blob: bd94e84572e23c079831d587b6aa7571c3b63fd5 [file] [log] [blame]
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// State.cpp: Implements the State class, encapsulating raw GL state.
#include "libANGLE/State.h"
#include <string.h>
#include <limits>
#include "common/bitset_utils.h"
#include "common/mathutil.h"
#include "common/matrix_utils.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/Caps.h"
#include "libANGLE/Context.h"
#include "libANGLE/Debug.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Query.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/queryutils.h"
#include "libANGLE/renderer/ContextImpl.h"
#include "libANGLE/renderer/TextureImpl.h"
namespace gl
{
namespace
{
bool GetAlternativeQueryType(QueryType type, QueryType *alternativeType)
{
switch (type)
{
case QueryType::AnySamples:
*alternativeType = QueryType::AnySamplesConservative;
return true;
case QueryType::AnySamplesConservative:
*alternativeType = QueryType::AnySamples;
return true;
default:
return false;
}
}
// Mapping from a buffer binding type to a dirty bit type.
constexpr angle::PackedEnumMap<BufferBinding, size_t> kBufferBindingDirtyBits = {{
0, /* Array */
State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING, /* AtomicCounter */
0, /* CopyRead */
0, /* CopyWrite */
State::DIRTY_BIT_DISPATCH_INDIRECT_BUFFER_BINDING, /* DispatchIndirect */
State::DIRTY_BIT_DRAW_INDIRECT_BUFFER_BINDING, /* DrawIndirect */
0, /* ElementArray */
State::DIRTY_BIT_PACK_BUFFER_BINDING, /* PixelPack */
State::DIRTY_BIT_UNPACK_BUFFER_BINDING, /* PixelUnpack */
State::DIRTY_BIT_SHADER_STORAGE_BUFFER_BINDING, /* ShaderStorage */
0, /* TransformFeedback */
State::DIRTY_BIT_UNIFORM_BUFFER_BINDINGS, /* Uniform */
}};
// Returns a buffer binding function depending on if a dirty bit is set.
template <BufferBinding Target>
constexpr State::BufferBindingSetter GetBufferBindingSetter()
{
return kBufferBindingDirtyBits[Target] != 0 ? &State::setGenericBufferBindingWithBit<Target>
: &State::setGenericBufferBinding<Target>;
}
} // anonymous namepace
template <typename BindingT, typename... ArgsT>
ANGLE_INLINE void UpdateNonTFBufferBinding(const Context *context,
BindingT *binding,
Buffer *buffer,
ArgsT... args)
{
Buffer *oldBuffer = binding->get();
if (oldBuffer)
{
oldBuffer->onNonTFBindingChanged(-1);
oldBuffer->release(context);
}
binding->assign(buffer, args...);
if (buffer)
{
buffer->addRef();
buffer->onNonTFBindingChanged(1);
}
}
template <typename BindingT, typename... ArgsT>
void UpdateTFBufferBinding(const Context *context, BindingT *binding, bool indexed, ArgsT... args)
{
if (binding->get())
(*binding)->onTFBindingChanged(context, false, indexed);
binding->set(context, args...);
if (binding->get())
(*binding)->onTFBindingChanged(context, true, indexed);
}
void UpdateBufferBinding(const Context *context,
BindingPointer<Buffer> *binding,
Buffer *buffer,
BufferBinding target)
{
if (target == BufferBinding::TransformFeedback)
{
UpdateTFBufferBinding(context, binding, false, buffer);
}
else
{
UpdateNonTFBufferBinding(context, binding, buffer);
}
}
void UpdateIndexedBufferBinding(const Context *context,
OffsetBindingPointer<Buffer> *binding,
Buffer *buffer,
BufferBinding target,
GLintptr offset,
GLsizeiptr size)
{
if (target == BufferBinding::TransformFeedback)
{
UpdateTFBufferBinding(context, binding, true, buffer, offset, size);
}
else
{
UpdateNonTFBufferBinding(context, binding, buffer, offset, size);
}
}
// These template functions must be defined before they are instantiated in kBufferSetters.
template <BufferBinding Target>
void State::setGenericBufferBindingWithBit(const Context *context, Buffer *buffer)
{
UpdateNonTFBufferBinding(context, &mBoundBuffers[Target], buffer);
mDirtyBits.set(kBufferBindingDirtyBits[Target]);
}
template <BufferBinding Target>
void State::setGenericBufferBinding(const Context *context, Buffer *buffer)
{
UpdateNonTFBufferBinding(context, &mBoundBuffers[Target], buffer);
}
template <>
void State::setGenericBufferBinding<BufferBinding::TransformFeedback>(const Context *context,
Buffer *buffer)
{
UpdateTFBufferBinding(context, &mBoundBuffers[BufferBinding::TransformFeedback], false, buffer);
}
template <>
void State::setGenericBufferBinding<BufferBinding::ElementArray>(const Context *context,
Buffer *buffer)
{
Buffer *oldBuffer = mVertexArray->mState.mElementArrayBuffer.get();
if (oldBuffer)
{
oldBuffer->removeObserver(&mVertexArray->mState.mElementArrayBuffer);
oldBuffer->onNonTFBindingChanged(-1);
oldBuffer->release(context);
}
mVertexArray->mState.mElementArrayBuffer.assign(buffer);
if (buffer)
{
buffer->addObserver(&mVertexArray->mState.mElementArrayBuffer);
buffer->onNonTFBindingChanged(1);
buffer->addRef();
}
mVertexArray->mDirtyBits.set(VertexArray::DIRTY_BIT_ELEMENT_ARRAY_BUFFER);
mVertexArray->mIndexRangeCache.invalidate();
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
const angle::PackedEnumMap<BufferBinding, State::BufferBindingSetter> State::kBufferSetters = {{
GetBufferBindingSetter<BufferBinding::Array>(),
GetBufferBindingSetter<BufferBinding::AtomicCounter>(),
GetBufferBindingSetter<BufferBinding::CopyRead>(),
GetBufferBindingSetter<BufferBinding::CopyWrite>(),
GetBufferBindingSetter<BufferBinding::DispatchIndirect>(),
GetBufferBindingSetter<BufferBinding::DrawIndirect>(),
GetBufferBindingSetter<BufferBinding::ElementArray>(),
GetBufferBindingSetter<BufferBinding::PixelPack>(),
GetBufferBindingSetter<BufferBinding::PixelUnpack>(),
GetBufferBindingSetter<BufferBinding::ShaderStorage>(),
GetBufferBindingSetter<BufferBinding::TransformFeedback>(),
GetBufferBindingSetter<BufferBinding::Uniform>(),
}};
State::State(bool debug,
bool bindGeneratesResource,
bool clientArraysEnabled,
bool robustResourceInit,
bool programBinaryCacheEnabled)
: mMaxDrawBuffers(0),
mMaxCombinedTextureImageUnits(0),
mDepthClearValue(0),
mStencilClearValue(0),
mScissorTest(false),
mSampleCoverage(false),
mSampleCoverageValue(0),
mSampleCoverageInvert(false),
mSampleMask(false),
mMaxSampleMaskWords(0),
mStencilRef(0),
mStencilBackRef(0),
mLineWidth(0),
mGenerateMipmapHint(GL_NONE),
mFragmentShaderDerivativeHint(GL_NONE),
mBindGeneratesResource(bindGeneratesResource),
mClientArraysEnabled(clientArraysEnabled),
mNearZ(0),
mFarZ(0),
mReadFramebuffer(nullptr),
mDrawFramebuffer(nullptr),
mProgram(nullptr),
mVertexArray(nullptr),
mActiveSampler(0),
mActiveTexturesCache{},
mCachedTexturesInitState(InitState::MayNeedInit),
mCachedImageTexturesInitState(InitState::MayNeedInit),
mPrimitiveRestart(false),
mDebug(debug),
mMultiSampling(false),
mSampleAlphaToOne(false),
mFramebufferSRGB(true),
mRobustResourceInit(robustResourceInit),
mProgramBinaryCacheEnabled(programBinaryCacheEnabled),
mMaxShaderCompilerThreads(std::numeric_limits<GLuint>::max())
{
}
State::~State()
{
}
void State::initialize(Context *context)
{
const Caps &caps = context->getCaps();
const Extensions &extensions = context->getExtensions();
const Extensions &nativeExtensions = context->getImplementation()->getNativeExtensions();
const Version &clientVersion = context->getClientVersion();
mMaxDrawBuffers = caps.maxDrawBuffers;
mMaxCombinedTextureImageUnits = caps.maxCombinedTextureImageUnits;
setColorClearValue(0.0f, 0.0f, 0.0f, 0.0f);
mDepthClearValue = 1.0f;
mStencilClearValue = 0;
mScissorTest = false;
mScissor.x = 0;
mScissor.y = 0;
mScissor.width = 0;
mScissor.height = 0;
mBlendColor.red = 0;
mBlendColor.green = 0;
mBlendColor.blue = 0;
mBlendColor.alpha = 0;
mStencilRef = 0;
mStencilBackRef = 0;
mSampleCoverage = false;
mSampleCoverageValue = 1.0f;
mSampleCoverageInvert = false;
mMaxSampleMaskWords = caps.maxSampleMaskWords;
mSampleMask = false;
mSampleMaskValues.fill(~GLbitfield(0));
mGenerateMipmapHint = GL_DONT_CARE;
mFragmentShaderDerivativeHint = GL_DONT_CARE;
mLineWidth = 1.0f;
mViewport.x = 0;
mViewport.y = 0;
mViewport.width = 0;
mViewport.height = 0;
mNearZ = 0.0f;
mFarZ = 1.0f;
mBlend.colorMaskRed = true;
mBlend.colorMaskGreen = true;
mBlend.colorMaskBlue = true;
mBlend.colorMaskAlpha = true;
mActiveSampler = 0;
mVertexAttribCurrentValues.resize(caps.maxVertexAttributes);
// Set all indexes in state attributes type mask to float (default)
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mCurrentValuesTypeMask.setIndex(GL_FLOAT, i);
}
mUniformBuffers.resize(caps.maxUniformBufferBindings);
mSamplerTextures[TextureType::_2D].resize(caps.maxCombinedTextureImageUnits);
mSamplerTextures[TextureType::CubeMap].resize(caps.maxCombinedTextureImageUnits);
if (clientVersion >= Version(3, 0))
{
// TODO: These could also be enabled via extension
mSamplerTextures[TextureType::_2DArray].resize(caps.maxCombinedTextureImageUnits);
mSamplerTextures[TextureType::_3D].resize(caps.maxCombinedTextureImageUnits);
}
if (clientVersion >= Version(3, 1) || nativeExtensions.textureMultisample)
{
mSamplerTextures[TextureType::_2DMultisample].resize(caps.maxCombinedTextureImageUnits);
}
if (clientVersion >= Version(3, 1))
{
mSamplerTextures[TextureType::_2DMultisampleArray].resize(
caps.maxCombinedTextureImageUnits);
mAtomicCounterBuffers.resize(caps.maxAtomicCounterBufferBindings);
mShaderStorageBuffers.resize(caps.maxShaderStorageBufferBindings);
mImageUnits.resize(caps.maxImageUnits);
}
if (nativeExtensions.textureRectangle)
{
mSamplerTextures[TextureType::Rectangle].resize(caps.maxCombinedTextureImageUnits);
}
if (nativeExtensions.eglImageExternal || nativeExtensions.eglStreamConsumerExternal)
{
mSamplerTextures[TextureType::External].resize(caps.maxCombinedTextureImageUnits);
}
mCompleteTextureBindings.reserve(caps.maxCombinedTextureImageUnits);
mCachedTexturesInitState = InitState::MayNeedInit;
mCachedImageTexturesInitState = InitState::MayNeedInit;
for (uint32_t textureIndex = 0; textureIndex < caps.maxCombinedTextureImageUnits;
++textureIndex)
{
mCompleteTextureBindings.emplace_back(context, textureIndex);
}
mSamplers.resize(caps.maxCombinedTextureImageUnits);
for (QueryType type : angle::AllEnums<QueryType>())
{
mActiveQueries[type].set(context, nullptr);
}
mProgram = nullptr;
mReadFramebuffer = nullptr;
mDrawFramebuffer = nullptr;
mPrimitiveRestart = false;
mDebug.setMaxLoggedMessages(extensions.maxDebugLoggedMessages);
mMultiSampling = true;
mSampleAlphaToOne = false;
mCoverageModulation = GL_NONE;
angle::Matrix<GLfloat>::setToIdentity(mPathMatrixProj);
angle::Matrix<GLfloat>::setToIdentity(mPathMatrixMV);
mPathStencilFunc = GL_ALWAYS;
mPathStencilRef = 0;
mPathStencilMask = std::numeric_limits<GLuint>::max();
// GLES1 emulation: Initialize state for GLES1 if version
// applies
if (clientVersion < Version(2, 0))
{
mGLES1State.initialize(context, this);
}
}
void State::reset(const Context *context)
{
for (auto &bindingVec : mSamplerTextures)
{
for (size_t textureIdx = 0; textureIdx < bindingVec.size(); textureIdx++)
{
bindingVec[textureIdx].set(context, nullptr);
}
}
for (size_t samplerIdx = 0; samplerIdx < mSamplers.size(); samplerIdx++)
{
mSamplers[samplerIdx].set(context, nullptr);
}
for (auto &imageUnit : mImageUnits)
{
imageUnit.texture.set(context, nullptr);
imageUnit.level = 0;
imageUnit.layered = false;
imageUnit.layer = 0;
imageUnit.access = GL_READ_ONLY;
imageUnit.format = GL_R32UI;
}
mRenderbuffer.set(context, nullptr);
for (auto type : angle::AllEnums<BufferBinding>())
{
UpdateBufferBinding(context, &mBoundBuffers[type], nullptr, type);
}
if (mProgram)
{
mProgram->release(context);
}
mProgram = nullptr;
mProgramPipeline.set(context, nullptr);
if (mTransformFeedback.get())
mTransformFeedback->onBindingChanged(context, false);
mTransformFeedback.set(context, nullptr);
for (QueryType type : angle::AllEnums<QueryType>())
{
mActiveQueries[type].set(context, nullptr);
}
for (auto &buf : mUniformBuffers)
{
UpdateIndexedBufferBinding(context, &buf, nullptr, BufferBinding::Uniform, 0, 0);
}
for (auto &buf : mAtomicCounterBuffers)
{
UpdateIndexedBufferBinding(context, &buf, nullptr, BufferBinding::AtomicCounter, 0, 0);
}
for (auto &buf : mShaderStorageBuffers)
{
UpdateIndexedBufferBinding(context, &buf, nullptr, BufferBinding::ShaderStorage, 0, 0);
}
angle::Matrix<GLfloat>::setToIdentity(mPathMatrixProj);
angle::Matrix<GLfloat>::setToIdentity(mPathMatrixMV);
mPathStencilFunc = GL_ALWAYS;
mPathStencilRef = 0;
mPathStencilMask = std::numeric_limits<GLuint>::max();
setAllDirtyBits();
}
ANGLE_INLINE void State::unsetActiveTextures(ActiveTextureMask textureMask)
{
// Unset any relevant bound textures.
for (size_t textureIndex : mProgram->getActiveSamplersMask())
{
mActiveTexturesCache[textureIndex] = nullptr;
mCompleteTextureBindings[textureIndex].reset();
}
}
ANGLE_INLINE angle::Result State::updateActiveTexture(const Context *context,
size_t textureIndex,
Texture *texture)
{
const Sampler *sampler = mSamplers[textureIndex].get();
if (!texture)
{
mActiveTexturesCache[textureIndex] = nullptr;
mCompleteTextureBindings[textureIndex].bind(nullptr);
return angle::Result::Continue();
}
mCompleteTextureBindings[textureIndex].bind(texture->getImplementation());
if (!texture->isSamplerComplete(context, sampler))
{
mActiveTexturesCache[textureIndex] = nullptr;
return angle::Result::Continue();
}
mActiveTexturesCache[textureIndex] = texture;
if (texture->hasAnyDirtyBit())
{
ANGLE_TRY(texture->syncState(context));
}
if (texture->initState() == InitState::MayNeedInit)
{
mCachedTexturesInitState = InitState::MayNeedInit;
}
return angle::Result::Continue();
}
const RasterizerState &State::getRasterizerState() const
{
return mRasterizer;
}
const BlendState &State::getBlendState() const
{
return mBlend;
}
const DepthStencilState &State::getDepthStencilState() const
{
return mDepthStencil;
}
void State::setColorClearValue(float red, float green, float blue, float alpha)
{
mColorClearValue.red = red;
mColorClearValue.green = green;
mColorClearValue.blue = blue;
mColorClearValue.alpha = alpha;
mDirtyBits.set(DIRTY_BIT_CLEAR_COLOR);
}
void State::setDepthClearValue(float depth)
{
mDepthClearValue = depth;
mDirtyBits.set(DIRTY_BIT_CLEAR_DEPTH);
}
void State::setStencilClearValue(int stencil)
{
mStencilClearValue = stencil;
mDirtyBits.set(DIRTY_BIT_CLEAR_STENCIL);
}
void State::setColorMask(bool red, bool green, bool blue, bool alpha)
{
mBlend.colorMaskRed = red;
mBlend.colorMaskGreen = green;
mBlend.colorMaskBlue = blue;
mBlend.colorMaskAlpha = alpha;
mDirtyBits.set(DIRTY_BIT_COLOR_MASK);
}
void State::setDepthMask(bool mask)
{
mDepthStencil.depthMask = mask;
mDirtyBits.set(DIRTY_BIT_DEPTH_MASK);
}
bool State::isRasterizerDiscardEnabled() const
{
return mRasterizer.rasterizerDiscard;
}
void State::setRasterizerDiscard(bool enabled)
{
mRasterizer.rasterizerDiscard = enabled;
mDirtyBits.set(DIRTY_BIT_RASTERIZER_DISCARD_ENABLED);
}
bool State::isCullFaceEnabled() const
{
return mRasterizer.cullFace;
}
void State::setCullFace(bool enabled)
{
mRasterizer.cullFace = enabled;
mDirtyBits.set(DIRTY_BIT_CULL_FACE_ENABLED);
}
void State::setCullMode(CullFaceMode mode)
{
mRasterizer.cullMode = mode;
mDirtyBits.set(DIRTY_BIT_CULL_FACE);
}
void State::setFrontFace(GLenum front)
{
mRasterizer.frontFace = front;
mDirtyBits.set(DIRTY_BIT_FRONT_FACE);
}
bool State::isDepthTestEnabled() const
{
return mDepthStencil.depthTest;
}
void State::setDepthTest(bool enabled)
{
mDepthStencil.depthTest = enabled;
mDirtyBits.set(DIRTY_BIT_DEPTH_TEST_ENABLED);
}
void State::setDepthFunc(GLenum depthFunc)
{
mDepthStencil.depthFunc = depthFunc;
mDirtyBits.set(DIRTY_BIT_DEPTH_FUNC);
}
void State::setDepthRange(float zNear, float zFar)
{
mNearZ = zNear;
mFarZ = zFar;
mDirtyBits.set(DIRTY_BIT_DEPTH_RANGE);
}
float State::getNearPlane() const
{
return mNearZ;
}
float State::getFarPlane() const
{
return mFarZ;
}
bool State::isBlendEnabled() const
{
return mBlend.blend;
}
void State::setBlend(bool enabled)
{
mBlend.blend = enabled;
mDirtyBits.set(DIRTY_BIT_BLEND_ENABLED);
}
void State::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
mBlend.sourceBlendRGB = sourceRGB;
mBlend.destBlendRGB = destRGB;
mBlend.sourceBlendAlpha = sourceAlpha;
mBlend.destBlendAlpha = destAlpha;
mDirtyBits.set(DIRTY_BIT_BLEND_FUNCS);
}
void State::setBlendColor(float red, float green, float blue, float alpha)
{
mBlendColor.red = red;
mBlendColor.green = green;
mBlendColor.blue = blue;
mBlendColor.alpha = alpha;
mDirtyBits.set(DIRTY_BIT_BLEND_COLOR);
}
void State::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
mBlend.blendEquationRGB = rgbEquation;
mBlend.blendEquationAlpha = alphaEquation;
mDirtyBits.set(DIRTY_BIT_BLEND_EQUATIONS);
}
const ColorF &State::getBlendColor() const
{
return mBlendColor;
}
bool State::isStencilTestEnabled() const
{
return mDepthStencil.stencilTest;
}
void State::setStencilTest(bool enabled)
{
mDepthStencil.stencilTest = enabled;
mDirtyBits.set(DIRTY_BIT_STENCIL_TEST_ENABLED);
}
void State::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
mDepthStencil.stencilFunc = stencilFunc;
mStencilRef = (stencilRef > 0) ? stencilRef : 0;
mDepthStencil.stencilMask = stencilMask;
mDirtyBits.set(DIRTY_BIT_STENCIL_FUNCS_FRONT);
}
void State::setStencilBackParams(GLenum stencilBackFunc,
GLint stencilBackRef,
GLuint stencilBackMask)
{
mDepthStencil.stencilBackFunc = stencilBackFunc;
mStencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mDepthStencil.stencilBackMask = stencilBackMask;
mDirtyBits.set(DIRTY_BIT_STENCIL_FUNCS_BACK);
}
void State::setStencilWritemask(GLuint stencilWritemask)
{
mDepthStencil.stencilWritemask = stencilWritemask;
mDirtyBits.set(DIRTY_BIT_STENCIL_WRITEMASK_FRONT);
}
void State::setStencilBackWritemask(GLuint stencilBackWritemask)
{
mDepthStencil.stencilBackWritemask = stencilBackWritemask;
mDirtyBits.set(DIRTY_BIT_STENCIL_WRITEMASK_BACK);
}
void State::setStencilOperations(GLenum stencilFail,
GLenum stencilPassDepthFail,
GLenum stencilPassDepthPass)
{
mDepthStencil.stencilFail = stencilFail;
mDepthStencil.stencilPassDepthFail = stencilPassDepthFail;
mDepthStencil.stencilPassDepthPass = stencilPassDepthPass;
mDirtyBits.set(DIRTY_BIT_STENCIL_OPS_FRONT);
}
void State::setStencilBackOperations(GLenum stencilBackFail,
GLenum stencilBackPassDepthFail,
GLenum stencilBackPassDepthPass)
{
mDepthStencil.stencilBackFail = stencilBackFail;
mDepthStencil.stencilBackPassDepthFail = stencilBackPassDepthFail;
mDepthStencil.stencilBackPassDepthPass = stencilBackPassDepthPass;
mDirtyBits.set(DIRTY_BIT_STENCIL_OPS_BACK);
}
GLint State::getStencilRef() const
{
return mStencilRef;
}
GLint State::getStencilBackRef() const
{
return mStencilBackRef;
}
bool State::isPolygonOffsetFillEnabled() const
{
return mRasterizer.polygonOffsetFill;
}
void State::setPolygonOffsetFill(bool enabled)
{
mRasterizer.polygonOffsetFill = enabled;
mDirtyBits.set(DIRTY_BIT_POLYGON_OFFSET_FILL_ENABLED);
}
void State::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
// An application can pass NaN values here, so handle this gracefully
mRasterizer.polygonOffsetFactor = factor != factor ? 0.0f : factor;
mRasterizer.polygonOffsetUnits = units != units ? 0.0f : units;
mDirtyBits.set(DIRTY_BIT_POLYGON_OFFSET);
}
bool State::isSampleAlphaToCoverageEnabled() const
{
return mBlend.sampleAlphaToCoverage;
}
void State::setSampleAlphaToCoverage(bool enabled)
{
mBlend.sampleAlphaToCoverage = enabled;
mDirtyBits.set(DIRTY_BIT_SAMPLE_ALPHA_TO_COVERAGE_ENABLED);
}
bool State::isSampleCoverageEnabled() const
{
return mSampleCoverage;
}
void State::setSampleCoverage(bool enabled)
{
mSampleCoverage = enabled;
mDirtyBits.set(DIRTY_BIT_SAMPLE_COVERAGE_ENABLED);
}
void State::setSampleCoverageParams(GLclampf value, bool invert)
{
mSampleCoverageValue = value;
mSampleCoverageInvert = invert;
mDirtyBits.set(DIRTY_BIT_SAMPLE_COVERAGE);
}
GLclampf State::getSampleCoverageValue() const
{
return mSampleCoverageValue;
}
bool State::getSampleCoverageInvert() const
{
return mSampleCoverageInvert;
}
bool State::isSampleMaskEnabled() const
{
return mSampleMask;
}
void State::setSampleMaskEnabled(bool enabled)
{
mSampleMask = enabled;
mDirtyBits.set(DIRTY_BIT_SAMPLE_MASK_ENABLED);
}
void State::setSampleMaskParams(GLuint maskNumber, GLbitfield mask)
{
ASSERT(maskNumber < mMaxSampleMaskWords);
mSampleMaskValues[maskNumber] = mask;
// TODO(jmadill): Use a child dirty bit if we ever use more than two words.
mDirtyBits.set(DIRTY_BIT_SAMPLE_MASK);
}
GLbitfield State::getSampleMaskWord(GLuint maskNumber) const
{
ASSERT(maskNumber < mMaxSampleMaskWords);
return mSampleMaskValues[maskNumber];
}
GLuint State::getMaxSampleMaskWords() const
{
return mMaxSampleMaskWords;
}
void State::setSampleAlphaToOne(bool enabled)
{
mSampleAlphaToOne = enabled;
mDirtyBits.set(DIRTY_BIT_SAMPLE_ALPHA_TO_ONE);
}
bool State::isSampleAlphaToOneEnabled() const
{
return mSampleAlphaToOne;
}
void State::setMultisampling(bool enabled)
{
mMultiSampling = enabled;
mDirtyBits.set(DIRTY_BIT_MULTISAMPLING);
}
bool State::isMultisamplingEnabled() const
{
return mMultiSampling;
}
bool State::isScissorTestEnabled() const
{
return mScissorTest;
}
void State::setScissorTest(bool enabled)
{
mScissorTest = enabled;
mDirtyBits.set(DIRTY_BIT_SCISSOR_TEST_ENABLED);
}
void State::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mScissor.x = x;
mScissor.y = y;
mScissor.width = width;
mScissor.height = height;
mDirtyBits.set(DIRTY_BIT_SCISSOR);
}
const Rectangle &State::getScissor() const
{
return mScissor;
}
bool State::isDitherEnabled() const
{
return mBlend.dither;
}
void State::setDither(bool enabled)
{
mBlend.dither = enabled;
mDirtyBits.set(DIRTY_BIT_DITHER_ENABLED);
}
bool State::isPrimitiveRestartEnabled() const
{
return mPrimitiveRestart;
}
void State::setPrimitiveRestart(bool enabled)
{
mPrimitiveRestart = enabled;
mDirtyBits.set(DIRTY_BIT_PRIMITIVE_RESTART_ENABLED);
}
void State::setEnableFeature(GLenum feature, bool enabled)
{
switch (feature)
{
case GL_MULTISAMPLE_EXT:
setMultisampling(enabled);
break;
case GL_SAMPLE_ALPHA_TO_ONE_EXT:
setSampleAlphaToOne(enabled);
break;
case GL_CULL_FACE:
setCullFace(enabled);
break;
case GL_POLYGON_OFFSET_FILL:
setPolygonOffsetFill(enabled);
break;
case GL_SAMPLE_ALPHA_TO_COVERAGE:
setSampleAlphaToCoverage(enabled);
break;
case GL_SAMPLE_COVERAGE:
setSampleCoverage(enabled);
break;
case GL_SCISSOR_TEST:
setScissorTest(enabled);
break;
case GL_STENCIL_TEST:
setStencilTest(enabled);
break;
case GL_DEPTH_TEST:
setDepthTest(enabled);
break;
case GL_BLEND:
setBlend(enabled);
break;
case GL_DITHER:
setDither(enabled);
break;
case GL_PRIMITIVE_RESTART_FIXED_INDEX:
setPrimitiveRestart(enabled);
break;
case GL_RASTERIZER_DISCARD:
setRasterizerDiscard(enabled);
break;
case GL_SAMPLE_MASK:
setSampleMaskEnabled(enabled);
break;
case GL_DEBUG_OUTPUT_SYNCHRONOUS:
mDebug.setOutputSynchronous(enabled);
break;
case GL_DEBUG_OUTPUT:
mDebug.setOutputEnabled(enabled);
break;
case GL_FRAMEBUFFER_SRGB_EXT:
setFramebufferSRGB(enabled);
break;
// GLES1 emulation
case GL_ALPHA_TEST:
mGLES1State.mAlphaTestEnabled = enabled;
break;
case GL_TEXTURE_2D:
mGLES1State.mTexUnitEnables[mActiveSampler].set(TextureType::_2D, enabled);
break;
case GL_TEXTURE_CUBE_MAP:
mGLES1State.mTexUnitEnables[mActiveSampler].set(TextureType::CubeMap, enabled);
break;
case GL_LIGHTING:
mGLES1State.mLightingEnabled = enabled;
break;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
mGLES1State.mLights[feature - GL_LIGHT0].enabled = enabled;
break;
case GL_NORMALIZE:
mGLES1State.mNormalizeEnabled = enabled;
break;
case GL_RESCALE_NORMAL:
mGLES1State.mRescaleNormalEnabled = enabled;
break;
case GL_COLOR_MATERIAL:
mGLES1State.mColorMaterialEnabled = enabled;
break;
case GL_CLIP_PLANE0:
case GL_CLIP_PLANE1:
case GL_CLIP_PLANE2:
case GL_CLIP_PLANE3:
case GL_CLIP_PLANE4:
case GL_CLIP_PLANE5:
mGLES1State.mClipPlanes[feature - GL_CLIP_PLANE0].enabled = enabled;
break;
case GL_FOG:
mGLES1State.mFogEnabled = enabled;
break;
case GL_POINT_SMOOTH:
mGLES1State.mPointSmoothEnabled = enabled;
break;
case GL_LINE_SMOOTH:
mGLES1State.mLineSmoothEnabled = enabled;
break;
case GL_POINT_SPRITE_OES:
mGLES1State.mPointSpriteEnabled = enabled;
break;
case GL_COLOR_LOGIC_OP:
mGLES1State.mLogicOpEnabled = enabled;
break;
default:
UNREACHABLE();
}
}
bool State::getEnableFeature(GLenum feature) const
{
switch (feature)
{
case GL_MULTISAMPLE_EXT:
return isMultisamplingEnabled();
case GL_SAMPLE_ALPHA_TO_ONE_EXT:
return isSampleAlphaToOneEnabled();
case GL_CULL_FACE:
return isCullFaceEnabled();
case GL_POLYGON_OFFSET_FILL:
return isPolygonOffsetFillEnabled();
case GL_SAMPLE_ALPHA_TO_COVERAGE:
return isSampleAlphaToCoverageEnabled();
case GL_SAMPLE_COVERAGE:
return isSampleCoverageEnabled();
case GL_SCISSOR_TEST:
return isScissorTestEnabled();
case GL_STENCIL_TEST:
return isStencilTestEnabled();
case GL_DEPTH_TEST:
return isDepthTestEnabled();
case GL_BLEND:
return isBlendEnabled();
case GL_DITHER:
return isDitherEnabled();
case GL_PRIMITIVE_RESTART_FIXED_INDEX:
return isPrimitiveRestartEnabled();
case GL_RASTERIZER_DISCARD:
return isRasterizerDiscardEnabled();
case GL_SAMPLE_MASK:
return isSampleMaskEnabled();
case GL_DEBUG_OUTPUT_SYNCHRONOUS:
return mDebug.isOutputSynchronous();
case GL_DEBUG_OUTPUT:
return mDebug.isOutputEnabled();
case GL_BIND_GENERATES_RESOURCE_CHROMIUM:
return isBindGeneratesResourceEnabled();
case GL_CLIENT_ARRAYS_ANGLE:
return areClientArraysEnabled();
case GL_FRAMEBUFFER_SRGB_EXT:
return getFramebufferSRGB();
case GL_ROBUST_RESOURCE_INITIALIZATION_ANGLE:
return mRobustResourceInit;
case GL_PROGRAM_CACHE_ENABLED_ANGLE:
return mProgramBinaryCacheEnabled;
// GLES1 emulation
case GL_ALPHA_TEST:
return mGLES1State.mAlphaTestEnabled;
case GL_VERTEX_ARRAY:
return mGLES1State.mVertexArrayEnabled;
case GL_NORMAL_ARRAY:
return mGLES1State.mNormalArrayEnabled;
case GL_COLOR_ARRAY:
return mGLES1State.mColorArrayEnabled;
case GL_POINT_SIZE_ARRAY_OES:
return mGLES1State.mPointSizeArrayEnabled;
case GL_TEXTURE_COORD_ARRAY:
return mGLES1State.mTexCoordArrayEnabled[mGLES1State.mClientActiveTexture];
case GL_TEXTURE_2D:
return mGLES1State.mTexUnitEnables[mActiveSampler].test(TextureType::_2D);
case GL_TEXTURE_CUBE_MAP:
return mGLES1State.mTexUnitEnables[mActiveSampler].test(TextureType::CubeMap);
case GL_LIGHTING:
return mGLES1State.mLightingEnabled;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
return mGLES1State.mLights[feature - GL_LIGHT0].enabled;
case GL_NORMALIZE:
return mGLES1State.mNormalizeEnabled;
case GL_RESCALE_NORMAL:
return mGLES1State.mRescaleNormalEnabled;
case GL_COLOR_MATERIAL:
return mGLES1State.mColorMaterialEnabled;
case GL_CLIP_PLANE0:
case GL_CLIP_PLANE1:
case GL_CLIP_PLANE2:
case GL_CLIP_PLANE3:
case GL_CLIP_PLANE4:
case GL_CLIP_PLANE5:
return mGLES1State.mClipPlanes[feature - GL_CLIP_PLANE0].enabled;
case GL_FOG:
return mGLES1State.mFogEnabled;
case GL_POINT_SMOOTH:
return mGLES1State.mPointSmoothEnabled;
case GL_LINE_SMOOTH:
return mGLES1State.mLineSmoothEnabled;
case GL_POINT_SPRITE_OES:
return mGLES1State.mPointSpriteEnabled;
case GL_COLOR_LOGIC_OP:
return mGLES1State.mLogicOpEnabled;
default:
UNREACHABLE();
return false;
}
}
void State::setLineWidth(GLfloat width)
{
mLineWidth = width;
mDirtyBits.set(DIRTY_BIT_LINE_WIDTH);
}
float State::getLineWidth() const
{
return mLineWidth;
}
void State::setGenerateMipmapHint(GLenum hint)
{
mGenerateMipmapHint = hint;
mDirtyBits.set(DIRTY_BIT_GENERATE_MIPMAP_HINT);
}
void State::setFragmentShaderDerivativeHint(GLenum hint)
{
mFragmentShaderDerivativeHint = hint;
mDirtyBits.set(DIRTY_BIT_SHADER_DERIVATIVE_HINT);
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
bool State::areClientArraysEnabled() const
{
return mClientArraysEnabled;
}
void State::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mViewport.x = x;
mViewport.y = y;
mViewport.width = width;
mViewport.height = height;
mDirtyBits.set(DIRTY_BIT_VIEWPORT);
}
const Rectangle &State::getViewport() const
{
return mViewport;
}
void State::setActiveSampler(unsigned int active)
{
mActiveSampler = active;
}
unsigned int State::getActiveSampler() const
{
return static_cast<unsigned int>(mActiveSampler);
}
Error State::setSamplerTexture(const Context *context, TextureType type, Texture *texture)
{
mSamplerTextures[type][mActiveSampler].set(context, texture);
if (mProgram && mProgram->getActiveSamplersMask()[mActiveSampler] &&
mProgram->getActiveSamplerTypes()[mActiveSampler] == type)
{
ANGLE_TRY(updateActiveTexture(context, mActiveSampler, texture));
}
mDirtyBits.set(DIRTY_BIT_TEXTURE_BINDINGS);
return NoError();
}
Texture *State::getTargetTexture(TextureType type) const
{
return getSamplerTexture(static_cast<unsigned int>(mActiveSampler), type);
}
GLuint State::getSamplerTextureId(unsigned int sampler, TextureType type) const
{
ASSERT(sampler < mSamplerTextures[type].size());
return mSamplerTextures[type][sampler].id();
}
void State::detachTexture(const Context *context, const TextureMap &zeroTextures, GLuint texture)
{
// Textures have a detach method on State rather than a simple
// removeBinding, because the zero/null texture objects are managed
// separately, and don't have to go through the Context's maps or
// the ResourceManager.
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture
// object are rebound to texture object zero
for (TextureType type : angle::AllEnums<TextureType>())
{
TextureBindingVector &textureVector = mSamplerTextures[type];
for (BindingPointer<Texture> &binding : textureVector)
{
if (binding.id() == texture)
{
Texture *zeroTexture = zeroTextures[type].get();
ASSERT(zeroTexture != nullptr);
// Zero textures are the "default" textures instead of NULL
binding.set(context, zeroTexture);
mDirtyBits.set(DIRTY_BIT_TEXTURE_BINDINGS);
}
}
}
for (auto &bindingImageUnit : mImageUnits)
{
if (bindingImageUnit.texture.id() == texture)
{
bindingImageUnit.texture.set(context, nullptr);
bindingImageUnit.level = 0;
bindingImageUnit.layered = false;
bindingImageUnit.layer = 0;
bindingImageUnit.access = GL_READ_ONLY;
bindingImageUnit.format = GL_R32UI;
break;
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound
// framebuffer, then it is as if Texture2DAttachment had been called, with a texture of 0, for
// each attachment point to which this image was attached in the currently bound framebuffer.
if (mReadFramebuffer && mReadFramebuffer->detachTexture(context, texture))
{
mDirtyObjects.set(DIRTY_OBJECT_READ_FRAMEBUFFER);
}
if (mDrawFramebuffer && mDrawFramebuffer->detachTexture(context, texture))
{
mDirtyObjects.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER);
}
}
void State::initializeZeroTextures(const Context *context, const TextureMap &zeroTextures)
{
for (TextureType type : angle::AllEnums<TextureType>())
{
for (size_t textureUnit = 0; textureUnit < mSamplerTextures[type].size(); ++textureUnit)
{
mSamplerTextures[type][textureUnit].set(context, zeroTextures[type].get());
}
}
}
void State::setSamplerBinding(const Context *context, GLuint textureUnit, Sampler *sampler)
{
mSamplers[textureUnit].set(context, sampler);
mDirtyBits.set(DIRTY_BIT_SAMPLER_BINDINGS);
mDirtyObjects.set(DIRTY_OBJECT_PROGRAM_TEXTURES);
// This is overly conservative as it assumes the sampler has never been bound.
setSamplerDirty(textureUnit);
}
GLuint State::getSamplerId(GLuint textureUnit) const
{
ASSERT(textureUnit < mSamplers.size());
return mSamplers[textureUnit].id();
}
void State::detachSampler(const Context *context, GLuint sampler)
{
// [OpenGL ES 3.0.2] section 3.8.2 pages 123-124:
// If a sampler object that is currently bound to one or more texture units is
// deleted, it is as though BindSampler is called once for each texture unit to
// which the sampler is bound, with unit set to the texture unit and sampler set to zero.
for (BindingPointer<Sampler> &samplerBinding : mSamplers)
{
if (samplerBinding.id() == sampler)
{
samplerBinding.set(context, nullptr);
mDirtyBits.set(DIRTY_BIT_SAMPLER_BINDINGS);
}
}
}
void State::setRenderbufferBinding(const Context *context, Renderbuffer *renderbuffer)
{
mRenderbuffer.set(context, renderbuffer);
mDirtyBits.set(DIRTY_BIT_RENDERBUFFER_BINDING);
}
GLuint State::getRenderbufferId() const
{
return mRenderbuffer.id();
}
Renderbuffer *State::getCurrentRenderbuffer() const
{
return mRenderbuffer.get();
}
void State::detachRenderbuffer(const Context *context, GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
// BindRenderbuffer had been executed with the target RENDERBUFFER and name of zero.
if (mRenderbuffer.id() == renderbuffer)
{
setRenderbufferBinding(context, nullptr);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound
// framebuffer, then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of
// 0, for each attachment point to which this image was attached in the currently bound
// framebuffer.
Framebuffer *readFramebuffer = mReadFramebuffer;
Framebuffer *drawFramebuffer = mDrawFramebuffer;
if (readFramebuffer && readFramebuffer->detachRenderbuffer(context, renderbuffer))
{
mDirtyObjects.set(DIRTY_OBJECT_READ_FRAMEBUFFER);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
if (drawFramebuffer->detachRenderbuffer(context, renderbuffer))
{
mDirtyObjects.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER);
}
}
}
void State::setReadFramebufferBinding(Framebuffer *framebuffer)
{
if (mReadFramebuffer == framebuffer)
return;
mReadFramebuffer = framebuffer;
mDirtyBits.set(DIRTY_BIT_READ_FRAMEBUFFER_BINDING);
if (mReadFramebuffer && mReadFramebuffer->hasAnyDirtyBit())
{
mDirtyObjects.set(DIRTY_OBJECT_READ_FRAMEBUFFER);
}
}
void State::setDrawFramebufferBinding(Framebuffer *framebuffer)
{
if (mDrawFramebuffer == framebuffer)
return;
mDrawFramebuffer = framebuffer;
mDirtyBits.set(DIRTY_BIT_DRAW_FRAMEBUFFER_BINDING);
if (mDrawFramebuffer && mDrawFramebuffer->hasAnyDirtyBit())
{
mDirtyObjects.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER);
}
}
Framebuffer *State::getTargetFramebuffer(GLenum target) const
{
switch (target)
{
case GL_READ_FRAMEBUFFER_ANGLE:
return mReadFramebuffer;
case GL_DRAW_FRAMEBUFFER_ANGLE:
case GL_FRAMEBUFFER:
return mDrawFramebuffer;
default:
UNREACHABLE();
return nullptr;
}
}
Framebuffer *State::getReadFramebuffer() const
{
return mReadFramebuffer;
}
bool State::removeReadFramebufferBinding(GLuint framebuffer)
{
if (mReadFramebuffer != nullptr && mReadFramebuffer->id() == framebuffer)
{
setReadFramebufferBinding(nullptr);
return true;
}
return false;
}
bool State::removeDrawFramebufferBinding(GLuint framebuffer)
{
if (mReadFramebuffer != nullptr && mDrawFramebuffer->id() == framebuffer)
{
setDrawFramebufferBinding(nullptr);
return true;
}
return false;
}
void State::setVertexArrayBinding(const Context *context, VertexArray *vertexArray)
{
if (mVertexArray == vertexArray)
return;
if (mVertexArray)
mVertexArray->onBindingChanged(context, -1);
mVertexArray = vertexArray;
if (vertexArray)
vertexArray->onBindingChanged(context, 1);
mDirtyBits.set(DIRTY_BIT_VERTEX_ARRAY_BINDING);
if (mVertexArray && mVertexArray->hasAnyDirtyBit())
{
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
}
GLuint State::getVertexArrayId() const
{
ASSERT(mVertexArray != nullptr);
return mVertexArray->id();
}
bool State::removeVertexArrayBinding(const Context *context, GLuint vertexArray)
{
if (mVertexArray && mVertexArray->id() == vertexArray)
{
mVertexArray->onBindingChanged(context, -1);
mVertexArray = nullptr;
mDirtyBits.set(DIRTY_BIT_VERTEX_ARRAY_BINDING);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
return true;
}
return false;
}
void State::bindVertexBuffer(const Context *context,
GLuint bindingIndex,
Buffer *boundBuffer,
GLintptr offset,
GLsizei stride)
{
getVertexArray()->bindVertexBuffer(context, bindingIndex, boundBuffer, offset, stride);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
void State::setVertexAttribBinding(const Context *context, GLuint attribIndex, GLuint bindingIndex)
{
getVertexArray()->setVertexAttribBinding(context, attribIndex, bindingIndex);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
void State::setVertexAttribFormat(GLuint attribIndex,
GLint size,
GLenum type,
bool normalized,
bool pureInteger,
GLuint relativeOffset)
{
getVertexArray()->setVertexAttribFormat(attribIndex, size, type, normalized, pureInteger,
relativeOffset);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
void State::setVertexBindingDivisor(GLuint bindingIndex, GLuint divisor)
{
getVertexArray()->setVertexBindingDivisor(bindingIndex, divisor);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
angle::Result State::setProgram(const Context *context, Program *newProgram)
{
if (mProgram != newProgram)
{
if (mProgram)
{
unsetActiveTextures(mProgram->getActiveSamplersMask());
mProgram->release(context);
}
mProgram = newProgram;
if (mProgram)
{
newProgram->addRef();
ANGLE_TRY(onProgramExecutableChange(context, newProgram));
}
// Note that rendering is undefined if glUseProgram(0) is called. But ANGLE will generate
// an error if the app tries to draw in this case.
mDirtyBits.set(DIRTY_BIT_PROGRAM_BINDING);
}
return angle::Result::Continue();
}
void State::setTransformFeedbackBinding(const Context *context,
TransformFeedback *transformFeedback)
{
if (transformFeedback == mTransformFeedback.get())
return;
if (mTransformFeedback.get())
mTransformFeedback->onBindingChanged(context, false);
mTransformFeedback.set(context, transformFeedback);
if (mTransformFeedback.get())
mTransformFeedback->onBindingChanged(context, true);
mDirtyBits.set(DIRTY_BIT_TRANSFORM_FEEDBACK_BINDING);
}
bool State::removeTransformFeedbackBinding(const Context *context, GLuint transformFeedback)
{
if (mTransformFeedback.id() == transformFeedback)
{
if (mTransformFeedback.get())
mTransformFeedback->onBindingChanged(context, false);
mTransformFeedback.set(context, nullptr);
return true;
}
return false;
}
void State::setProgramPipelineBinding(const Context *context, ProgramPipeline *pipeline)
{
mProgramPipeline.set(context, pipeline);
}
void State::detachProgramPipeline(const Context *context, GLuint pipeline)
{
mProgramPipeline.set(context, nullptr);
}
bool State::isQueryActive(QueryType type) const
{
const Query *query = mActiveQueries[type].get();
if (query != nullptr)
{
return true;
}
QueryType alternativeType;
if (GetAlternativeQueryType(type, &alternativeType))
{
query = mActiveQueries[alternativeType].get();
return query != nullptr;
}
return false;
}
bool State::isQueryActive(Query *query) const
{
for (auto &queryPointer : mActiveQueries)
{
if (queryPointer.get() == query)
{
return true;
}
}
return false;
}
void State::setActiveQuery(const Context *context, QueryType type, Query *query)
{
mActiveQueries[type].set(context, query);
}
GLuint State::getActiveQueryId(QueryType type) const
{
const Query *query = getActiveQuery(type);
return (query ? query->id() : 0u);
}
Query *State::getActiveQuery(QueryType type) const
{
return mActiveQueries[type].get();
}
void State::setIndexedBufferBinding(const Context *context,
BufferBinding target,
GLuint index,
Buffer *buffer,
GLintptr offset,
GLsizeiptr size)
{
setBufferBinding(context, target, buffer);
switch (target)
{
case BufferBinding::TransformFeedback:
mTransformFeedback->bindIndexedBuffer(context, index, buffer, offset, size);
setBufferBinding(context, target, buffer);
break;
case BufferBinding::Uniform:
UpdateIndexedBufferBinding(context, &mUniformBuffers[index], buffer, target, offset,
size);
break;
case BufferBinding::AtomicCounter:
UpdateIndexedBufferBinding(context, &mAtomicCounterBuffers[index], buffer, target,
offset, size);
break;
case BufferBinding::ShaderStorage:
UpdateIndexedBufferBinding(context, &mShaderStorageBuffers[index], buffer, target,
offset, size);
break;
default:
UNREACHABLE();
break;
}
}
const OffsetBindingPointer<Buffer> &State::getIndexedUniformBuffer(size_t index) const
{
ASSERT(static_cast<size_t>(index) < mUniformBuffers.size());
return mUniformBuffers[index];
}
const OffsetBindingPointer<Buffer> &State::getIndexedAtomicCounterBuffer(size_t index) const
{
ASSERT(static_cast<size_t>(index) < mAtomicCounterBuffers.size());
return mAtomicCounterBuffers[index];
}
const OffsetBindingPointer<Buffer> &State::getIndexedShaderStorageBuffer(size_t index) const
{
ASSERT(static_cast<size_t>(index) < mShaderStorageBuffers.size());
return mShaderStorageBuffers[index];
}
Buffer *State::getTargetBuffer(BufferBinding target) const
{
switch (target)
{
case BufferBinding::ElementArray:
return getVertexArray()->getElementArrayBuffer();
default:
return mBoundBuffers[target].get();
}
}
void State::detachBuffer(const Context *context, const Buffer *buffer)
{
if (!buffer->isBound())
{
return;
}
GLuint bufferName = buffer->id();
for (auto target : angle::AllEnums<BufferBinding>())
{
if (mBoundBuffers[target].id() == bufferName)
{
UpdateBufferBinding(context, &mBoundBuffers[target], nullptr, target);
}
}
TransformFeedback *curTransformFeedback = getCurrentTransformFeedback();
if (curTransformFeedback)
{
curTransformFeedback->detachBuffer(context, bufferName);
}
getVertexArray()->detachBuffer(context, bufferName);
for (auto &buf : mUniformBuffers)
{
if (buf.id() == bufferName)
{
UpdateIndexedBufferBinding(context, &buf, nullptr, BufferBinding::Uniform, 0, 0);
}
}
for (auto &buf : mAtomicCounterBuffers)
{
if (buf.id() == bufferName)
{
UpdateIndexedBufferBinding(context, &buf, nullptr, BufferBinding::AtomicCounter, 0, 0);
}
}
for (auto &buf : mShaderStorageBuffers)
{
if (buf.id() == bufferName)
{
UpdateIndexedBufferBinding(context, &buf, nullptr, BufferBinding::ShaderStorage, 0, 0);
}
}
}
void State::setEnableVertexAttribArray(unsigned int attribNum, bool enabled)
{
getVertexArray()->enableAttribute(attribNum, enabled);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
void State::setVertexAttribf(GLuint index, const GLfloat values[4])
{
ASSERT(static_cast<size_t>(index) < mVertexAttribCurrentValues.size());
mVertexAttribCurrentValues[index].setFloatValues(values);
mDirtyBits.set(DIRTY_BIT_CURRENT_VALUES);
mDirtyCurrentValues.set(index);
mCurrentValuesTypeMask.setIndex(GL_FLOAT, index);
}
void State::setVertexAttribu(GLuint index, const GLuint values[4])
{
ASSERT(static_cast<size_t>(index) < mVertexAttribCurrentValues.size());
mVertexAttribCurrentValues[index].setUnsignedIntValues(values);
mDirtyBits.set(DIRTY_BIT_CURRENT_VALUES);
mDirtyCurrentValues.set(index);
mCurrentValuesTypeMask.setIndex(GL_UNSIGNED_INT, index);
}
void State::setVertexAttribi(GLuint index, const GLint values[4])
{
ASSERT(static_cast<size_t>(index) < mVertexAttribCurrentValues.size());
mVertexAttribCurrentValues[index].setIntValues(values);
mDirtyBits.set(DIRTY_BIT_CURRENT_VALUES);
mDirtyCurrentValues.set(index);
mCurrentValuesTypeMask.setIndex(GL_INT, index);
}
void State::setVertexAttribPointer(const Context *context,
unsigned int attribNum,
Buffer *boundBuffer,
GLint size,
GLenum type,
bool normalized,
bool pureInteger,
GLsizei stride,
const void *pointer)
{
getVertexArray()->setVertexAttribPointer(context, attribNum, boundBuffer, size, type,
normalized, pureInteger, stride, pointer);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
void State::setVertexAttribDivisor(const Context *context, GLuint index, GLuint divisor)
{
getVertexArray()->setVertexAttribDivisor(context, index, divisor);
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
}
const VertexAttribCurrentValueData &State::getVertexAttribCurrentValue(size_t attribNum) const
{
ASSERT(attribNum < mVertexAttribCurrentValues.size());
return mVertexAttribCurrentValues[attribNum];
}
const std::vector<VertexAttribCurrentValueData> &State::getVertexAttribCurrentValues() const
{
return mVertexAttribCurrentValues;
}
const void *State::getVertexAttribPointer(unsigned int attribNum) const
{
return getVertexArray()->getVertexAttribute(attribNum).pointer;
}
void State::setPackAlignment(GLint alignment)
{
mPack.alignment = alignment;
mDirtyBits.set(DIRTY_BIT_PACK_STATE);
}
GLint State::getPackAlignment() const
{
return mPack.alignment;
}
void State::setPackReverseRowOrder(bool reverseRowOrder)
{
mPack.reverseRowOrder = reverseRowOrder;
mDirtyBits.set(DIRTY_BIT_PACK_STATE);
}
bool State::getPackReverseRowOrder() const
{
return mPack.reverseRowOrder;
}
void State::setPackRowLength(GLint rowLength)
{
mPack.rowLength = rowLength;
mDirtyBits.set(DIRTY_BIT_PACK_STATE);
}
GLint State::getPackRowLength() const
{
return mPack.rowLength;
}
void State::setPackSkipRows(GLint skipRows)
{
mPack.skipRows = skipRows;
mDirtyBits.set(DIRTY_BIT_PACK_STATE);
}
GLint State::getPackSkipRows() const
{
return mPack.skipRows;
}
void State::setPackSkipPixels(GLint skipPixels)
{
mPack.skipPixels = skipPixels;
mDirtyBits.set(DIRTY_BIT_PACK_STATE);
}
GLint State::getPackSkipPixels() const
{
return mPack.skipPixels;
}
const PixelPackState &State::getPackState() const
{
return mPack;
}
PixelPackState &State::getPackState()
{
return mPack;
}
void State::setUnpackAlignment(GLint alignment)
{
mUnpack.alignment = alignment;
mDirtyBits.set(DIRTY_BIT_UNPACK_STATE);
}
GLint State::getUnpackAlignment() const
{
return mUnpack.alignment;
}
void State::setUnpackRowLength(GLint rowLength)
{
mUnpack.rowLength = rowLength;
mDirtyBits.set(DIRTY_BIT_UNPACK_STATE);
}
GLint State::getUnpackRowLength() const
{
return mUnpack.rowLength;
}
void State::setUnpackImageHeight(GLint imageHeight)
{
mUnpack.imageHeight = imageHeight;
mDirtyBits.set(DIRTY_BIT_UNPACK_STATE);
}
GLint State::getUnpackImageHeight() const
{
return mUnpack.imageHeight;
}
void State::setUnpackSkipImages(GLint skipImages)
{
mUnpack.skipImages = skipImages;
mDirtyBits.set(DIRTY_BIT_UNPACK_STATE);
}
GLint State::getUnpackSkipImages() const
{
return mUnpack.skipImages;
}
void State::setUnpackSkipRows(GLint skipRows)
{
mUnpack.skipRows = skipRows;
mDirtyBits.set(DIRTY_BIT_UNPACK_STATE);
}
GLint State::getUnpackSkipRows() const
{
return mUnpack.skipRows;
}
void State::setUnpackSkipPixels(GLint skipPixels)
{
mUnpack.skipPixels = skipPixels;
mDirtyBits.set(DIRTY_BIT_UNPACK_STATE);
}
GLint State::getUnpackSkipPixels() const
{
return mUnpack.skipPixels;
}
const PixelUnpackState &State::getUnpackState() const
{
return mUnpack;
}
PixelUnpackState &State::getUnpackState()
{
return mUnpack;
}
const Debug &State::getDebug() const
{
return mDebug;
}
Debug &State::getDebug()
{
return mDebug;
}
void State::setCoverageModulation(GLenum components)
{
mCoverageModulation = components;
mDirtyBits.set(DIRTY_BIT_COVERAGE_MODULATION);
}
GLenum State::getCoverageModulation() const
{
return mCoverageModulation;
}
void State::loadPathRenderingMatrix(GLenum matrixMode, const GLfloat *matrix)
{
if (matrixMode == GL_PATH_MODELVIEW_CHROMIUM)
{
memcpy(mPathMatrixMV, matrix, 16 * sizeof(GLfloat));
mDirtyBits.set(DIRTY_BIT_PATH_RENDERING);
}
else if (matrixMode == GL_PATH_PROJECTION_CHROMIUM)
{
memcpy(mPathMatrixProj, matrix, 16 * sizeof(GLfloat));
mDirtyBits.set(DIRTY_BIT_PATH_RENDERING);
}
else
{
UNREACHABLE();
}
}
const GLfloat *State::getPathRenderingMatrix(GLenum which) const
{
if (which == GL_PATH_MODELVIEW_MATRIX_CHROMIUM)
{
return mPathMatrixMV;
}
else if (which == GL_PATH_PROJECTION_MATRIX_CHROMIUM)
{
return mPathMatrixProj;
}
UNREACHABLE();
return nullptr;
}
void State::setPathStencilFunc(GLenum func, GLint ref, GLuint mask)
{
mPathStencilFunc = func;
mPathStencilRef = ref;
mPathStencilMask = mask;
mDirtyBits.set(DIRTY_BIT_PATH_RENDERING);
}
GLenum State::getPathStencilFunc() const
{
return mPathStencilFunc;
}
GLint State::getPathStencilRef() const
{
return mPathStencilRef;
}
GLuint State::getPathStencilMask() const
{
return mPathStencilMask;
}
void State::setFramebufferSRGB(bool sRGB)
{
mFramebufferSRGB = sRGB;
mDirtyBits.set(DIRTY_BIT_FRAMEBUFFER_SRGB);
}
bool State::getFramebufferSRGB() const
{
return mFramebufferSRGB;
}
void State::setMaxShaderCompilerThreads(GLuint count)
{
mMaxShaderCompilerThreads = count;
}
GLuint State::getMaxShaderCompilerThreads() const
{
return mMaxShaderCompilerThreads;
}
void State::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SAMPLE_COVERAGE_INVERT:
*params = mSampleCoverageInvert;
break;
case GL_DEPTH_WRITEMASK:
*params = mDepthStencil.depthMask;
break;
case GL_COLOR_WRITEMASK:
params[0] = mBlend.colorMaskRed;
params[1] = mBlend.colorMaskGreen;
params[2] = mBlend.colorMaskBlue;
params[3] = mBlend.colorMaskAlpha;
break;
case GL_CULL_FACE:
*params = mRasterizer.cullFace;
break;
case GL_POLYGON_OFFSET_FILL:
*params = mRasterizer.polygonOffsetFill;
break;
case GL_SAMPLE_ALPHA_TO_COVERAGE:
*params = mBlend.sampleAlphaToCoverage;
break;
case GL_SAMPLE_COVERAGE:
*params = mSampleCoverage;
break;
case GL_SAMPLE_MASK:
*params = mSampleMask;
break;
case GL_SCISSOR_TEST:
*params = mScissorTest;
break;
case GL_STENCIL_TEST:
*params = mDepthStencil.stencilTest;
break;
case GL_DEPTH_TEST:
*params = mDepthStencil.depthTest;
break;
case GL_BLEND:
*params = mBlend.blend;
break;
case GL_DITHER:
*params = mBlend.dither;
break;
case GL_TRANSFORM_FEEDBACK_ACTIVE:
*params = getCurrentTransformFeedback()->isActive() ? GL_TRUE : GL_FALSE;
break;
case GL_TRANSFORM_FEEDBACK_PAUSED:
*params = getCurrentTransformFeedback()->isPaused() ? GL_TRUE : GL_FALSE;
break;
case GL_PRIMITIVE_RESTART_FIXED_INDEX:
*params = mPrimitiveRestart;
break;
case GL_RASTERIZER_DISCARD:
*params = isRasterizerDiscardEnabled() ? GL_TRUE : GL_FALSE;
break;
case GL_DEBUG_OUTPUT_SYNCHRONOUS:
*params = mDebug.isOutputSynchronous() ? GL_TRUE : GL_FALSE;
break;
case GL_DEBUG_OUTPUT:
*params = mDebug.isOutputEnabled() ? GL_TRUE : GL_FALSE;
break;
case GL_MULTISAMPLE_EXT:
*params = mMultiSampling;
break;
case GL_SAMPLE_ALPHA_TO_ONE_EXT:
*params = mSampleAlphaToOne;
break;
case GL_BIND_GENERATES_RESOURCE_CHROMIUM:
*params = isBindGeneratesResourceEnabled() ? GL_TRUE : GL_FALSE;
break;
case GL_CLIENT_ARRAYS_ANGLE:
*params = areClientArraysEnabled() ? GL_TRUE : GL_FALSE;
break;
case GL_FRAMEBUFFER_SRGB_EXT:
*params = getFramebufferSRGB() ? GL_TRUE : GL_FALSE;
break;
case GL_ROBUST_RESOURCE_INITIALIZATION_ANGLE:
*params = mRobustResourceInit ? GL_TRUE : GL_FALSE;
break;
case GL_PROGRAM_CACHE_ENABLED_ANGLE:
*params = mProgramBinaryCacheEnabled ? GL_TRUE : GL_FALSE;
break;
case GL_LIGHT_MODEL_TWO_SIDE:
*params = IsLightModelTwoSided(&mGLES1State);
break;
default:
UNREACHABLE();
break;
}
}
void State::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch (pname)
{
case GL_LINE_WIDTH:
*params = mLineWidth;
break;
case GL_SAMPLE_COVERAGE_VALUE:
*params = mSampleCoverageValue;
break;
case GL_DEPTH_CLEAR_VALUE:
*params = mDepthClearValue;
break;
case GL_POLYGON_OFFSET_FACTOR:
*params = mRasterizer.polygonOffsetFactor;
break;
case GL_POLYGON_OFFSET_UNITS:
*params = mRasterizer.polygonOffsetUnits;
break;
case GL_DEPTH_RANGE:
params[0] = mNearZ;
params[1] = mFarZ;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mColorClearValue.red;
params[1] = mColorClearValue.green;
params[2] = mColorClearValue.blue;
params[3] = mColorClearValue.alpha;
break;
case GL_BLEND_COLOR:
params[0] = mBlendColor.red;
params[1] = mBlendColor.green;
params[2] = mBlendColor.blue;
params[3] = mBlendColor.alpha;
break;
case GL_MULTISAMPLE_EXT:
*params = static_cast<GLfloat>(mMultiSampling);
break;
case GL_SAMPLE_ALPHA_TO_ONE_EXT:
*params = static_cast<GLfloat>(mSampleAlphaToOne);
break;
case GL_COVERAGE_MODULATION_CHROMIUM:
params[0] = static_cast<GLfloat>(mCoverageModulation);
break;
case GL_ALPHA_TEST_REF:
*params = mGLES1State.mAlphaTestRef;
break;
case GL_CURRENT_COLOR:
{
const auto &color = mGLES1State.mCurrentColor;
params[0] = color.red;
params[1] = color.green;
params[2] = color.blue;
params[3] = color.alpha;
break;
}
case GL_CURRENT_NORMAL:
{
const auto &normal = mGLES1State.mCurrentNormal;
params[0] = normal[0];
params[1] = normal[1];
params[2] = normal[2];
break;
}
case GL_CURRENT_TEXTURE_COORDS:
{
const auto &texcoord = mGLES1State.mCurrentTextureCoords[mActiveSampler];
params[0] = texcoord.s;
params[1] = texcoord.t;
params[2] = texcoord.r;
params[3] = texcoord.q;
break;
}
case GL_MODELVIEW_MATRIX:
memcpy(params, mGLES1State.mModelviewMatrices.back().data(), 16 * sizeof(GLfloat));
break;
case GL_PROJECTION_MATRIX:
memcpy(params, mGLES1State.mProjectionMatrices.back().data(), 16 * sizeof(GLfloat));
break;
case GL_TEXTURE_MATRIX:
memcpy(params, mGLES1State.mTextureMatrices[mActiveSampler].back().data(),
16 * sizeof(GLfloat));
break;
case GL_LIGHT_MODEL_AMBIENT:
GetLightModelParameters(&mGLES1State, pname, params);
break;
case GL_FOG_MODE:
case GL_FOG_DENSITY:
case GL_FOG_START:
case GL_FOG_END:
case GL_FOG_COLOR:
GetFogParameters(&mGLES1State, pname, params);
break;
case GL_POINT_SIZE:
GetPointSize(&mGLES1State, params);
break;
case GL_POINT_SIZE_MIN:
case GL_POINT_SIZE_MAX:
case GL_POINT_FADE_THRESHOLD_SIZE:
case GL_POINT_DISTANCE_ATTENUATION:
GetPointParameter(&mGLES1State, FromGLenum<PointParameter>(pname), params);
break;
default:
UNREACHABLE();
break;
}
}
Error State::getIntegerv(const Context *context, GLenum pname, GLint *params)
{
if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT)
{
size_t drawBuffer = (pname - GL_DRAW_BUFFER0_EXT);
ASSERT(drawBuffer < mMaxDrawBuffers);
Framebuffer *framebuffer = mDrawFramebuffer;
// The default framebuffer may have fewer draw buffer states than a user-created one. The
// user is always allowed to query up to GL_MAX_DRAWBUFFERS so just return GL_NONE here if
// the draw buffer is out of range for this framebuffer.
*params = drawBuffer < framebuffer->getDrawbufferStateCount()
? framebuffer->getDrawBufferState(drawBuffer)
: GL_NONE;
return NoError();
}
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// State::getFloatv.
switch (pname)
{
case GL_ARRAY_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::Array].id();
break;
case GL_DRAW_INDIRECT_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::DrawIndirect].id();
break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
{
Buffer *elementArrayBuffer = getVertexArray()->getElementArrayBuffer();
*params = elementArrayBuffer ? elementArrayBuffer->id() : 0;
break;
}
case GL_DRAW_FRAMEBUFFER_BINDING:
static_assert(GL_DRAW_FRAMEBUFFER_BINDING == GL_DRAW_FRAMEBUFFER_BINDING_ANGLE,
"Enum mismatch");
*params = mDrawFramebuffer->id();
break;
case GL_READ_FRAMEBUFFER_BINDING:
static_assert(GL_READ_FRAMEBUFFER_BINDING == GL_READ_FRAMEBUFFER_BINDING_ANGLE,
"Enum mismatch");
*params = mReadFramebuffer->id();
break;
case GL_RENDERBUFFER_BINDING:
*params = mRenderbuffer.id();
break;
case GL_VERTEX_ARRAY_BINDING:
*params = mVertexArray->id();
break;
case GL_CURRENT_PROGRAM:
*params = mProgram ? mProgram->id() : 0;
break;
case GL_PACK_ALIGNMENT:
*params = mPack.alignment;
break;
case GL_PACK_REVERSE_ROW_ORDER_ANGLE:
*params = mPack.reverseRowOrder;
break;
case GL_PACK_ROW_LENGTH:
*params = mPack.rowLength;
break;
case GL_PACK_SKIP_ROWS:
*params = mPack.skipRows;
break;
case GL_PACK_SKIP_PIXELS:
*params = mPack.skipPixels;
break;
case GL_UNPACK_ALIGNMENT:
*params = mUnpack.alignment;
break;
case GL_UNPACK_ROW_LENGTH:
*params = mUnpack.rowLength;
break;
case GL_UNPACK_IMAGE_HEIGHT:
*params = mUnpack.imageHeight;
break;
case GL_UNPACK_SKIP_IMAGES:
*params = mUnpack.skipImages;
break;
case GL_UNPACK_SKIP_ROWS:
*params = mUnpack.skipRows;
break;
case GL_UNPACK_SKIP_PIXELS:
*params = mUnpack.skipPixels;
break;
case GL_GENERATE_MIPMAP_HINT:
*params = mGenerateMipmapHint;
break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
*params = mFragmentShaderDerivativeHint;
break;
case GL_ACTIVE_TEXTURE:
*params = (static_cast<GLint>(mActiveSampler) + GL_TEXTURE0);
break;
case GL_STENCIL_FUNC:
*params = mDepthStencil.stencilFunc;
break;
case GL_STENCIL_REF:
*params = mStencilRef;
break;
case GL_STENCIL_VALUE_MASK:
*params = CastMaskValue(context, mDepthStencil.stencilMask);
break;
case GL_STENCIL_BACK_FUNC:
*params = mDepthStencil.stencilBackFunc;
break;
case GL_STENCIL_BACK_REF:
*params = mStencilBackRef;
break;
case GL_STENCIL_BACK_VALUE_MASK:
*params = CastMaskValue(context, mDepthStencil.stencilBackMask);
break;
case GL_STENCIL_FAIL:
*params = mDepthStencil.stencilFail;
break;
case GL_STENCIL_PASS_DEPTH_FAIL:
*params = mDepthStencil.stencilPassDepthFail;
break;
case GL_STENCIL_PASS_DEPTH_PASS:
*params = mDepthStencil.stencilPassDepthPass;
break;
case GL_STENCIL_BACK_FAIL:
*params = mDepthStencil.stencilBackFail;
break;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
*params = mDepthStencil.stencilBackPassDepthFail;
break;
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
*params = mDepthStencil.stencilBackPassDepthPass;
break;
case GL_DEPTH_FUNC:
*params = mDepthStencil.depthFunc;
break;
case GL_BLEND_SRC_RGB:
*params = mBlend.sourceBlendRGB;
break;
case GL_BLEND_SRC_ALPHA:
*params = mBlend.sourceBlendAlpha;
break;
case GL_BLEND_DST_RGB:
*params = mBlend.destBlendRGB;
break;
case GL_BLEND_DST_ALPHA:
*params = mBlend.destBlendAlpha;
break;
case GL_BLEND_EQUATION_RGB:
*params = mBlend.blendEquationRGB;
break;
case GL_BLEND_EQUATION_ALPHA:
*params = mBlend.blendEquationAlpha;
break;
case GL_STENCIL_WRITEMASK:
*params = CastMaskValue(context, mDepthStencil.stencilWritemask);
break;
case GL_STENCIL_BACK_WRITEMASK:
*params = CastMaskValue(context, mDepthStencil.stencilBackWritemask);
break;
case GL_STENCIL_CLEAR_VALUE:
*params = mStencilClearValue;
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
ANGLE_TRY(mReadFramebuffer->getImplementationColorReadType(
context, reinterpret_cast<GLenum *>(params)));
break;
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
ANGLE_TRY(mReadFramebuffer->getImplementationColorReadFormat(
context, reinterpret_cast<GLenum *>(params)));
break;
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
Framebuffer *framebuffer = mDrawFramebuffer;
if (framebuffer->isComplete(context))
{
GLint samples = framebuffer->getSamples(context);
switch (pname)
{
case GL_SAMPLE_BUFFERS:
if (samples != 0)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = samples;
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_VIEWPORT:
params[0] = mViewport.x;
params[1] = mViewport.y;
params[2] = mViewport.width;
params[3] = mViewport.height;
break;
case GL_SCISSOR_BOX:
params[0] = mScissor.x;
params[1] = mScissor.y;
params[2] = mScissor.width;
params[3] = mScissor.height;
break;
case GL_CULL_FACE_MODE:
*params = ToGLenum(mRasterizer.cullMode);
break;
case GL_FRONT_FACE:
*params = mRasterizer.frontFace;
break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
Framebuffer *framebuffer = getDrawFramebuffer();
const FramebufferAttachment *colorbuffer = framebuffer->getFirstColorbuffer();
if (colorbuffer)
{
switch (pname)
{
case GL_RED_BITS:
*params = colorbuffer->getRedSize();
break;
case GL_GREEN_BITS:
*params = colorbuffer->getGreenSize();
break;
case GL_BLUE_BITS:
*params = colorbuffer->getBlueSize();
break;
case GL_ALPHA_BITS:
*params = colorbuffer->getAlphaSize();
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
const Framebuffer *framebuffer = getDrawFramebuffer();
const FramebufferAttachment *depthbuffer = framebuffer->getDepthbuffer();
if (depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
const Framebuffer *framebuffer = getDrawFramebuffer();
const FramebufferAttachment *stencilbuffer = framebuffer->getStencilbuffer();
if (stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params =
getSamplerTextureId(static_cast<unsigned int>(mActiveSampler), TextureType::_2D);
break;
case GL_TEXTURE_BINDING_RECTANGLE_ANGLE:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params = getSamplerTextureId(static_cast<unsigned int>(mActiveSampler),
TextureType::Rectangle);
break;
case GL_TEXTURE_BINDING_CUBE_MAP:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params = getSamplerTextureId(static_cast<unsigned int>(mActiveSampler),
TextureType::CubeMap);
break;
case GL_TEXTURE_BINDING_3D:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params =
getSamplerTextureId(static_cast<unsigned int>(mActiveSampler), TextureType::_3D);
break;
case GL_TEXTURE_BINDING_2D_ARRAY:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params = getSamplerTextureId(static_cast<unsigned int>(mActiveSampler),
TextureType::_2DArray);
break;
case GL_TEXTURE_BINDING_2D_MULTISAMPLE:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params = getSamplerTextureId(static_cast<unsigned int>(mActiveSampler),
TextureType::_2DMultisample);
break;
case GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params = getSamplerTextureId(static_cast<unsigned int>(mActiveSampler),
TextureType::_2DMultisampleArray);
break;
case GL_TEXTURE_BINDING_EXTERNAL_OES:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params = getSamplerTextureId(static_cast<unsigned int>(mActiveSampler),
TextureType::External);
break;
case GL_UNIFORM_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::Uniform].id();
break;
case GL_TRANSFORM_FEEDBACK_BINDING:
*params = mTransformFeedback.id();
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::TransformFeedback].id();
break;
case GL_COPY_READ_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::CopyRead].id();
break;
case GL_COPY_WRITE_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::CopyWrite].id();
break;
case GL_PIXEL_PACK_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::PixelPack].id();
break;
case GL_PIXEL_UNPACK_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::PixelUnpack].id();
break;
case GL_READ_BUFFER:
*params = mReadFramebuffer->getReadBufferState();
break;
case GL_SAMPLER_BINDING:
ASSERT(mActiveSampler < mMaxCombinedTextureImageUnits);
*params = getSamplerId(static_cast<GLuint>(mActiveSampler));
break;
case GL_DEBUG_LOGGED_MESSAGES:
*params = static_cast<GLint>(mDebug.getMessageCount());
break;
case GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH:
*params = static_cast<GLint>(mDebug.getNextMessageLength());
break;
case GL_DEBUG_GROUP_STACK_DEPTH:
*params = static_cast<GLint>(mDebug.getGroupStackDepth());
break;
case GL_MULTISAMPLE_EXT:
*params = static_cast<GLint>(mMultiSampling);
break;
case GL_SAMPLE_ALPHA_TO_ONE_EXT:
*params = static_cast<GLint>(mSampleAlphaToOne);
break;
case GL_COVERAGE_MODULATION_CHROMIUM:
*params = static_cast<GLint>(mCoverageModulation);
break;
case GL_ATOMIC_COUNTER_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::AtomicCounter].id();
break;
case GL_SHADER_STORAGE_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::ShaderStorage].id();
break;
case GL_DISPATCH_INDIRECT_BUFFER_BINDING:
*params = mBoundBuffers[BufferBinding::DispatchIndirect].id();
break;
case GL_ALPHA_TEST_FUNC:
*params = ToGLenum(mGLES1State.mAlphaTestFunc);
break;
case GL_CLIENT_ACTIVE_TEXTURE:
*params = mGLES1State.mClientActiveTexture + GL_TEXTURE0;
break;
case GL_MATRIX_MODE:
*params = ToGLenum(mGLES1State.mMatrixMode);
break;
case GL_SHADE_MODEL:
*params = ToGLenum(mGLES1State.mShadeModel);
break;
case GL_MODELVIEW_STACK_DEPTH:
case GL_PROJECTION_STACK_DEPTH:
case GL_TEXTURE_STACK_DEPTH:
*params = mGLES1State.getCurrentMatrixStackDepth(pname);
break;
case GL_LOGIC_OP_MODE:
*params = ToGLenum(mGLES1State.mLogicOp);
break;
case GL_BLEND_SRC:
*params = mBlend.sourceBlendRGB;
break;
case GL_BLEND_DST:
*params = mBlend.destBlendRGB;
break;
case GL_PERSPECTIVE_CORRECTION_HINT:
case GL_POINT_SMOOTH_HINT:
case GL_LINE_SMOOTH_HINT:
case GL_FOG_HINT:
*params = mGLES1State.getHint(pname);
break;
default:
UNREACHABLE();
break;
}
return NoError();
}
void State::getPointerv(const Context *context, GLenum pname, void **params) const
{
switch (pname)
{
case GL_DEBUG_CALLBACK_FUNCTION:
*params = reinterpret_cast<void *>(mDebug.getCallback());
break;
case GL_DEBUG_CALLBACK_USER_PARAM:
*params = const_cast<void *>(mDebug.getUserParam());
break;
case GL_VERTEX_ARRAY_POINTER:
case GL_NORMAL_ARRAY_POINTER:
case GL_COLOR_ARRAY_POINTER:
case GL_TEXTURE_COORD_ARRAY_POINTER:
case GL_POINT_SIZE_ARRAY_POINTER_OES:
QueryVertexAttribPointerv(getVertexArray()->getVertexAttribute(
context->vertexArrayIndex(ParamToVertexArrayType(pname))),
GL_VERTEX_ATTRIB_ARRAY_POINTER, params);
return;
default:
UNREACHABLE();
break;
}
}
void State::getIntegeri_v(GLenum target, GLuint index, GLint *data)
{
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
ASSERT(static_cast<size_t>(index) < mTransformFeedback->getIndexedBufferCount());
*data = mTransformFeedback->getIndexedBuffer(index).id();
break;
case GL_UNIFORM_BUFFER_BINDING:
ASSERT(static_cast<size_t>(index) < mUniformBuffers.size());
*data = mUniformBuffers[index].id();
break;
case GL_ATOMIC_COUNTER_BUFFER_BINDING:
ASSERT(static_cast<size_t>(index) < mAtomicCounterBuffers.size());
*data = mAtomicCounterBuffers[index].id();
break;
case GL_SHADER_STORAGE_BUFFER_BINDING:
ASSERT(static_cast<size_t>(index) < mShaderStorageBuffers.size());
*data = mShaderStorageBuffers[index].id();
break;
case GL_VERTEX_BINDING_BUFFER:
ASSERT(static_cast<size_t>(index) < mVertexArray->getMaxBindings());
*data = mVertexArray->getVertexBinding(index).getBuffer().id();
break;
case GL_VERTEX_BINDING_DIVISOR:
ASSERT(static_cast<size_t>(index) < mVertexArray->getMaxBindings());
*data = mVertexArray->getVertexBinding(index).getDivisor();
break;
case GL_VERTEX_BINDING_OFFSET:
ASSERT(static_cast<size_t>(index) < mVertexArray->getMaxBindings());
*data = static_cast<GLuint>(mVertexArray->getVertexBinding(index).getOffset());
break;
case GL_VERTEX_BINDING_STRIDE:
ASSERT(static_cast<size_t>(index) < mVertexArray->getMaxBindings());
*data = mVertexArray->getVertexBinding(index).getStride();
break;
case GL_SAMPLE_MASK_VALUE:
ASSERT(static_cast<size_t>(index) < mSampleMaskValues.size());
*data = mSampleMaskValues[index];
break;
case GL_IMAGE_BINDING_NAME:
ASSERT(static_cast<size_t>(index) < mImageUnits.size());
*data = mImageUnits[index].texture.id();
break;
case GL_IMAGE_BINDING_LEVEL:
ASSERT(static_cast<size_t>(index) < mImageUnits.size());
*data = mImageUnits[index].level;
break;
case GL_IMAGE_BINDING_LAYER:
ASSERT(static_cast<size_t>(index) < mImageUnits.size());
*data = mImageUnits[index].layer;
break;
case GL_IMAGE_BINDING_ACCESS:
ASSERT(static_cast<size_t>(index) < mImageUnits.size());
*data = mImageUnits[index].access;
break;
case GL_IMAGE_BINDING_FORMAT:
ASSERT(static_cast<size_t>(index) < mImageUnits.size());
*data = mImageUnits[index].format;
break;
default:
UNREACHABLE();
break;
}
}
void State::getInteger64i_v(GLenum target, GLuint index, GLint64 *data)
{
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_START:
ASSERT(static_cast<size_t>(index) < mTransformFeedback->getIndexedBufferCount());
*data = mTransformFeedback->getIndexedBuffer(index).getOffset();
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE:
ASSERT(static_cast<size_t>(index) < mTransformFeedback->getIndexedBufferCount());
*data = mTransformFeedback->getIndexedBuffer(index).getSize();
break;
case GL_UNIFORM_BUFFER_START:
ASSERT(static_cast<size_t>(index) < mUniformBuffers.size());
*data = mUniformBuffers[index].getOffset();
break;
case GL_UNIFORM_BUFFER_SIZE:
ASSERT(static_cast<size_t>(index) < mUniformBuffers.size());
*data = mUniformBuffers[index].getSize();
break;
case GL_ATOMIC_COUNTER_BUFFER_START:
ASSERT(static_cast<size_t>(index) < mAtomicCounterBuffers.size());
*data = mAtomicCounterBuffers[index].getOffset();
break;
case GL_ATOMIC_COUNTER_BUFFER_SIZE:
ASSERT(static_cast<size_t>(index) < mAtomicCounterBuffers.size());
*data = mAtomicCounterBuffers[index].getSize();
break;
case GL_SHADER_STORAGE_BUFFER_START:
ASSERT(static_cast<size_t>(index) < mShaderStorageBuffers.size());
*data = mShaderStorageBuffers[index].getOffset();
break;
case GL_SHADER_STORAGE_BUFFER_SIZE:
ASSERT(static_cast<size_t>(index) < mShaderStorageBuffers.size());
*data = mShaderStorageBuffers[index].getSize();
break;
default:
UNREACHABLE();
break;
}
}
void State::getBooleani_v(GLenum target, GLuint index, GLboolean *data)
{
switch (target)
{
case GL_IMAGE_BINDING_LAYERED:
ASSERT(static_cast<size_t>(index) < mImageUnits.size());
*data = mImageUnits[index].layered;
break;
default:
UNREACHABLE();
break;
}
}
angle::Result State::syncDirtyObjects(const Context *context, const DirtyObjects &bitset)
{
const DirtyObjects &dirtyObjects = mDirtyObjects & bitset;
for (auto dirtyObject : dirtyObjects)
{
switch (dirtyObject)
{
case DIRTY_OBJECT_READ_FRAMEBUFFER:
ASSERT(mReadFramebuffer);
ANGLE_TRY(mReadFramebuffer->syncState(context));
break;
case DIRTY_OBJECT_DRAW_FRAMEBUFFER:
ASSERT(mDrawFramebuffer);
ANGLE_TRY(mDrawFramebuffer->syncState(context));
break;
case DIRTY_OBJECT_VERTEX_ARRAY:
ASSERT(mVertexArray);
ANGLE_TRY(mVertexArray->syncState(context));
break;
case DIRTY_OBJECT_SAMPLERS:
syncSamplers(context);
break;
case DIRTY_OBJECT_PROGRAM_TEXTURES:
ANGLE_TRY(syncProgramTextures(context));
break;
case DIRTY_OBJECT_PROGRAM:
ANGLE_TRY(mProgram->syncState(context));
break;
default:
UNREACHABLE();
break;
}
}
mDirtyObjects &= ~dirtyObjects;
return angle::Result::Continue();
}
void State::syncSamplers(const Context *context)
{
if (mDirtySamplers.none())
return;
// This could be optimized by tracking which samplers are dirty.
for (size_t samplerIndex : mDirtySamplers)
{
BindingPointer<Sampler> &sampler = mSamplers[samplerIndex];
if (sampler.get())
{
sampler->syncState(context);
}
}
mDirtySamplers.reset();
}
angle::Result State::syncProgramTextures(const Context *context)
{
// TODO(jmadill): Fine-grained updates.
if (!mProgram)
{
return angle::Result::Continue();
}
ASSERT(mDirtyObjects[DIRTY_OBJECT_PROGRAM_TEXTURES]);
mDirtyBits.set(DIRTY_BIT_TEXTURE_BINDINGS);
ActiveTextureMask newActiveTextures;
// Initialize to the 'Initialized' state and set to 'MayNeedInit' if any texture is not
// initialized.
mCachedTexturesInitState = InitState::Initialized;
mCachedImageTexturesInitState = InitState::Initialized;
const ActiveTextureMask &activeTextures = mProgram->getActiveSamplersMask();
const ActiveTextureArray<TextureType> &textureTypes = mProgram->getActiveSamplerTypes();
for (size_t textureUnitIndex : activeTextures)
{
TextureType textureType = textureTypes[textureUnitIndex];
Texture *texture =
getSamplerTexture(static_cast<unsigned int>(textureUnitIndex), textureType);
ASSERT(static_cast<size_t>(textureUnitIndex) < newActiveTextures.size());
ASSERT(texture);
newActiveTextures.set(textureUnitIndex);
ANGLE_TRY(updateActiveTexture(context, textureUnitIndex, texture));
}
// Unset now missing textures.
ActiveTextureMask negativeMask = activeTextures & ~newActiveTextures;
if (negativeMask.any())
{
unsetActiveTextures(negativeMask);
}
for (size_t imageUnitIndex : mProgram->getActiveImagesMask())
{
Texture *texture = mImageUnits[imageUnitIndex].texture.get();
if (!texture)
{
continue;
}
if (texture->hasAnyDirtyBit())
{
ANGLE_TRY(texture->syncState(context));
}
if (texture->initState() == InitState::MayNeedInit)
{
mCachedImageTexturesInitState = InitState::MayNeedInit;
}
}
return angle::Result::Continue();
}
angle::Result State::syncDirtyObject(const Context *context, GLenum target)
{
DirtyObjects localSet;
switch (target)
{
case GL_READ_FRAMEBUFFER:
localSet.set(DIRTY_OBJECT_READ_FRAMEBUFFER);
break;
case GL_DRAW_FRAMEBUFFER:
localSet.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER);
break;
case GL_FRAMEBUFFER:
localSet.set(DIRTY_OBJECT_READ_FRAMEBUFFER);
localSet.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER);
break;
case GL_VERTEX_ARRAY:
localSet.set(DIRTY_OBJECT_VERTEX_ARRAY);
break;
case GL_TEXTURE:
localSet.set(DIRTY_OBJECT_PROGRAM_TEXTURES);
break;
case GL_SAMPLER:
localSet.set(DIRTY_OBJECT_PROGRAM_TEXTURES);
localSet.set(DIRTY_OBJECT_SAMPLERS);
break;
case GL_PROGRAM:
localSet.set(DIRTY_OBJECT_PROGRAM_TEXTURES);
localSet.set(DIRTY_OBJECT_PROGRAM);
break;
}
return syncDirtyObjects(context, localSet);
}
void State::setObjectDirty(GLenum target)
{
switch (target)
{
case GL_READ_FRAMEBUFFER:
mDirtyObjects.set(DIRTY_OBJECT_READ_FRAMEBUFFER);
break;
case GL_DRAW_FRAMEBUFFER:
mDirtyObjects.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER);
break;
case GL_FRAMEBUFFER:
mDirtyObjects.set(DIRTY_OBJECT_READ_FRAMEBUFFER);
mDirtyObjects.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER);
break;
case GL_VERTEX_ARRAY:
mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY);
break;
case GL_TEXTURE:
mDirtyObjects.set(DIRTY_OBJECT_PROGRAM_TEXTURES);
mDirtyBits.set(DIRTY_BIT_TEXTURE_BINDINGS);
break;
case GL_PROGRAM:
mDirtyObjects.set(DIRTY_OBJECT_PROGRAM_TEXTURES);
mDirtyObjects.set(DIRTY_OBJECT_PROGRAM);
mDirtyBits.set(DIRTY_BIT_TEXTURE_BINDINGS);
break;
}
}
angle::Result State::onProgramExecutableChange(const Context *context, Program *program)
{
// OpenGL Spec:
// "If LinkProgram or ProgramBinary successfully re-links a program object
// that was already in use as a result of a previous call to UseProgram, then the
// generated executable code will be installed as part of the current rendering state."
ASSERT(program->isLinked());
mDirtyBits.set(DIRTY_BIT_PROGRAM_EXECUTABLE);
if (program->hasAnyDirtyBit())
{
mDirtyObjects.set(DIRTY_OBJECT_PROGRAM);
}
// Set any bound textures.
const ActiveTextureTypeArray &textureTypes = program->getActiveSamplerTypes();
for (size_t textureIndex : program->getActiveSamplersMask())
{
TextureType type = textureTypes[textureIndex];
// This can happen if there is a conflicting texture type.
if (type == TextureType::InvalidEnum)
continue;
Texture *texture = mSamplerTextures[type][textureIndex].get();
ANGLE_TRY(updateActiveTexture(context, textureIndex, texture));
}
for (size_t imageUnitIndex : program->getActiveImagesMask())
{
Texture *image = mImageUnits[imageUnitIndex].texture.get();
if (!image)
continue;
if (image->hasAnyDirtyBit())
{
ANGLE_TRY(image->syncState(context));
}
if (image->initState() == InitState::MayNeedInit)
{
mCachedImageTexturesInitState = InitState::MayNeedInit;
}
}
return angle::Result::Continue();
}
void State::setSamplerDirty(size_t samplerIndex)
{
mDirtyObjects.set(DIRTY_OBJECT_SAMPLERS);
mDirtySamplers.set(samplerIndex);
}
void State::setImageUnit(const Context *context,
size_t unit,
Texture *texture,
GLint level,
GLboolean layered,
GLint layer,
GLenum access,
GLenum format)
{
mImageUnits[unit].texture.set(context, texture);
mImageUnits[unit].level = level;
mImageUnits[unit].layered = layered;
mImageUnits[unit].layer = layer;
mImageUnits[unit].access = access;
mImageUnits[unit].format = format;
mDirtyBits.set(DIRTY_BIT_IMAGE_BINDINGS);
}
const ImageUnit &State::getImageUnit(size_t unit) const
{
return mImageUnits[unit];
}
// Handle a dirty texture event.
void State::onActiveTextureStateChange(size_t textureIndex)
{
// Conservatively assume all textures are dirty.
// TODO(jmadill): More fine-grained update.
mDirtyObjects.set(DIRTY_OBJECT_PROGRAM_TEXTURES);
if (!mActiveTexturesCache[textureIndex] ||
mActiveTexturesCache[textureIndex]->initState() == InitState::MayNeedInit)
{
mCachedTexturesInitState = InitState::MayNeedInit;
}
}
void State::onUniformBufferStateChange(size_t uniformBufferIndex)
{
// This could be represented by a different dirty bit. Using the same one keeps it simple.
mDirtyBits.set(DIRTY_BIT_UNIFORM_BUFFER_BINDINGS);
}
angle::Result State::clearUnclearedActiveTextures(const Context *context)
{
ASSERT(mRobustResourceInit);
ASSERT(!mDirtyObjects[DIRTY_OBJECT_PROGRAM_TEXTURES]);
if (!mProgram)
return angle::Result::Continue();
if (mCachedTexturesInitState != InitState::Initialized)
{
for (size_t textureUnitIndex : mProgram->getActiveSamplersMask())
{
Texture *texture = mActiveTexturesCache[textureUnitIndex];
if (texture)
{
ANGLE_TRY(texture->ensureInitialized(context));
}
}
mCachedTexturesInitState = InitState::Initialized;
}
if (mCachedImageTexturesInitState != InitState::Initialized)
{
for (size_t imageUnitIndex : mProgram->getActiveImagesMask())
{
Texture *texture = mImageUnits[imageUnitIndex].texture.get();
if (texture)
{
ANGLE_TRY(texture->ensureInitialized(context));
}
}
mCachedImageTexturesInitState = InitState::Initialized;
}
return angle::Result::Continue();
}
AttributesMask State::getAndResetDirtyCurrentValues() const
{
AttributesMask retVal = mDirtyCurrentValues;
mDirtyCurrentValues.reset();
return retVal;
}
bool State::isCurrentTransformFeedback(const TransformFeedback *tf) const
{
return tf == mTransformFeedback.get();
}
} // namespace gl