgram;
GLint mTexture2DUniformLocation;
GLint mTextureScaleUniformLocation;
};
class TextureTestES3 : public ANGLETest
{
protected:
TextureTestES3()
: m2DArrayTexture(0),
m2DArrayProgram(0),
mTextureArrayLocation(-1)
{
setWindowWidth(128);
setWindowHeight(128);
setConfigRedBits(8);
setConfigGreenBits(8);
setConfigBlueBits(8);
setConfigAlphaBits(8);
}
void SetUp() override
{
ANGLETest::SetUp();
const std::string vertexShaderSource =
"#version 300 es\n"
"out vec2 texcoord;\n"
"in vec4 position;\n"
"void main() {\n"
" gl_Position = vec4(position.xy, 0.0, 1.0);\n"
" texcoord = (position.xy * 0.5) + 0.5;\n"
"}";
const std::string fragmentShaderSource2DArray =
"#version 300 es\n"
"precision highp float;\n"
"uniform sampler2DArray tex2DArray;\n"
"in vec2 texcoord;\n"
"out vec4 fragColor;\n"
"void main()\n"
"{\n"
" fragColor = texture(tex2DArray, vec3(texcoord.x, texcoord.y, 0.0));\n"
"}\n";
m2DArrayProgram = CompileProgram(vertexShaderSource, fragmentShaderSource2DArray);
ASSERT_NE(0u, m2DArrayProgram);
mTextureArrayLocation = glGetUniformLocation(m2DArrayProgram, "tex2DArray");
ASSERT_NE(-1, mTextureArrayLocation);
glGenTextures(1, &m2DArrayTexture);
ASSERT_GL_NO_ERROR();
}
void TearDown() override
{
glDeleteTextures(1, &m2DArrayTexture);
glDeleteProgram(m2DArrayProgram);
}
GLuint m2DArrayTexture;
GLuint m2DArrayProgram;
GLint mTextureArrayLocation;
};
TEST_P(TextureTest, NegativeAPISubImage)
{
glBindTexture(GL_TEXTURE_2D, mTexture2D);
EXPECT_GL_ERROR(GL_NO_ERROR);
const GLubyte *pixels[20] = { 0 };
glTexSubImage2D(GL_TEXTURE_2D, 0, 1, 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
EXPECT_GL_ERROR(GL_INVALID_VALUE);
}
TEST_P(TextureTest, ZeroSizedUploads)
{
glBindTexture(GL_TEXTURE_2D, mTexture2D);
EXPECT_GL_ERROR(GL_NO_ERROR);
// Use the texture first to make sure it's in video memory
glUseProgram(m2DProgram);
glUniform1i(mTexture2DUniformLocation, 0);
drawQuad(m2DProgram, "position", 0.5f);
const GLubyte *pixel[4] = { 0 };
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixel);
EXPECT_GL_NO_ERROR();
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixel);
EXPECT_GL_NO_ERROR();
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixel);
EXPECT_GL_NO_ERROR();
}
// Test drawing with two texture types, to trigger an ANGLE bug in validation
TEST_P(TextureTest, CubeMapBug)
{
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mTexture2D);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_CUBE_MAP, mTextureCube);
EXPECT_GL_ERROR(GL_NO_ERROR);
glUseProgram(mCubeProgram);
GLint tex2DUniformLocation = glGetUniformLocation(mCubeProgram, "tex2D");
GLint texCubeUniformLocation = glGetUniformLocation(mCubeProgram, "texCube");
EXPECT_NE(-1, tex2DUniformLocation);
EXPECT_NE(-1, texCubeUniformLocation);
glUniform1i(tex2DUniformLocation, 0);
glUniform1i(texCubeUniformLocation, 1);
drawQuad(mCubeProgram, "position", 0.5f);
EXPECT_GL_NO_ERROR();
}
// Copy of a test in conformance/textures/texture-mips, to test generate mipmaps
TEST_P(TextureTest, MipmapsTwice)
{
int px = getWindowWidth() / 2;
int py = getWindowHeight() / 2;
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mTexture2D);
// Fill with red
std::vector<GLubyte> pixels(4 * 16 * 16);
for (size_t pixelId = 0; pixelId < 16 * 16; ++pixelId)
{
pixels[pixelId * 4 + 0] = 255;
pixels[pixelId * 4 + 1] = 0;
pixels[pixelId * 4 + 2] = 0;
pixels[pixelId * 4 + 3] = 255;
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glGenerateMipmap(GL_TEXTURE_2D);
glUseProgram(m2DProgram);
glUniform1i(mTexture2DUniformLocation, 0);
glUniform2f(mTextureScaleUniformLocation, 0.0625f, 0.0625f);
drawQuad(m2DProgram, "position", 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 255, 0, 0, 255);
// Fill with blue
for (size_t pixelId = 0; pixelId < 16 * 16; ++pixelId)
{
pixels[pixelId * 4 + 0] = 0;
pixels[pixelId * 4 + 1] = 0;
pixels[pixelId * 4 + 2] = 255;
pixels[pixelId * 4 + 3] = 255;
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data());
glGenerateMipmap(GL_TEXTURE_2D);
// Fill with green
for (size_t pixelId = 0; pixelId < 16 * 16; ++pixelId)
{
pixels[pixelId * 4 + 0] = 0;
pixels[pixelId * 4 + 1] = 255;
pixels[pixelId * 4 + 2] = 0;
pixels[pixelId * 4 + 3] = 255;
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data());
glGenerateMipmap(GL_TEXTURE_2D);
drawQuad(m2DProgram, "position", 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 0, 255, 0, 255);
}
// Test creating a FBO with a cube map render target, to test an ANGLE bug
// https://code.google.com/p/angleproject/issues/detail?id=849
TEST_P(TextureTest, CubeMapFBO)
{
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glBindTexture(GL_TEXTURE_CUBE_MAP, mTextureCube);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, mTextureCube, 0);
EXPECT_GLENUM_EQ(GL_FRAMEBUFFER_COMPLETE, glCheckFramebufferStatus(GL_FRAMEBUFFER));
glDeleteFramebuffers(1, &fbo);
EXPECT_GL_NO_ERROR();
}
// Test that glTexSubImage2D works properly when glTexStorage2DEXT has initialized the image with a default color.
TEST_P(TextureTest, TexStorage)
{
int width = getWindowWidth();
int height = getWindowHeight();
GLuint tex2D;
glGenTextures(1, &tex2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, tex2D);
// Fill with red
std::vector<GLubyte> pixels(3 * 16 * 16);
for (size_t pixelId = 0; pixelId < 16 * 16; ++pixelId)
{
pixels[pixelId * 3 + 0] = 255;
pixels[pixelId * 3 + 1] = 0;
pixels[pixelId * 3 + 2] = 0;
}
// ANGLE internally uses RGBA as the DirectX format for RGB images
// therefore glTexStorage2DEXT initializes the image to a default color to get a consistent alpha color.
// The data is kept in a CPU-side image and the image is marked as dirty.
glTexStorage2DEXT(GL_TEXTURE_2D, 1, GL_RGB8, 16, 16);
// Initializes the color of the upper-left 8x8 pixels, leaves the other pixels untouched.
// glTexSubImage2D should take into account that the image is dirty.
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 8, 8, GL_RGB, GL_UNSIGNED_BYTE, pixels.data());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glUseProgram(m2DProgram);
glUniform1i(mTexture2DUniformLocation, 0);
glUniform2f(mTextureScaleUniformLocation, 1.f, 1.f);
drawQuad(m2DProgram, "position", 0.5f);
glDeleteTextures(1, &tex2D);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(width / 4, height / 4, 255, 0, 0, 255);
// Validate that the region of the texture without data has an alpha of 1.0
GLubyte pixel[4];
glReadPixels(3 * width / 4, 3 * height / 4, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixel);
EXPECT_EQ(pixel[3], 255);
}
// Test that glTexSubImage2D combined with a PBO works properly when glTexStorage2DEXT has initialized the image with a default color.
TEST_P(TextureTest, TexStorageWithPBO)
{
if (extensionEnabled("NV_pixel_buffer_object"))
{
int width = getWindowWidth();
int height = getWindowHeight();
GLuint tex2D;
glGenTextures(1, &tex2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, tex2D);
// Fill with red
std::vector<GLubyte> pixels(3 * 16 * 16);
for (size_t pixelId = 0; pixelId < 16 * 16; ++pixelId)
{
pixels[pixelId * 3 + 0] = 255;
pixels[pixelId * 3 + 1] = 0;
pixels[pixelId * 3 + 2] = 0;
}
// Read 16x16 region from red backbuffer to PBO
GLuint pbo;
glGenBuffers(1, &pbo);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
glBufferData(GL_PIXEL_UNPACK_BUFFER, 3 * 16 * 16, pixels.data(), GL_STATIC_DRAW);
// ANGLE internally uses RGBA as the DirectX format for RGB images
// therefore glTexStorage2DEXT initializes the image to a default color to get a consistent alpha color.
// The data is kept in a CPU-side image and the image is marked as dirty.
glTexStorage2DEXT(GL_TEXTURE_2D, 1, GL_RGB8, 16, 16);
// Initializes the color of the upper-left 8x8 pixels, leaves the other pixels untouched.
// glTexSubImage2D should take into account that the image is dirty.
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 8, 8, GL_RGB, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glUseProgram(m2DProgram);
glUniform1i(mTexture2DUniformLocation, 0);
glUniform2f(mTextureScaleUniformLocation, 1.f, 1.f);
drawQuad(m2DProgram, "position", 0.5f);
glDeleteTextures(1, &tex2D);
glDeleteTextures(1, &pbo);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(3 * width / 4, 3 * height / 4, 0, 0, 0, 255);
EXPECT_PIXEL_EQ(width / 4, height / 4, 255, 0, 0, 255);
}
}
// See description on testFloatCopySubImage
TEST_P(TextureTest, CopySubImageFloat_R_R)
{
testFloatCopySubImage(1, 1);
}
TEST_P(TextureTest, CopySubImageFloat_RG_R)
{
testFloatCopySubImage(2, 1);
}
TEST_P(TextureTest, CopySubImageFloat_RG_RG)
{
testFloatCopySubImage(2, 2);
}
TEST_P(TextureTest, CopySubImageFloat_RGB_R)
{
testFloatCopySubImage(3, 1);
}
TEST_P(TextureTest, CopySubImageFloat_RGB_RG)
{
testFloatCopySubImage(3, 2);
}
TEST_P(TextureTest, CopySubImageFloat_RGB_RGB)
{
testFloatCopySubImage(3, 3);
}
TEST_P(TextureTest, CopySubImageFloat_RGBA_R)
{
testFloatCopySubImage(4, 1);
}
TEST_P(TextureTest, CopySubImageFloat_RGBA_RG)
{
testFloatCopySubImage(4, 2);
}
TEST_P(TextureTest, CopySubImageFloat_RGBA_RGB)
{
testFloatCopySubImage(4, 3);
}
TEST_P(TextureTest, CopySubImageFloat_RGBA_RGBA)
{
testFloatCopySubImage(4, 4);
}
// Port of https://www.khronos.org/registry/webgl/conformance-suites/1.0.3/conformance/textures/texture-npot.html
// Run against GL_ALPHA/UNSIGNED_BYTE format, to ensure that D3D11 Feature Level 9_3 correctly handles GL_ALPHA
TEST_P(TextureTest, TextureNPOT_GL_ALPHA_UBYTE)
{
const int npotTexSize = 5;
const int potTexSize = 4; // Should be less than npotTexSize
GLuint tex2D;
if (extensionEnabled("GL_OES_texture_npot"))
{
// This test isn't applicable if texture_npot is enabled
return;
}
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &tex2D);
glBindTexture(GL_TEXTURE_2D, tex2D);
std::vector<GLubyte> pixels(1 * npotTexSize * npotTexSize);
for (size_t pixelId = 0; pixelId < npotTexSize * npotTexSize; ++pixelId)
{
pixels[pixelId] = 64;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Check that an NPOT texture not on level 0 generates INVALID_VALUE
glTexImage2D(GL_TEXTURE_2D, 1, GL_ALPHA, npotTexSize, npotTexSize, 0, GL_ALPHA, GL_UNSIGNED_BYTE, pixels.data());
EXPECT_GL_ERROR(GL_INVALID_VALUE);
// Check that an NPOT texture on level 0 succeeds
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, npotTexSize, npotTexSize, 0, GL_ALPHA, GL_UNSIGNED_BYTE, pixels.data());
EXPECT_GL_NO_ERROR();
// Check that generateMipmap fails on NPOT
glGenerateMipmap(GL_TEXTURE_2D);
EXPECT_GL_ERROR(GL_INVALID_OPERATION);
// Check that nothing is drawn if filtering is not correct for NPOT
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glClear(GL_COLOR_BUFFER_BIT);
drawQuad(m2DProgram, "position", 1.0f);
EXPECT_PIXEL_EQ(getWindowWidth() / 2, getWindowHeight() / 2, 0, 0, 0, 255);
// NPOT texture with TEXTURE_MIN_FILTER not NEAREST or LINEAR should draw with 0,0,0,255
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);
glClear(GL_COLOR_BUFFER_BIT);
drawQuad(m2DProgram, "position", 1.0f);
EXPECT_PIXEL_EQ(getWindowWidth() / 2, getWindowHeight() / 2, 0, 0, 0, 255);
// NPOT texture with TEXTURE_MIN_FILTER set to LINEAR should draw
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glClear(GL_COLOR_BUFFER_BIT);
drawQuad(m2DProgram, "position", 1.0f);
EXPECT_PIXEL_EQ(getWindowWidth() / 2, getWindowHeight() / 2, 0, 0, 0, 64);
// Check that glTexImage2D for POT texture succeeds
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, potTexSize, potTexSize, 0, GL_ALPHA, GL_UNSIGNED_BYTE, pixels.data());
EXPECT_GL_NO_ERROR();
// Check that generateMipmap for an POT texture succeeds
glGenerateMipmap(GL_TEXTURE_2D);
EXPECT_GL_NO_ERROR();
// POT texture with TEXTURE_MIN_FILTER set to LINEAR_MIPMAP_LINEAR should draw
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glClear(GL_COLOR_BUFFER_BIT);
drawQuad(m2DProgram, "position", 1.0f);
EXPECT_PIXEL_EQ(getWindowWidth() / 2, getWindowHeight() / 2, 0, 0, 0, 64);
EXPECT_GL_NO_ERROR();
}
// In the D3D11 renderer, we need to initialize some texture formats, to fill empty channels. EG RBA->RGBA8, with 1.0
// in the alpha channel. This test covers a bug where redefining array textures with these formats does not work as
// expected.
TEST_P(TextureTestES3, RedefineInittableArray)
{
std::vector<GLubyte> pixelData;
for (size_t count = 0; count < 5000; count++)
{
pixelData.push_back(0u);
pixelData.push_back(255u);
pixelData.push_back(0u);
}
glBindTexture(GL_TEXTURE_2D_ARRAY, m2DArrayTexture);
glUseProgram(m2DArrayProgram);
glUniform1i(mTextureArrayLocation, 0);
// The first draw worked correctly.
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGB, 4, 4, 2, 0, GL_RGB, GL_UNSIGNED_BYTE, &pixelData[0]);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_REPEAT);
drawQuad(m2DArrayProgram, "position", 1.0f);
EXPECT_PIXEL_EQ(0, 0, 0, 255, 0, 255);
// The dimension of the respecification must match the original exactly to trigger the bug.
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGB, 4, 4, 2, 0, GL_RGB, GL_UNSIGNED_BYTE, &pixelData[0]);
drawQuad(m2DArrayProgram, "position", 1.0f);
EXPECT_PIXEL_EQ(0, 0, 0, 255, 0, 255);
ASSERT_GL_NO_ERROR();
}
class TextureLimitsTest : public ANGLETest
{
protected:
struct RGBA8
{
uint8_t R, G, B, A;
};
TextureLimitsTest()
: mProgram(0), mMaxVertexTextures(0), mMaxFragmentTextures(0), mMaxCombinedTextures(0)
{
setWindowWidth(128);
setWindowHeight(128);
setConfigRedBits(8);
setConfigGreenBits(8);
setConfigBlueBits(8);
setConfigAlphaBits(8);
}
~TextureLimitsTest()
{
if (mProgram != 0)
{
glDeleteProgram(mProgram);
mProgram = 0;
if (!mTextures.empty())
{
glDeleteTextures(static_cast<GLsizei>(mTextures.size()), &mTextures[0]);
}
}
}
void SetUp() override
{
ANGLETest::SetUp();
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &mMaxVertexTextures);
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &mMaxFragmentTextures);
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &mMaxCombinedTextures);
ASSERT_GL_NO_ERROR();
}
void compileProgramWithTextureCounts(const std::string &vertexPrefix,
GLint vertexTextureCount,
GLint vertexActiveTextureCount,
const std::string &fragPrefix,
GLint fragmentTextureCount,
GLint fragmentActiveTextureCount)
{
std::stringstream vertexShaderStr;
vertexShaderStr << "attribute vec2 position;\n"
<< "varying vec4 color;\n"
<< "varying vec2 texCoord;\n";
for (GLint textureIndex = 0; textureIndex < vertexTextureCount; ++textureIndex)
{
vertexShaderStr << "uniform sampler2D " << vertexPrefix << textureIndex << ";\n";
}
vertexShaderStr << "void main() {\n"
<< " gl_Position = vec4(position, 0, 1);\n"
<< " texCoord = (position * 0.5) + 0.5;\n"
<< " color = vec4(0);\n";
for (GLint textureIndex = 0; textureIndex < vertexActiveTextureCount; ++textureIndex)
{
vertexShaderStr << " color += texture2D(" << vertexPrefix << textureIndex
<< ", texCoord);\n";
}
vertexShaderStr << "}";
std::stringstream fragmentShaderStr;
fragmentShaderStr << "varying mediump vec4 color;\n"
<< "varying mediump vec2 texCoord;\n";
for (GLint textureIndex = 0; textureIndex < fragmentTextureCount; ++textureIndex)
{
fragmentShaderStr << "uniform sampler2D " << fragPrefix << textureIndex << ";\n";
}
fragmentShaderStr << "void main() {\n"
<< " gl_FragColor = color;\n";
for (GLint textureIndex = 0; textureIndex < fragmentActiveTextureCount; ++textureIndex)
{
fragmentShaderStr << " gl_FragColor += texture2D(" << fragPrefix << textureIndex
<< ", texCoord);\n";
}
fragmentShaderStr << "}";
const std::string &vertexShaderSource = vertexShaderStr.str();
const std::string &fragmentShaderSource = fragmentShaderStr.str();
mProgram = CompileProgram(vertexShaderSource, fragmentShaderSource);
}
RGBA8 getPixel(GLint texIndex)
{
RGBA8 pixel = {static_cast<uint8_t>(texIndex & 0x7u), static_cast<uint8_t>(texIndex >> 3),
0, 255u};
return pixel;
}
void initTextures(GLint tex2DCount, GLint texCubeCount)
{
GLint totalCount = tex2DCount + texCubeCount;
mTextures.assign(totalCount, 0);
glGenTextures(totalCount, &mTextures[0]);
ASSERT_GL_NO_ERROR();
std::vector<RGBA8> texData(16 * 16);
GLint texIndex = 0;
for (; texIndex < tex2DCount; ++texIndex)
{
texData.assign(texData.size(), getPixel(texIndex));
glActiveTexture(GL_TEXTURE0 + texIndex);
glBindTexture(GL_TEXTURE_2D, mTextures[texIndex]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA, GL_UNSIGNED_BYTE,
&texData[0]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
ASSERT_GL_NO_ERROR();
for (; texIndex < texCubeCount; ++texIndex)
{
texData.assign(texData.size(), getPixel(texIndex));
glActiveTexture(GL_TEXTURE0 + texIndex);
glBindTexture(GL_TEXTURE_CUBE_MAP, mTextures[texIndex]);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
GL_UNSIGNED_BYTE, &texData[0]);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
GL_UNSIGNED_BYTE, &texData[0]);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
GL_UNSIGNED_BYTE, &texData[0]);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
GL_UNSIGNED_BYTE, &texData[0]);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
GL_UNSIGNED_BYTE, &texData[0]);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
GL_UNSIGNED_BYTE, &texData[0]);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
ASSERT_GL_NO_ERROR();
}
void testWithTextures(GLint vertexTextureCount,
const std::string &vertexTexturePrefix,
GLint fragmentTextureCount,
const std::string &fragmentTexturePrefix)
{
// Generate textures
initTextures(vertexTextureCount + fragmentTextureCount, 0);
glUseProgram(mProgram);
RGBA8 expectedSum = {0};
for (GLint texIndex = 0; texIndex < vertexTextureCount; ++texIndex)
{
std::stringstream uniformNameStr;
uniformNameStr << vertexTexturePrefix << texIndex;
const std::string &uniformName = uniformNameStr.str();
GLint location = glGetUniformLocation(mProgram, uniformName.c_str());
ASSERT_NE(-1, location);
glUniform1i(location, texIndex);
RGBA8 contribution = getPixel(texIndex);
expectedSum.R += contribution.R;
expectedSum.G += contribution.G;
}
for (GLint texIndex = 0; texIndex < fragmentTextureCount; ++texIndex)
{
std::stringstream uniformNameStr;
uniformNameStr << fragmentTexturePrefix << texIndex;
const std::string &uniformName = uniformNameStr.str();
GLint location = glGetUniformLocation(mProgram, uniformName.c_str());
ASSERT_NE(-1, location);
glUniform1i(location, texIndex + vertexTextureCount);
RGBA8 contribution = getPixel(texIndex + vertexTextureCount);
expectedSum.R += contribution.R;
expectedSum.G += contribution.G;
}
ASSERT_GE(256u, expectedSum.G);
drawQuad(mProgram, "position", 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(0, 0, expectedSum.R, expectedSum.G, 0, 255);
}
GLuint mProgram;
std::vector<GLuint> mTextures;
GLint mMaxVertexTextures;
GLint mMaxFragmentTextures;
GLint mMaxCombinedTextures;
};
// Test rendering with the maximum vertex texture units.
TEST_P(TextureLimitsTest, MaxVertexTextures)
{
// TODO(jmadill): Figure out why this fails on Intel.
if (isIntel() && GetParam().getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE)
{
std::cout << "Test skipped on Intel." << std::endl;
return;
}
compileProgramWithTextureCounts("tex", mMaxVertexTextures, mMaxVertexTextures, "tex", 0, 0);
ASSERT_NE(0u, mProgram);
ASSERT_GL_NO_ERROR();
testWithTextures(mMaxVertexTextures, "tex", 0, "tex");
}
// Test rendering with the maximum fragment texture units.
TEST_P(TextureLimitsTest, MaxFragmentTextures)
{
// TODO(jmadill): Figure out why this fails on Intel.
if (isIntel() && GetParam().getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE)
{
std::cout << "Test skipped on Intel." << std::endl;
return;
}
compileProgramWithTextureCounts("tex", 0, 0, "tex", mMaxFragmentTextures, mMaxFragmentTextures);
ASSERT_NE(0u, mProgram);
ASSERT_GL_NO_ERROR();
testWithTextures(mMaxFragmentTextures, "tex", 0, "tex");
}
// Test rendering with maximum combined texture units.
TEST_P(TextureLimitsTest, MaxCombinedTextures)
{
// TODO(jmadill): Investigate workaround.
if (isIntel() && GetParam() == ES2_OPENGL())
{
std::cout << "Test skipped on Intel." << std::endl;
return;
}
GLint vertexTextures = mMaxVertexTextures;
if (vertexTextures + mMaxFragmentTextures > mMaxCombinedTextures)
{
vertexTextures = mMaxCombinedTextures - mMaxFragmentTextures;
}
compileProgramWithTextureCounts("vtex", vertexTextures, vertexTextures, "ftex",
mMaxFragmentTextures, mMaxFragmentTextures);
ASSERT_NE(0u, mProgram);
ASSERT_GL_NO_ERROR();
testWithTextures(vertexTextures, "vtex", mMaxFragmentTextures, "ftex");
}
// Negative test for exceeding the number of vertex textures
TEST_P(TextureLimitsTest, ExcessiveVertexTextures)
{
compileProgramWithTextureCounts("tex", mMaxVertexTextures + 1, mMaxVertexTextures + 1, "tex", 0,
0);
ASSERT_EQ(0u, mProgram);
}
// Negative test for exceeding the number of fragment textures
TEST_P(TextureLimitsTest, ExcessiveFragmentTextures)
{
compileProgramWithTextureCounts("tex", 0, 0, "tex", mMaxFragmentTextures + 1,
mMaxFragmentTextures + 1);
ASSERT_EQ(0u, mProgram);
}
// Test active vertex textures under the limit, but excessive textures specified.
TEST_P(TextureLimitsTest, MaxActiveVertexTextures)
{
// TODO(jmadill): Figure out why this fails on Intel.
if (isIntel() && GetParam().getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE)
{
std::cout << "Test skipped on Intel." << std::endl;
return;
}
compileProgramWithTextureCounts("tex", mMaxVertexTextures + 4, mMaxVertexTextures, "tex", 0, 0);
ASSERT_NE(0u, mProgram);
ASSERT_GL_NO_ERROR();
testWithTextures(mMaxVertexTextures, "tex", 0, "tex");
}
// Test active fragment textures under the limit, but excessive textures specified.
TEST_P(TextureLimitsTest, MaxActiveFragmentTextures)
{
// TODO(jmadill): Figure out why this fails on Intel.
if (isIntel() && GetParam().getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE)
{
std::cout << "Test skipped on Intel." << std::endl;
return;
}
compileProgramWithTextureCounts("tex", 0, 0, "tex", mMaxFragmentTextures + 4,
mMaxFragmentTextures);
ASSERT_NE(0u, mProgram);
ASSERT_GL_NO_ERROR();
testWithTextures(0, "tex", mMaxFragmentTextures, "tex");
}
// Negative test for pointing two sampler uniforms of different types to the same texture.
TEST_P(TextureLimitsTest, TextureTypeConflict)
{
const std::string &vertexShader =
"attribute vec2 position;\n"
"varying float color;\n"
"uniform sampler2D tex2D;\n"
"uniform samplerCube texCube;\n"
"void main() {\n"
" gl_Position = vec4(position, 0, 1);\n"
" vec2 texCoord = (position * 0.5) + 0.5;\n"
" color = texture2D(tex2D, texCoord).x;\n"
" color += textureCube(texCube, vec3(texCoord, 0)).x;\n"
"}";
const std::string &fragmentShader =
"varying mediump float color;\n"
"void main() {\n"
" gl_FragColor = vec4(color, 0, 0, 1);\n"
"}";
mProgram = CompileProgram(vertexShader, fragmentShader);
ASSERT_NE(0u, mProgram);
initTextures(1, 0);
glUseProgram(mProgram);
GLint tex2DLocation = glGetUniformLocation(mProgram, "tex2D");
ASSERT_NE(-1, tex2DLocation);
GLint texCubeLocation = glGetUniformLocation(mProgram, "texCube");
ASSERT_NE(-1, texCubeLocation);
glUniform1i(tex2DLocation, 0);
glUniform1i(texCubeLocation, 0);
ASSERT_GL_NO_ERROR();
drawQuad(mProgram, "position", 0.5f);
EXPECT_GL_ERROR(GL_INVALID_OPERATION);
}
// Negative test for rendering with texture outside the valid range.
// TODO(jmadill): Research if this is correct.
TEST_P(TextureLimitsTest, DrawWithTexturePastMaximum)
{
const std::string &vertexShader =
"attribute vec2 position;\n"
"varying float color;\n"
"uniform sampler2D tex2D;\n"
"void main() {\n"
" gl_Position = vec4(position, 0, 1);\n"
" vec2 texCoord = (position * 0.5) + 0.5;\n"
" color = texture2D(tex2D, texCoord).x;\n"
"}";
const std::string &fragmentShader =
"varying mediump float color;\n"
"void main() {\n"
" gl_FragColor = vec4(color, 0, 0, 1);\n"
"}";
mProgram = CompileProgram(vertexShader, fragmentShader);
ASSERT_NE(0u, mProgram);
glUseProgram(mProgram);
GLint tex2DLocation = glGetUniformLocation(mProgram, "tex2D");
ASSERT_NE(-1, tex2DLocation);
glUniform1i(tex2DLocation, mMaxCombinedTextures);
ASSERT_GL_NO_ERROR();
drawQuad(mProgram, "position", 0.5f);
EXPECT_GL_ERROR(GL_INVALID_OPERATION);
}
// Use this to select which configurations (e.g. which renderer, which GLES major version) these tests should be run against.
ANGLE_INSTANTIATE_TEST(TextureTest, ES2_D3D9(), ES2_D3D11(), ES2_D3D11_FL9_3()); // TODO(geofflang): Figure out why this test fails on Intel OpenGL
ANGLE_INSTANTIATE_TEST(TextureTestES3, ES3_D3D11(), ES3_OPENGL());
ANGLE_INSTANTIATE_TEST(TextureLimitsTest, ES2_D3D11(), ES2_OPENGL());
} // namespace