blob: c64c15528a32731f13c61b139c61e927738a295b [file] [log] [blame]
Jamie Madillb1a85f42014-08-19 15:23:24 -04001//
2// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
3// Use of this source code is governed by a BSD-style license that can be
4// found in the LICENSE file.
5//
6
7//
8// Build the intermediate representation.
9//
10
11#include <float.h>
12#include <limits.h>
13#include <algorithm>
14
15#include "compiler/translator/HashNames.h"
16#include "compiler/translator/IntermNode.h"
17#include "compiler/translator/SymbolTable.h"
18
19namespace
20{
21
22TPrecision GetHigherPrecision(TPrecision left, TPrecision right)
23{
24 return left > right ? left : right;
25}
26
27bool ValidateMultiplication(TOperator op, const TType &left, const TType &right)
28{
29 switch (op)
30 {
31 case EOpMul:
32 case EOpMulAssign:
33 return left.getNominalSize() == right.getNominalSize() &&
34 left.getSecondarySize() == right.getSecondarySize();
35 case EOpVectorTimesScalar:
36 case EOpVectorTimesScalarAssign:
37 return true;
38 case EOpVectorTimesMatrix:
39 return left.getNominalSize() == right.getRows();
40 case EOpVectorTimesMatrixAssign:
41 return left.getNominalSize() == right.getRows() &&
42 left.getNominalSize() == right.getCols();
43 case EOpMatrixTimesVector:
44 return left.getCols() == right.getNominalSize();
45 case EOpMatrixTimesScalar:
46 case EOpMatrixTimesScalarAssign:
47 return true;
48 case EOpMatrixTimesMatrix:
49 return left.getCols() == right.getRows();
50 case EOpMatrixTimesMatrixAssign:
51 return left.getCols() == right.getCols() &&
52 left.getRows() == right.getRows();
53
54 default:
55 UNREACHABLE();
56 return false;
57 }
58}
59
60bool CompareStructure(const TType& leftNodeType,
61 ConstantUnion *rightUnionArray,
62 ConstantUnion *leftUnionArray);
63
64bool CompareStruct(const TType &leftNodeType,
65 ConstantUnion *rightUnionArray,
66 ConstantUnion *leftUnionArray)
67{
68 const TFieldList &fields = leftNodeType.getStruct()->fields();
69
70 size_t structSize = fields.size();
71 size_t index = 0;
72
73 for (size_t j = 0; j < structSize; j++)
74 {
75 size_t size = fields[j]->type()->getObjectSize();
76 for (size_t i = 0; i < size; i++)
77 {
78 if (fields[j]->type()->getBasicType() == EbtStruct)
79 {
80 if (!CompareStructure(*fields[j]->type(),
81 &rightUnionArray[index],
82 &leftUnionArray[index]))
83 {
84 return false;
85 }
86 }
87 else
88 {
89 if (leftUnionArray[index] != rightUnionArray[index])
90 return false;
91 index++;
92 }
93 }
94 }
95 return true;
96}
97
98bool CompareStructure(const TType &leftNodeType,
99 ConstantUnion *rightUnionArray,
100 ConstantUnion *leftUnionArray)
101{
102 if (leftNodeType.isArray())
103 {
104 TType typeWithoutArrayness = leftNodeType;
105 typeWithoutArrayness.clearArrayness();
106
107 size_t arraySize = leftNodeType.getArraySize();
108
109 for (size_t i = 0; i < arraySize; ++i)
110 {
111 size_t offset = typeWithoutArrayness.getObjectSize() * i;
112 if (!CompareStruct(typeWithoutArrayness,
113 &rightUnionArray[offset],
114 &leftUnionArray[offset]))
115 {
116 return false;
117 }
118 }
119 }
120 else
121 {
122 return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
123 }
124 return true;
125}
126
127} // namespace anonymous
128
129
130////////////////////////////////////////////////////////////////
131//
132// Member functions of the nodes used for building the tree.
133//
134////////////////////////////////////////////////////////////////
135
Olli Etuahod2a67b92014-10-21 16:42:57 +0300136void TIntermTyped::setTypePreservePrecision(const TType &t)
137{
138 TPrecision precision = getPrecision();
139 mType = t;
140 ASSERT(mType.getBasicType() != EbtBool || precision == EbpUndefined);
141 mType.setPrecision(precision);
142}
143
Jamie Madillb1a85f42014-08-19 15:23:24 -0400144#define REPLACE_IF_IS(node, type, original, replacement) \
145 if (node == original) { \
146 node = static_cast<type *>(replacement); \
147 return true; \
148 }
149
150bool TIntermLoop::replaceChildNode(
151 TIntermNode *original, TIntermNode *replacement)
152{
153 REPLACE_IF_IS(mInit, TIntermNode, original, replacement);
154 REPLACE_IF_IS(mCond, TIntermTyped, original, replacement);
155 REPLACE_IF_IS(mExpr, TIntermTyped, original, replacement);
156 REPLACE_IF_IS(mBody, TIntermNode, original, replacement);
157 return false;
158}
159
Jamie Madillb1a85f42014-08-19 15:23:24 -0400160bool TIntermBranch::replaceChildNode(
161 TIntermNode *original, TIntermNode *replacement)
162{
163 REPLACE_IF_IS(mExpression, TIntermTyped, original, replacement);
164 return false;
165}
166
Jamie Madillb1a85f42014-08-19 15:23:24 -0400167bool TIntermBinary::replaceChildNode(
168 TIntermNode *original, TIntermNode *replacement)
169{
170 REPLACE_IF_IS(mLeft, TIntermTyped, original, replacement);
171 REPLACE_IF_IS(mRight, TIntermTyped, original, replacement);
172 return false;
173}
174
Jamie Madillb1a85f42014-08-19 15:23:24 -0400175bool TIntermUnary::replaceChildNode(
176 TIntermNode *original, TIntermNode *replacement)
177{
178 REPLACE_IF_IS(mOperand, TIntermTyped, original, replacement);
179 return false;
180}
181
Jamie Madillb1a85f42014-08-19 15:23:24 -0400182bool TIntermAggregate::replaceChildNode(
183 TIntermNode *original, TIntermNode *replacement)
184{
185 for (size_t ii = 0; ii < mSequence.size(); ++ii)
186 {
187 REPLACE_IF_IS(mSequence[ii], TIntermNode, original, replacement);
188 }
189 return false;
190}
191
Olli Etuahod2a67b92014-10-21 16:42:57 +0300192void TIntermAggregate::setPrecisionFromChildren()
193{
194 if (getBasicType() == EbtBool)
195 {
196 mType.setPrecision(EbpUndefined);
197 return;
198 }
199
200 TPrecision precision = EbpUndefined;
201 TIntermSequence::iterator childIter = mSequence.begin();
202 while (childIter != mSequence.end())
203 {
204 TIntermTyped *typed = (*childIter)->getAsTyped();
205 if (typed)
206 precision = GetHigherPrecision(typed->getPrecision(), precision);
207 ++childIter;
208 }
209 mType.setPrecision(precision);
210}
211
212void TIntermAggregate::setBuiltInFunctionPrecision()
213{
214 // All built-ins returning bool should be handled as ops, not functions.
215 ASSERT(getBasicType() != EbtBool);
216
217 TPrecision precision = EbpUndefined;
218 TIntermSequence::iterator childIter = mSequence.begin();
219 while (childIter != mSequence.end())
220 {
221 TIntermTyped *typed = (*childIter)->getAsTyped();
222 // ESSL spec section 8: texture functions get their precision from the sampler.
223 if (typed && IsSampler(typed->getBasicType()))
224 {
225 precision = typed->getPrecision();
226 break;
227 }
228 ++childIter;
229 }
230 // ESSL 3.0 spec section 8: textureSize always gets highp precision.
231 // All other functions that take a sampler are assumed to be texture functions.
232 if (mName.find("textureSize") == 0)
233 mType.setPrecision(EbpHigh);
234 else
235 mType.setPrecision(precision);
236}
237
Jamie Madillb1a85f42014-08-19 15:23:24 -0400238bool TIntermSelection::replaceChildNode(
239 TIntermNode *original, TIntermNode *replacement)
240{
241 REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement);
242 REPLACE_IF_IS(mTrueBlock, TIntermNode, original, replacement);
243 REPLACE_IF_IS(mFalseBlock, TIntermNode, original, replacement);
244 return false;
245}
246
Jamie Madillb1a85f42014-08-19 15:23:24 -0400247//
248// Say whether or not an operation node changes the value of a variable.
249//
250bool TIntermOperator::isAssignment() const
251{
252 switch (mOp)
253 {
254 case EOpPostIncrement:
255 case EOpPostDecrement:
256 case EOpPreIncrement:
257 case EOpPreDecrement:
258 case EOpAssign:
259 case EOpAddAssign:
260 case EOpSubAssign:
261 case EOpMulAssign:
262 case EOpVectorTimesMatrixAssign:
263 case EOpVectorTimesScalarAssign:
264 case EOpMatrixTimesScalarAssign:
265 case EOpMatrixTimesMatrixAssign:
266 case EOpDivAssign:
Gregoire Payen de La Garanderiebe954a22014-12-23 00:05:28 +0000267 case EOpModAssign:
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200268 case EOpBitShiftLeftAssign:
269 case EOpBitShiftRightAssign:
270 case EOpBitwiseAndAssign:
271 case EOpBitwiseXorAssign:
272 case EOpBitwiseOrAssign:
Jamie Madillb1a85f42014-08-19 15:23:24 -0400273 return true;
274 default:
275 return false;
276 }
277}
278
279//
280// returns true if the operator is for one of the constructors
281//
282bool TIntermOperator::isConstructor() const
283{
284 switch (mOp)
285 {
286 case EOpConstructVec2:
287 case EOpConstructVec3:
288 case EOpConstructVec4:
289 case EOpConstructMat2:
290 case EOpConstructMat3:
291 case EOpConstructMat4:
292 case EOpConstructFloat:
293 case EOpConstructIVec2:
294 case EOpConstructIVec3:
295 case EOpConstructIVec4:
296 case EOpConstructInt:
297 case EOpConstructUVec2:
298 case EOpConstructUVec3:
299 case EOpConstructUVec4:
300 case EOpConstructUInt:
301 case EOpConstructBVec2:
302 case EOpConstructBVec3:
303 case EOpConstructBVec4:
304 case EOpConstructBool:
305 case EOpConstructStruct:
306 return true;
307 default:
308 return false;
309 }
310}
311
312//
313// Make sure the type of a unary operator is appropriate for its
314// combination of operation and operand type.
315//
316// Returns false in nothing makes sense.
317//
318bool TIntermUnary::promote(TInfoSink &)
319{
320 switch (mOp)
321 {
322 case EOpLogicalNot:
323 if (mOperand->getBasicType() != EbtBool)
324 return false;
325 break;
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200326 // bit-wise not is already checked
327 case EOpBitwiseNot:
328 break;
329
Jamie Madillb1a85f42014-08-19 15:23:24 -0400330 case EOpNegative:
Zhenyao Mode1e00e2014-10-09 16:55:32 -0700331 case EOpPositive:
Jamie Madillb1a85f42014-08-19 15:23:24 -0400332 case EOpPostIncrement:
333 case EOpPostDecrement:
334 case EOpPreIncrement:
335 case EOpPreDecrement:
336 if (mOperand->getBasicType() == EbtBool)
337 return false;
338 break;
339
340 // operators for built-ins are already type checked against their prototype
341 case EOpAny:
342 case EOpAll:
343 case EOpVectorLogicalNot:
Olli Etuahoe8d2c072015-01-08 16:33:54 +0200344 case EOpIntBitsToFloat:
345 case EOpUintBitsToFloat:
Olli Etuaho7700ff62015-01-15 12:16:29 +0200346 case EOpUnpackSnorm2x16:
347 case EOpUnpackUnorm2x16:
348 case EOpUnpackHalf2x16:
Jamie Madillb1a85f42014-08-19 15:23:24 -0400349 return true;
350
351 default:
352 if (mOperand->getBasicType() != EbtFloat)
353 return false;
354 }
355
356 setType(mOperand->getType());
357 mType.setQualifier(EvqTemporary);
358
359 return true;
360}
361
362//
363// Establishes the type of the resultant operation, as well as
364// makes the operator the correct one for the operands.
365//
366// Returns false if operator can't work on operands.
367//
368bool TIntermBinary::promote(TInfoSink &infoSink)
369{
370 // This function only handles scalars, vectors, and matrices.
371 if (mLeft->isArray() || mRight->isArray())
372 {
373 infoSink.info.message(EPrefixInternalError, getLine(),
374 "Invalid operation for arrays");
375 return false;
376 }
377
378 // GLSL ES 2.0 does not support implicit type casting.
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200379 // So the basic type should usually match.
380 bool basicTypesMustMatch = true;
381
382 // Check ops which require integer / ivec parameters
383 switch (mOp)
384 {
385 case EOpBitShiftLeft:
386 case EOpBitShiftRight:
387 case EOpBitShiftLeftAssign:
388 case EOpBitShiftRightAssign:
389 // Unsigned can be bit-shifted by signed and vice versa, but we need to
390 // check that the basic type is an integer type.
391 basicTypesMustMatch = false;
392 if (!IsInteger(mLeft->getBasicType()) || !IsInteger(mRight->getBasicType()))
393 {
394 return false;
395 }
396 break;
397 case EOpBitwiseAnd:
398 case EOpBitwiseXor:
399 case EOpBitwiseOr:
400 case EOpBitwiseAndAssign:
401 case EOpBitwiseXorAssign:
402 case EOpBitwiseOrAssign:
403 // It is enough to check the type of only one operand, since later it
404 // is checked that the operand types match.
405 if (!IsInteger(mLeft->getBasicType()))
406 {
407 return false;
408 }
409 break;
410 default:
411 break;
412 }
413
414 if (basicTypesMustMatch && mLeft->getBasicType() != mRight->getBasicType())
Jamie Madillb1a85f42014-08-19 15:23:24 -0400415 {
416 return false;
417 }
418
419 //
420 // Base assumption: just make the type the same as the left
421 // operand. Then only deviations from this need be coded.
422 //
423 setType(mLeft->getType());
424
425 // The result gets promoted to the highest precision.
426 TPrecision higherPrecision = GetHigherPrecision(
427 mLeft->getPrecision(), mRight->getPrecision());
428 getTypePointer()->setPrecision(higherPrecision);
429
430 // Binary operations results in temporary variables unless both
431 // operands are const.
432 if (mLeft->getQualifier() != EvqConst || mRight->getQualifier() != EvqConst)
433 {
434 getTypePointer()->setQualifier(EvqTemporary);
435 }
436
437 const int nominalSize =
438 std::max(mLeft->getNominalSize(), mRight->getNominalSize());
439
440 //
441 // All scalars or structs. Code after this test assumes this case is removed!
442 //
443 if (nominalSize == 1)
444 {
445 switch (mOp)
446 {
447 //
448 // Promote to conditional
449 //
450 case EOpEqual:
451 case EOpNotEqual:
452 case EOpLessThan:
453 case EOpGreaterThan:
454 case EOpLessThanEqual:
455 case EOpGreaterThanEqual:
456 setType(TType(EbtBool, EbpUndefined));
457 break;
458
459 //
460 // And and Or operate on conditionals
461 //
462 case EOpLogicalAnd:
463 case EOpLogicalOr:
464 // Both operands must be of type bool.
465 if (mLeft->getBasicType() != EbtBool || mRight->getBasicType() != EbtBool)
466 {
467 return false;
468 }
469 setType(TType(EbtBool, EbpUndefined));
470 break;
471
472 default:
473 break;
474 }
475 return true;
476 }
477
478 // If we reach here, at least one of the operands is vector or matrix.
479 // The other operand could be a scalar, vector, or matrix.
480 // Can these two operands be combined?
481 //
482 TBasicType basicType = mLeft->getBasicType();
483 switch (mOp)
484 {
485 case EOpMul:
486 if (!mLeft->isMatrix() && mRight->isMatrix())
487 {
488 if (mLeft->isVector())
489 {
490 mOp = EOpVectorTimesMatrix;
491 setType(TType(basicType, higherPrecision, EvqTemporary,
492 mRight->getCols(), 1));
493 }
494 else
495 {
496 mOp = EOpMatrixTimesScalar;
497 setType(TType(basicType, higherPrecision, EvqTemporary,
498 mRight->getCols(), mRight->getRows()));
499 }
500 }
501 else if (mLeft->isMatrix() && !mRight->isMatrix())
502 {
503 if (mRight->isVector())
504 {
505 mOp = EOpMatrixTimesVector;
506 setType(TType(basicType, higherPrecision, EvqTemporary,
507 mLeft->getRows(), 1));
508 }
509 else
510 {
511 mOp = EOpMatrixTimesScalar;
512 }
513 }
514 else if (mLeft->isMatrix() && mRight->isMatrix())
515 {
516 mOp = EOpMatrixTimesMatrix;
517 setType(TType(basicType, higherPrecision, EvqTemporary,
518 mRight->getCols(), mLeft->getRows()));
519 }
520 else if (!mLeft->isMatrix() && !mRight->isMatrix())
521 {
522 if (mLeft->isVector() && mRight->isVector())
523 {
524 // leave as component product
525 }
526 else if (mLeft->isVector() || mRight->isVector())
527 {
528 mOp = EOpVectorTimesScalar;
529 setType(TType(basicType, higherPrecision, EvqTemporary,
530 nominalSize, 1));
531 }
532 }
533 else
534 {
535 infoSink.info.message(EPrefixInternalError, getLine(),
536 "Missing elses");
537 return false;
538 }
539
540 if (!ValidateMultiplication(mOp, mLeft->getType(), mRight->getType()))
541 {
542 return false;
543 }
544 break;
545
546 case EOpMulAssign:
547 if (!mLeft->isMatrix() && mRight->isMatrix())
548 {
549 if (mLeft->isVector())
550 {
551 mOp = EOpVectorTimesMatrixAssign;
552 }
553 else
554 {
555 return false;
556 }
557 }
558 else if (mLeft->isMatrix() && !mRight->isMatrix())
559 {
560 if (mRight->isVector())
561 {
562 return false;
563 }
564 else
565 {
566 mOp = EOpMatrixTimesScalarAssign;
567 }
568 }
569 else if (mLeft->isMatrix() && mRight->isMatrix())
570 {
571 mOp = EOpMatrixTimesMatrixAssign;
572 setType(TType(basicType, higherPrecision, EvqTemporary,
573 mRight->getCols(), mLeft->getRows()));
574 }
575 else if (!mLeft->isMatrix() && !mRight->isMatrix())
576 {
577 if (mLeft->isVector() && mRight->isVector())
578 {
579 // leave as component product
580 }
581 else if (mLeft->isVector() || mRight->isVector())
582 {
583 if (!mLeft->isVector())
584 return false;
585 mOp = EOpVectorTimesScalarAssign;
586 setType(TType(basicType, higherPrecision, EvqTemporary,
587 mLeft->getNominalSize(), 1));
588 }
589 }
590 else
591 {
592 infoSink.info.message(EPrefixInternalError, getLine(),
593 "Missing elses");
594 return false;
595 }
596
597 if (!ValidateMultiplication(mOp, mLeft->getType(), mRight->getType()))
598 {
599 return false;
600 }
601 break;
602
603 case EOpAssign:
604 case EOpInitialize:
605 case EOpAdd:
606 case EOpSub:
607 case EOpDiv:
Gregoire Payen de La Garanderiebe954a22014-12-23 00:05:28 +0000608 case EOpMod:
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200609 case EOpBitShiftLeft:
610 case EOpBitShiftRight:
611 case EOpBitwiseAnd:
612 case EOpBitwiseXor:
613 case EOpBitwiseOr:
Jamie Madillb1a85f42014-08-19 15:23:24 -0400614 case EOpAddAssign:
615 case EOpSubAssign:
616 case EOpDivAssign:
Gregoire Payen de La Garanderiebe954a22014-12-23 00:05:28 +0000617 case EOpModAssign:
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200618 case EOpBitShiftLeftAssign:
619 case EOpBitShiftRightAssign:
620 case EOpBitwiseAndAssign:
621 case EOpBitwiseXorAssign:
622 case EOpBitwiseOrAssign:
Jamie Madillb1a85f42014-08-19 15:23:24 -0400623 if ((mLeft->isMatrix() && mRight->isVector()) ||
624 (mLeft->isVector() && mRight->isMatrix()))
625 {
626 return false;
627 }
628
629 // Are the sizes compatible?
630 if (mLeft->getNominalSize() != mRight->getNominalSize() ||
631 mLeft->getSecondarySize() != mRight->getSecondarySize())
632 {
Olli Etuaho6c850472014-12-02 16:23:17 +0200633 // If the nominal sizes of operands do not match:
634 // One of them must be a scalar.
Jamie Madillb1a85f42014-08-19 15:23:24 -0400635 if (!mLeft->isScalar() && !mRight->isScalar())
636 return false;
637
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200638 // In the case of compound assignment other than multiply-assign,
639 // the right side needs to be a scalar. Otherwise a vector/matrix
640 // would be assigned to a scalar. A scalar can't be shifted by a
641 // vector either.
Olli Etuaho6c850472014-12-02 16:23:17 +0200642 if (!mRight->isScalar() &&
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200643 (isAssignment() ||
644 mOp == EOpBitShiftLeft ||
645 mOp == EOpBitShiftRight))
Olli Etuaho6c850472014-12-02 16:23:17 +0200646 return false;
647
Jamie Madillb1a85f42014-08-19 15:23:24 -0400648 // Operator cannot be of type pure assignment.
649 if (mOp == EOpAssign || mOp == EOpInitialize)
650 return false;
651 }
652
653 {
654 const int secondarySize = std::max(
655 mLeft->getSecondarySize(), mRight->getSecondarySize());
656 setType(TType(basicType, higherPrecision, EvqTemporary,
657 nominalSize, secondarySize));
658 }
659 break;
660
661 case EOpEqual:
662 case EOpNotEqual:
663 case EOpLessThan:
664 case EOpGreaterThan:
665 case EOpLessThanEqual:
666 case EOpGreaterThanEqual:
667 if ((mLeft->getNominalSize() != mRight->getNominalSize()) ||
668 (mLeft->getSecondarySize() != mRight->getSecondarySize()))
669 {
670 return false;
671 }
672 setType(TType(EbtBool, EbpUndefined));
673 break;
674
675 default:
676 return false;
677 }
678 return true;
679}
680
681//
682// The fold functions see if an operation on a constant can be done in place,
683// without generating run-time code.
684//
685// Returns the node to keep using, which may or may not be the node passed in.
686//
687TIntermTyped *TIntermConstantUnion::fold(
688 TOperator op, TIntermTyped *constantNode, TInfoSink &infoSink)
689{
690 ConstantUnion *unionArray = getUnionArrayPointer();
691
692 if (!unionArray)
693 return NULL;
694
695 size_t objectSize = getType().getObjectSize();
696
697 if (constantNode)
698 {
699 // binary operations
700 TIntermConstantUnion *node = constantNode->getAsConstantUnion();
701 ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
702 TType returnType = getType();
703
704 if (!rightUnionArray)
705 return NULL;
706
707 // for a case like float f = 1.2 + vec4(2,3,4,5);
708 if (constantNode->getType().getObjectSize() == 1 && objectSize > 1)
709 {
710 rightUnionArray = new ConstantUnion[objectSize];
711 for (size_t i = 0; i < objectSize; ++i)
712 {
713 rightUnionArray[i] = *node->getUnionArrayPointer();
714 }
715 returnType = getType();
716 }
717 else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1)
718 {
719 // for a case like float f = vec4(2,3,4,5) + 1.2;
720 unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
721 for (size_t i = 0; i < constantNode->getType().getObjectSize(); ++i)
722 {
723 unionArray[i] = *getUnionArrayPointer();
724 }
725 returnType = node->getType();
726 objectSize = constantNode->getType().getObjectSize();
727 }
728
729 ConstantUnion *tempConstArray = NULL;
730 TIntermConstantUnion *tempNode;
731
732 bool boolNodeFlag = false;
733 switch(op)
734 {
735 case EOpAdd:
736 tempConstArray = new ConstantUnion[objectSize];
737 for (size_t i = 0; i < objectSize; i++)
738 tempConstArray[i] = unionArray[i] + rightUnionArray[i];
739 break;
740 case EOpSub:
741 tempConstArray = new ConstantUnion[objectSize];
742 for (size_t i = 0; i < objectSize; i++)
743 tempConstArray[i] = unionArray[i] - rightUnionArray[i];
744 break;
745
746 case EOpMul:
747 case EOpVectorTimesScalar:
748 case EOpMatrixTimesScalar:
749 tempConstArray = new ConstantUnion[objectSize];
750 for (size_t i = 0; i < objectSize; i++)
751 tempConstArray[i] = unionArray[i] * rightUnionArray[i];
752 break;
753
754 case EOpMatrixTimesMatrix:
755 {
756 if (getType().getBasicType() != EbtFloat ||
757 node->getBasicType() != EbtFloat)
758 {
759 infoSink.info.message(
760 EPrefixInternalError, getLine(),
761 "Constant Folding cannot be done for matrix multiply");
762 return NULL;
763 }
764
765 const int leftCols = getCols();
766 const int leftRows = getRows();
767 const int rightCols = constantNode->getType().getCols();
768 const int rightRows = constantNode->getType().getRows();
769 const int resultCols = rightCols;
770 const int resultRows = leftRows;
771
772 tempConstArray = new ConstantUnion[resultCols*resultRows];
773 for (int row = 0; row < resultRows; row++)
774 {
775 for (int column = 0; column < resultCols; column++)
776 {
777 tempConstArray[resultRows * column + row].setFConst(0.0f);
778 for (int i = 0; i < leftCols; i++)
779 {
780 tempConstArray[resultRows * column + row].setFConst(
781 tempConstArray[resultRows * column + row].getFConst() +
782 unionArray[i * leftRows + row].getFConst() *
783 rightUnionArray[column * rightRows + i].getFConst());
784 }
785 }
786 }
787
788 // update return type for matrix product
789 returnType.setPrimarySize(resultCols);
790 returnType.setSecondarySize(resultRows);
791 }
792 break;
793
794 case EOpDiv:
Gregoire Payen de La Garanderiebe954a22014-12-23 00:05:28 +0000795 case EOpMod:
Jamie Madillb1a85f42014-08-19 15:23:24 -0400796 {
797 tempConstArray = new ConstantUnion[objectSize];
798 for (size_t i = 0; i < objectSize; i++)
799 {
800 switch (getType().getBasicType())
801 {
802 case EbtFloat:
803 if (rightUnionArray[i] == 0.0f)
804 {
805 infoSink.info.message(
806 EPrefixWarning, getLine(),
807 "Divide by zero error during constant folding");
808 tempConstArray[i].setFConst(
809 unionArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX);
810 }
811 else
812 {
813 tempConstArray[i].setFConst(
814 unionArray[i].getFConst() /
815 rightUnionArray[i].getFConst());
816 }
817 break;
818
819 case EbtInt:
820 if (rightUnionArray[i] == 0)
821 {
822 infoSink.info.message(
823 EPrefixWarning, getLine(),
824 "Divide by zero error during constant folding");
825 tempConstArray[i].setIConst(INT_MAX);
826 }
827 else
828 {
829 tempConstArray[i].setIConst(
830 unionArray[i].getIConst() /
831 rightUnionArray[i].getIConst());
832 }
833 break;
834
835 case EbtUInt:
836 if (rightUnionArray[i] == 0)
837 {
838 infoSink.info.message(
839 EPrefixWarning, getLine(),
840 "Divide by zero error during constant folding");
841 tempConstArray[i].setUConst(UINT_MAX);
842 }
843 else
844 {
845 tempConstArray[i].setUConst(
846 unionArray[i].getUConst() /
847 rightUnionArray[i].getUConst());
848 }
849 break;
850
851 default:
852 infoSink.info.message(
853 EPrefixInternalError, getLine(),
854 "Constant folding cannot be done for \"/\"");
855 return NULL;
856 }
857 }
858 }
859 break;
860
861 case EOpMatrixTimesVector:
862 {
863 if (node->getBasicType() != EbtFloat)
864 {
865 infoSink.info.message(
866 EPrefixInternalError, getLine(),
867 "Constant Folding cannot be done for matrix times vector");
868 return NULL;
869 }
870
871 const int matrixCols = getCols();
872 const int matrixRows = getRows();
873
874 tempConstArray = new ConstantUnion[matrixRows];
875
876 for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
877 {
878 tempConstArray[matrixRow].setFConst(0.0f);
879 for (int col = 0; col < matrixCols; col++)
880 {
881 tempConstArray[matrixRow].setFConst(
882 tempConstArray[matrixRow].getFConst() +
883 unionArray[col * matrixRows + matrixRow].getFConst() *
884 rightUnionArray[col].getFConst());
885 }
886 }
887
888 returnType = node->getType();
889 returnType.setPrimarySize(matrixRows);
890
891 tempNode = new TIntermConstantUnion(tempConstArray, returnType);
892 tempNode->setLine(getLine());
893
894 return tempNode;
895 }
896
897 case EOpVectorTimesMatrix:
898 {
899 if (getType().getBasicType() != EbtFloat)
900 {
901 infoSink.info.message(
902 EPrefixInternalError, getLine(),
903 "Constant Folding cannot be done for vector times matrix");
904 return NULL;
905 }
906
907 const int matrixCols = constantNode->getType().getCols();
908 const int matrixRows = constantNode->getType().getRows();
909
910 tempConstArray = new ConstantUnion[matrixCols];
911
912 for (int matrixCol = 0; matrixCol < matrixCols; matrixCol++)
913 {
914 tempConstArray[matrixCol].setFConst(0.0f);
915 for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
916 {
917 tempConstArray[matrixCol].setFConst(
918 tempConstArray[matrixCol].getFConst() +
919 unionArray[matrixRow].getFConst() *
920 rightUnionArray[matrixCol * matrixRows + matrixRow].getFConst());
921 }
922 }
923
924 returnType.setPrimarySize(matrixCols);
925 }
926 break;
927
928 case EOpLogicalAnd:
929 // this code is written for possible future use,
930 // will not get executed currently
931 {
932 tempConstArray = new ConstantUnion[objectSize];
933 for (size_t i = 0; i < objectSize; i++)
934 {
935 tempConstArray[i] = unionArray[i] && rightUnionArray[i];
936 }
937 }
938 break;
939
940 case EOpLogicalOr:
941 // this code is written for possible future use,
942 // will not get executed currently
943 {
944 tempConstArray = new ConstantUnion[objectSize];
945 for (size_t i = 0; i < objectSize; i++)
946 {
947 tempConstArray[i] = unionArray[i] || rightUnionArray[i];
948 }
949 }
950 break;
951
952 case EOpLogicalXor:
953 {
954 tempConstArray = new ConstantUnion[objectSize];
955 for (size_t i = 0; i < objectSize; i++)
956 {
957 switch (getType().getBasicType())
958 {
959 case EbtBool:
960 tempConstArray[i].setBConst(
961 unionArray[i] == rightUnionArray[i] ? false : true);
962 break;
963 default:
964 UNREACHABLE();
965 break;
966 }
967 }
968 }
969 break;
970
Olli Etuaho31b5fc62015-01-16 12:13:36 +0200971 case EOpBitwiseAnd:
972 tempConstArray = new ConstantUnion[objectSize];
973 for (size_t i = 0; i < objectSize; i++)
974 tempConstArray[i] = unionArray[i] & rightUnionArray[i];
975 break;
976 case EOpBitwiseXor:
977 tempConstArray = new ConstantUnion[objectSize];
978 for (size_t i = 0; i < objectSize; i++)
979 tempConstArray[i] = unionArray[i] ^ rightUnionArray[i];
980 break;
981 case EOpBitwiseOr:
982 tempConstArray = new ConstantUnion[objectSize];
983 for (size_t i = 0; i < objectSize; i++)
984 tempConstArray[i] = unionArray[i] | rightUnionArray[i];
985 break;
986 case EOpBitShiftLeft:
987 tempConstArray = new ConstantUnion[objectSize];
988 for (size_t i = 0; i < objectSize; i++)
989 tempConstArray[i] = unionArray[i] << rightUnionArray[i];
990 break;
991 case EOpBitShiftRight:
992 tempConstArray = new ConstantUnion[objectSize];
993 for (size_t i = 0; i < objectSize; i++)
994 tempConstArray[i] = unionArray[i] >> rightUnionArray[i];
995 break;
996
Jamie Madillb1a85f42014-08-19 15:23:24 -0400997 case EOpLessThan:
998 ASSERT(objectSize == 1);
999 tempConstArray = new ConstantUnion[1];
1000 tempConstArray->setBConst(*unionArray < *rightUnionArray);
1001 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1002 break;
1003
1004 case EOpGreaterThan:
1005 ASSERT(objectSize == 1);
1006 tempConstArray = new ConstantUnion[1];
1007 tempConstArray->setBConst(*unionArray > *rightUnionArray);
1008 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1009 break;
1010
1011 case EOpLessThanEqual:
1012 {
1013 ASSERT(objectSize == 1);
1014 ConstantUnion constant;
1015 constant.setBConst(*unionArray > *rightUnionArray);
1016 tempConstArray = new ConstantUnion[1];
1017 tempConstArray->setBConst(!constant.getBConst());
1018 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1019 break;
1020 }
1021
1022 case EOpGreaterThanEqual:
1023 {
1024 ASSERT(objectSize == 1);
1025 ConstantUnion constant;
1026 constant.setBConst(*unionArray < *rightUnionArray);
1027 tempConstArray = new ConstantUnion[1];
1028 tempConstArray->setBConst(!constant.getBConst());
1029 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1030 break;
1031 }
1032
1033 case EOpEqual:
1034 if (getType().getBasicType() == EbtStruct)
1035 {
1036 if (!CompareStructure(node->getType(),
1037 node->getUnionArrayPointer(),
1038 unionArray))
1039 {
1040 boolNodeFlag = true;
1041 }
1042 }
1043 else
1044 {
1045 for (size_t i = 0; i < objectSize; i++)
1046 {
1047 if (unionArray[i] != rightUnionArray[i])
1048 {
1049 boolNodeFlag = true;
1050 break; // break out of for loop
1051 }
1052 }
1053 }
1054
1055 tempConstArray = new ConstantUnion[1];
1056 if (!boolNodeFlag)
1057 {
1058 tempConstArray->setBConst(true);
1059 }
1060 else
1061 {
1062 tempConstArray->setBConst(false);
1063 }
1064
1065 tempNode = new TIntermConstantUnion(
1066 tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
1067 tempNode->setLine(getLine());
1068
1069 return tempNode;
1070
1071 case EOpNotEqual:
1072 if (getType().getBasicType() == EbtStruct)
1073 {
1074 if (CompareStructure(node->getType(),
1075 node->getUnionArrayPointer(),
1076 unionArray))
1077 {
1078 boolNodeFlag = true;
1079 }
1080 }
1081 else
1082 {
1083 for (size_t i = 0; i < objectSize; i++)
1084 {
1085 if (unionArray[i] == rightUnionArray[i])
1086 {
1087 boolNodeFlag = true;
1088 break; // break out of for loop
1089 }
1090 }
1091 }
1092
1093 tempConstArray = new ConstantUnion[1];
1094 if (!boolNodeFlag)
1095 {
1096 tempConstArray->setBConst(true);
1097 }
1098 else
1099 {
1100 tempConstArray->setBConst(false);
1101 }
1102
1103 tempNode = new TIntermConstantUnion(
1104 tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
1105 tempNode->setLine(getLine());
1106
1107 return tempNode;
1108
1109 default:
1110 infoSink.info.message(
1111 EPrefixInternalError, getLine(),
1112 "Invalid operator for constant folding");
1113 return NULL;
1114 }
1115 tempNode = new TIntermConstantUnion(tempConstArray, returnType);
1116 tempNode->setLine(getLine());
1117
1118 return tempNode;
1119 }
1120 else
1121 {
1122 //
1123 // Do unary operations
1124 //
1125 TIntermConstantUnion *newNode = 0;
1126 ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
1127 for (size_t i = 0; i < objectSize; i++)
1128 {
1129 switch(op)
1130 {
1131 case EOpNegative:
1132 switch (getType().getBasicType())
1133 {
1134 case EbtFloat:
1135 tempConstArray[i].setFConst(-unionArray[i].getFConst());
1136 break;
1137 case EbtInt:
1138 tempConstArray[i].setIConst(-unionArray[i].getIConst());
1139 break;
1140 case EbtUInt:
1141 tempConstArray[i].setUConst(static_cast<unsigned int>(
1142 -static_cast<int>(unionArray[i].getUConst())));
1143 break;
1144 default:
1145 infoSink.info.message(
1146 EPrefixInternalError, getLine(),
1147 "Unary operation not folded into constant");
1148 return NULL;
1149 }
1150 break;
1151
Zhenyao Mode1e00e2014-10-09 16:55:32 -07001152 case EOpPositive:
1153 switch (getType().getBasicType())
1154 {
1155 case EbtFloat:
1156 tempConstArray[i].setFConst(unionArray[i].getFConst());
1157 break;
1158 case EbtInt:
1159 tempConstArray[i].setIConst(unionArray[i].getIConst());
1160 break;
1161 case EbtUInt:
1162 tempConstArray[i].setUConst(static_cast<unsigned int>(
1163 static_cast<int>(unionArray[i].getUConst())));
1164 break;
1165 default:
1166 infoSink.info.message(
1167 EPrefixInternalError, getLine(),
1168 "Unary operation not folded into constant");
1169 return NULL;
1170 }
1171 break;
1172
Jamie Madillb1a85f42014-08-19 15:23:24 -04001173 case EOpLogicalNot:
1174 // this code is written for possible future use,
1175 // will not get executed currently
1176 switch (getType().getBasicType())
1177 {
1178 case EbtBool:
1179 tempConstArray[i].setBConst(!unionArray[i].getBConst());
1180 break;
1181 default:
1182 infoSink.info.message(
1183 EPrefixInternalError, getLine(),
1184 "Unary operation not folded into constant");
1185 return NULL;
1186 }
1187 break;
1188
Olli Etuaho31b5fc62015-01-16 12:13:36 +02001189 case EOpBitwiseNot:
1190 switch (getType().getBasicType())
1191 {
1192 case EbtInt:
1193 tempConstArray[i].setIConst(~unionArray[i].getIConst());
1194 break;
1195 case EbtUInt:
1196 tempConstArray[i].setUConst(~unionArray[i].getUConst());
1197 break;
1198 default:
1199 infoSink.info.message(
1200 EPrefixInternalError, getLine(),
1201 "Unary operation not folded into constant");
1202 return NULL;
1203 }
1204 break;
1205
Jamie Madillb1a85f42014-08-19 15:23:24 -04001206 default:
1207 return NULL;
1208 }
1209 }
1210 newNode = new TIntermConstantUnion(tempConstArray, getType());
1211 newNode->setLine(getLine());
1212 return newNode;
1213 }
1214}
1215
1216// static
1217TString TIntermTraverser::hash(const TString &name, ShHashFunction64 hashFunction)
1218{
1219 if (hashFunction == NULL || name.empty())
1220 return name;
1221 khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length());
1222 TStringStream stream;
1223 stream << HASHED_NAME_PREFIX << std::hex << number;
1224 TString hashedName = stream.str();
1225 return hashedName;
1226}
Olli Etuaho853dc1a2014-11-06 17:25:48 +02001227
1228void TIntermTraverser::updateTree()
1229{
1230 for (size_t ii = 0; ii < mReplacements.size(); ++ii)
1231 {
1232 const NodeUpdateEntry& entry = mReplacements[ii];
1233 ASSERT(entry.parent);
1234 bool replaced = entry.parent->replaceChildNode(
1235 entry.original, entry.replacement);
1236 ASSERT(replaced);
1237
1238 if (!entry.originalBecomesChildOfReplacement)
1239 {
1240 // In AST traversing, a parent is visited before its children.
1241 // After we replace a node, if an immediate child is to
1242 // be replaced, we need to make sure we don't update the replaced
1243 // node; instead, we update the replacement node.
1244 for (size_t jj = ii + 1; jj < mReplacements.size(); ++jj)
1245 {
1246 NodeUpdateEntry& entry2 = mReplacements[jj];
1247 if (entry2.parent == entry.original)
1248 entry2.parent = entry.replacement;
1249 }
1250 }
1251 }
1252}