blob: f5d3a48ef35251e5823af1c37a4f07b8e286c377 [file] [log] [blame]
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramGL.cpp: Implements the class methods for ProgramGL.
#include "libANGLE/renderer/gl/ProgramGL.h"
#include "common/debug.h"
#include "common/utilities.h"
#include "libANGLE/renderer/gl/FunctionsGL.h"
#include "libANGLE/renderer/gl/ShaderGL.h"
#include "libANGLE/renderer/gl/StateManagerGL.h"
#include "libANGLE/renderer/gl/WorkaroundsGL.h"
#include "platform/Platform.h"
namespace rx
{
ProgramGL::ProgramGL(const gl::Program::Data &data,
const FunctionsGL *functions,
const WorkaroundsGL &workarounds,
StateManagerGL *stateManager)
: ProgramImpl(data),
mFunctions(functions),
mWorkarounds(workarounds),
mStateManager(stateManager),
mProgramID(0)
{
ASSERT(mFunctions);
ASSERT(mStateManager);
mProgramID = mFunctions->createProgram();
}
ProgramGL::~ProgramGL()
{
mFunctions->deleteProgram(mProgramID);
mProgramID = 0;
}
LinkResult ProgramGL::load(gl::InfoLog &infoLog, gl::BinaryInputStream *stream)
{
preLink();
// Read the binary format, size and blob
GLenum binaryFormat = stream->readInt<GLenum>();
GLint binaryLength = stream->readInt<GLint>();
const uint8_t *binary = stream->data() + stream->offset();
stream->skip(binaryLength);
// Load the binary
mFunctions->programBinary(mProgramID, binaryFormat, binary, binaryLength);
// Verify that the program linked
if (!checkLinkStatus(infoLog))
{
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
postLink();
return LinkResult(true, gl::Error(GL_NO_ERROR));
}
gl::Error ProgramGL::save(gl::BinaryOutputStream *stream)
{
GLint binaryLength = 0;
mFunctions->getProgramiv(mProgramID, GL_PROGRAM_BINARY_LENGTH, &binaryLength);
std::vector<uint8_t> binary(binaryLength);
GLenum binaryFormat = GL_NONE;
mFunctions->getProgramBinary(mProgramID, binaryLength, &binaryLength, &binaryFormat,
&binary[0]);
stream->writeInt(binaryFormat);
stream->writeInt(binaryLength);
stream->writeBytes(&binary[0], binaryLength);
return gl::Error(GL_NO_ERROR);
}
void ProgramGL::setBinaryRetrievableHint(bool retrievable)
{
// glProgramParameteri isn't always available on ES backends.
if (mFunctions->programParameteri)
{
mFunctions->programParameteri(mProgramID, GL_PROGRAM_BINARY_RETRIEVABLE_HINT,
retrievable ? GL_TRUE : GL_FALSE);
}
}
LinkResult ProgramGL::link(const gl::Data &data, gl::InfoLog &infoLog)
{
preLink();
// Set the transform feedback state
std::vector<const GLchar *> transformFeedbackVaryings;
for (const auto &tfVarying : mData.getTransformFeedbackVaryingNames())
{
transformFeedbackVaryings.push_back(tfVarying.c_str());
}
if (transformFeedbackVaryings.empty())
{
if (mFunctions->transformFeedbackVaryings)
{
mFunctions->transformFeedbackVaryings(mProgramID, 0, nullptr,
mData.getTransformFeedbackBufferMode());
}
}
else
{
ASSERT(mFunctions->transformFeedbackVaryings);
mFunctions->transformFeedbackVaryings(
mProgramID, static_cast<GLsizei>(transformFeedbackVaryings.size()),
&transformFeedbackVaryings[0], mData.getTransformFeedbackBufferMode());
}
const ShaderGL *vertexShaderGL = GetImplAs<ShaderGL>(mData.getAttachedVertexShader());
const ShaderGL *fragmentShaderGL = GetImplAs<ShaderGL>(mData.getAttachedFragmentShader());
// Attach the shaders
mFunctions->attachShader(mProgramID, vertexShaderGL->getShaderID());
mFunctions->attachShader(mProgramID, fragmentShaderGL->getShaderID());
// Bind attribute locations to match the GL layer.
for (const sh::Attribute &attribute : mData.getAttributes())
{
if (!attribute.staticUse)
{
continue;
}
mFunctions->bindAttribLocation(mProgramID, attribute.location, attribute.name.c_str());
}
// Link and verify
mFunctions->linkProgram(mProgramID);
// Detach the shaders
mFunctions->detachShader(mProgramID, vertexShaderGL->getShaderID());
mFunctions->detachShader(mProgramID, fragmentShaderGL->getShaderID());
// Verify the link
if (!checkLinkStatus(infoLog))
{
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
if (mWorkarounds.alwaysCallUseProgramAfterLink)
{
mStateManager->forceUseProgram(mProgramID);
}
postLink();
return LinkResult(true, gl::Error(GL_NO_ERROR));
}
GLboolean ProgramGL::validate(const gl::Caps & /*caps*/, gl::InfoLog * /*infoLog*/)
{
// TODO(jmadill): implement validate
return true;
}
void ProgramGL::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform1fv(uniLoc(location), count, v);
}
void ProgramGL::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform2fv(uniLoc(location), count, v);
}
void ProgramGL::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform3fv(uniLoc(location), count, v);
}
void ProgramGL::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform4fv(uniLoc(location), count, v);
}
void ProgramGL::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform1iv(uniLoc(location), count, v);
const gl::VariableLocation &locationEntry = mData.getUniformLocations()[location];
size_t samplerIndex = mUniformIndexToSamplerIndex[locationEntry.index];
if (samplerIndex != GL_INVALID_INDEX)
{
std::vector<GLuint> &boundTextureUnits = mSamplerBindings[samplerIndex].boundTextureUnits;
size_t copyCount =
std::max<size_t>(count, boundTextureUnits.size() - locationEntry.element);
std::copy(v, v + copyCount, boundTextureUnits.begin() + locationEntry.element);
}
}
void ProgramGL::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform2iv(uniLoc(location), count, v);
}
void ProgramGL::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform3iv(uniLoc(location), count, v);
}
void ProgramGL::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform4iv(uniLoc(location), count, v);
}
void ProgramGL::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform1uiv(location, count, v);
}
void ProgramGL::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform2uiv(uniLoc(location), count, v);
}
void ProgramGL::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform3uiv(uniLoc(location), count, v);
}
void ProgramGL::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniform4uiv(uniLoc(location), count, v);
}
void ProgramGL::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix2fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix3fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix4fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix2x3fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix3x2fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix2x4fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix4x2fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix3x4fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
mStateManager->useProgram(mProgramID);
mFunctions->uniformMatrix4x3fv(uniLoc(location), count, transpose, value);
}
void ProgramGL::setUniformBlockBinding(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
// Lazy init
if (mUniformBlockRealLocationMap.empty())
{
mUniformBlockRealLocationMap.reserve(mData.getUniformBlocks().size());
for (const gl::UniformBlock &uniformBlock : mData.getUniformBlocks())
{
const std::string &nameWithIndex = uniformBlock.nameWithArrayIndex();
GLuint blockIndex = mFunctions->getUniformBlockIndex(mProgramID, nameWithIndex.c_str());
mUniformBlockRealLocationMap.push_back(blockIndex);
}
}
GLuint realBlockIndex = mUniformBlockRealLocationMap[uniformBlockIndex];
if (realBlockIndex != GL_INVALID_INDEX)
{
mFunctions->uniformBlockBinding(mProgramID, realBlockIndex, uniformBlockBinding);
}
}
GLuint ProgramGL::getProgramID() const
{
return mProgramID;
}
const std::vector<SamplerBindingGL> &ProgramGL::getAppliedSamplerUniforms() const
{
return mSamplerBindings;
}
bool ProgramGL::getUniformBlockSize(const std::string &blockName, size_t *sizeOut) const
{
ASSERT(mProgramID != 0u);
GLuint blockIndex = mFunctions->getUniformBlockIndex(mProgramID, blockName.c_str());
if (blockIndex == GL_INVALID_INDEX)
{
*sizeOut = 0;
return false;
}
GLint dataSize = 0;
mFunctions->getActiveUniformBlockiv(mProgramID, blockIndex, GL_UNIFORM_BLOCK_DATA_SIZE,
&dataSize);
*sizeOut = static_cast<size_t>(dataSize);
return true;
}
bool ProgramGL::getUniformBlockMemberInfo(const std::string &memberUniformName,
sh::BlockMemberInfo *memberInfoOut) const
{
GLuint uniformIndex;
const GLchar *memberNameGLStr = memberUniformName.c_str();
mFunctions->getUniformIndices(mProgramID, 1, &memberNameGLStr, &uniformIndex);
if (uniformIndex == GL_INVALID_INDEX)
{
*memberInfoOut = sh::BlockMemberInfo::getDefaultBlockInfo();
return false;
}
mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_OFFSET,
&memberInfoOut->offset);
mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_ARRAY_STRIDE,
&memberInfoOut->arrayStride);
mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_MATRIX_STRIDE,
&memberInfoOut->matrixStride);
// TODO(jmadill): possibly determine this at the gl::Program level.
GLint isRowMajorMatrix = 0;
mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_IS_ROW_MAJOR,
&isRowMajorMatrix);
memberInfoOut->isRowMajorMatrix = isRowMajorMatrix != GL_FALSE;
return true;
}
void ProgramGL::preLink()
{
// Reset the program state
mUniformRealLocationMap.clear();
mUniformBlockRealLocationMap.clear();
mSamplerBindings.clear();
mUniformIndexToSamplerIndex.clear();
}
bool ProgramGL::checkLinkStatus(gl::InfoLog &infoLog)
{
GLint linkStatus = GL_FALSE;
mFunctions->getProgramiv(mProgramID, GL_LINK_STATUS, &linkStatus);
if (linkStatus == GL_FALSE)
{
// Linking failed, put the error into the info log
GLint infoLogLength = 0;
mFunctions->getProgramiv(mProgramID, GL_INFO_LOG_LENGTH, &infoLogLength);
std::string warning;
// Info log length includes the null terminator, so 1 means that the info log is an empty
// string.
if (infoLogLength > 1)
{
std::vector<char> buf(infoLogLength);
mFunctions->getProgramInfoLog(mProgramID, infoLogLength, nullptr, &buf[0]);
mFunctions->deleteProgram(mProgramID);
mProgramID = 0;
infoLog << buf.data();
warning = FormatString("Program link failed unexpectedly: %s", buf.data());
}
else
{
warning = "Program link failed unexpectedly with no info log.";
}
ANGLEPlatformCurrent()->logWarning(warning.c_str());
TRACE("\n%s", warning.c_str());
// TODO, return GL_OUT_OF_MEMORY or just fail the link? This is an unexpected case
return false;
}
return true;
}
void ProgramGL::postLink()
{
// Query the uniform information
ASSERT(mUniformRealLocationMap.empty());
const auto &uniformLocations = mData.getUniformLocations();
const auto &uniforms = mData.getUniforms();
mUniformRealLocationMap.resize(uniformLocations.size(), GL_INVALID_INDEX);
for (size_t uniformLocation = 0; uniformLocation < uniformLocations.size(); uniformLocation++)
{
const auto &entry = uniformLocations[uniformLocation];
if (!entry.used)
{
continue;
}
// From the spec:
// "Locations for sequential array indices are not required to be sequential."
const gl::LinkedUniform &uniform = uniforms[entry.index];
std::stringstream fullNameStr;
fullNameStr << uniform.name;
if (uniform.isArray())
{
fullNameStr << "[" << entry.element << "]";
}
const std::string &fullName = fullNameStr.str();
GLint realLocation = mFunctions->getUniformLocation(mProgramID, fullName.c_str());
mUniformRealLocationMap[uniformLocation] = realLocation;
}
mUniformIndexToSamplerIndex.resize(mData.getUniforms().size(), GL_INVALID_INDEX);
for (size_t uniformId = 0; uniformId < uniforms.size(); ++uniformId)
{
const gl::LinkedUniform &linkedUniform = uniforms[uniformId];
if (!linkedUniform.isSampler() || !linkedUniform.staticUse)
continue;
mUniformIndexToSamplerIndex[uniformId] = mSamplerBindings.size();
// If uniform is a sampler type, insert it into the mSamplerBindings array
SamplerBindingGL samplerBinding;
samplerBinding.textureType = gl::SamplerTypeToTextureType(linkedUniform.type);
samplerBinding.boundTextureUnits.resize(linkedUniform.elementCount(), 0);
mSamplerBindings.push_back(samplerBinding);
}
}
} // namespace rx