blob: e118737040ad66d8f3b5937143cf16d90bf2b93e [file] [log] [blame]
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +01001/*
2 * Double-precision x^y function.
3 *
4 * Copyright (c) 2018, Arm Limited.
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20#include <math.h>
21#include <stdint.h>
22#include "math_config.h"
23
24/*
25Worst-case error: 0.67 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
26relerr_log: 1.8 * 2^-66 (Relative error of log)
27ulperr_exp: 0.509 ULP (ULP error of exp)
28*/
29
30#define T __pow_log_data.tab
31#define B __pow_log_data.poly1
32#define A __pow_log_data.poly
33#define Ln2hi __pow_log_data.ln2hi
34#define Ln2lo __pow_log_data.ln2lo
35#define N (1 << POW_LOG_TABLE_BITS)
36#define OFF 0x3fe6000000000000
37
38static inline uint32_t
Szabolcs Nagy2117b832018-06-14 10:54:06 +010039top12 (double x)
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +010040{
Szabolcs Nagy2117b832018-06-14 10:54:06 +010041 return asuint64 (x) >> 52;
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +010042}
43
44static inline double_t
45log_inline (uint64_t ix, double_t *tail)
46{
47 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
48 double_t w, z, zhi, zlo, r, r2, r3, y, invc, logc, kd, hi, lo, khi, rhi, rlo, p, q;
49 uint64_t iz, tmp;
50 int k, i;
51
52#if POW_LOG_POLY1_ORDER == 9
53# define LO asuint64 (1 - 0x1.1p-7)
54# define HI asuint64 (1 + 0x1.98p-7)
55#endif
56 if (unlikely (ix - LO < HI - LO))
57 {
58 r = asdouble (ix) - 1.0;
59 /* Split r into top and bottom half. */
60 w = r * 0x1p27;
61 rhi = r + w - w;
62 rlo = r - rhi;
63 /* Compute r - r*r/2 precisely into hi+lo. */
64 w = rhi*rhi*B[0]; /* B[0] == -0.5. */
65 hi = r + w;
66 lo = r - hi + w;
67 lo += B[0]*rlo*(rhi + r);
68 r2 = r*r;
69 r3 = r*r2;
70#if POW_LOG_POLY1_ORDER == 9
71 p = B[1] + r*(B[2] + r*B[3] + r2*B[4] + r3*(B[5] + r*B[6] + r2*B[7]));
72#endif
73 q = lo + r3*p;
74 y = hi + q;
75 *tail = (hi - y) + q;
76 return y;
77 }
78
79 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
80 The range is split into N subintervals.
81 The ith subinterval contains z and c is near its center. */
82 tmp = ix - OFF;
83 i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
84 k = (int64_t) tmp >> 52; /* arithmetic shift */
85 iz = ix - (tmp & 0xfffULL << 52);
86 invc = T[i].invc;
87 logc = T[i].logc;
88 z = asdouble (iz);
89 zhi = asdouble ((iz + (1ULL<<31)) & (-1ULL << 32));
90 zlo = z - zhi;
91
92 /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
93 rhi = zhi * invc - 1.0;
94 rlo = zlo * invc;
95 kd = (double_t) k;
96
97 /* hi + lo = r + log(c) + k*Ln2. */
98 khi = kd * Ln2hi;
99 w = khi + logc;
100 lo = khi - w + logc;
101 hi = w + rhi;
102 lo = w - hi + rhi + (lo + kd*Ln2lo) + rlo;
103
104 /* log(x) = lo + (log1p(r) - r) + hi. */
105 /* Evaluation is optimized assuming superscalar pipelined execution. */
106#if HAVE_FAST_FMA
107 r = fma (z, invc, -1.0);
108#else
109 r = rhi + rlo;
110#endif
111 r2 = r * r;
112
113#if POW_LOG_POLY_ORDER == 7
114 p = lo + r*r2*(A[1] + r*A[2] + r2*(A[3] + r*A[4] + r2*A[5]));
115#endif
116 q = A[0]*r2; /* A[0] == -0.5. */
117 w = q + hi;
118 p += hi - w + q;
119 y = p + w;
120 *tail = w - y + p;
121 return y;
122}
123
124#undef N
125#undef T
126#define N (1 << EXP_TABLE_BITS)
127#define InvLn2N __exp_data.invln2N
128#define NegLn2hiN __exp_data.negln2hiN
129#define NegLn2loN __exp_data.negln2loN
130#define Shift __exp_data.shift
131#define T __exp_data.tab
132#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
133#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
134#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
135#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
136#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
137
138static inline double
139specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
140{
141 double_t scale, y;
142
143 if ((ki & 0x80000000) == 0)
144 {
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100145 /* k > 0, the exponent of scale might have overflowed by <= 460. */
146 sbits -= 1009ull << 52;
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100147 scale = asdouble (sbits);
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100148 y = 0x1p1009 * (scale + scale * tmp);
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100149 return check_oflow (y);
150 }
151 /* k < 0, need special care in the subnormal range. */
152 sbits += 1022ull << 52;
153 /* Note: sbits is signed scale. */
154 scale = asdouble (sbits);
155 y = scale + scale * tmp;
156 if (fabs (y) < 1.0)
157 {
158 /* Round y to the right precision before scaling it into the subnormal
159 range to avoid double rounding that can cause 0.5+E/2 ulp error where
160 E is the worst-case ulp error outside the subnormal range. So this
161 is only useful if the goal is better than 1 ulp worst-case error. */
162 double_t hi, lo, one = 1.0;
163 if (y < 0.0)
164 one = -1.0;
165 lo = scale - y + scale * tmp;
166 hi = one + y;
167 lo = one - hi + y + lo;
168 y = eval_as_double (hi + lo) - one;
169 /* Avoid -0.0 with downward rounding. */
170 if (WANT_ROUNDING && y == 0.0)
171 y = asdouble (sbits & 0x8000000000000000);
172 /* The underflow exception needs to be signaled explicitly. */
Szabolcs Nagy5fa69e12018-06-12 17:18:24 +0100173 force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100174 }
175 y = 0x1p-1022 * y;
176 return check_uflow (y);
177}
178
179#define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
180
181static inline double
182exp_inline (double x, double xtail, uint32_t sign_bias)
183{
184 uint32_t abstop;
185 uint64_t ki, idx, top, sbits;
186 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
187 double_t kd, z, r, r2, scale, tail, tmp;
188
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100189 abstop = top12 (x) & 0x7ff;
190 if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100191 {
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100192 if (abstop - top12 (0x1p-54) >= 0x80000000)
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100193 {
194 /* Avoid spurious underflow for tiny x. */
195 /* Note: 0 is common input. */
196 double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
197 return sign_bias ? -one : one;
198 }
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100199 if (abstop >= top12 (1024.0))
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100200 {
201 /* Note: inf and nan are already handled. */
202 if (asuint64 (x) >> 63)
203 return __math_uflow (sign_bias);
204 else
205 return __math_oflow (sign_bias);
206 }
207 /* Large x is special cased below. */
208 abstop = 0;
209 }
210
211 /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
212 /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
213 z = InvLn2N * x;
214#if TOINT_INTRINSICS
215 kd = roundtoint (z);
216 ki = converttoint (z);
217#elif EXP_USE_TOINT_NARROW
218 /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
219 kd = eval_as_double (z + Shift);
220 ki = asuint64 (kd) >> 16;
221 kd = (double_t) (int32_t) ki;
222#else
223 /* z - kd is in [-1, 1] in non-nearest rounding modes. */
224 kd = eval_as_double (z + Shift);
225 ki = asuint64 (kd);
226 kd -= Shift;
227#endif
228 r = x + kd*NegLn2hiN + kd*NegLn2loN;
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100229 /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100230 r += xtail;
231 /* 2^(k/N) ~= scale * (1 + tail). */
232 idx = 2*(ki % N);
233 top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
234 tail = asdouble (T[idx]);
235 /* This is only a valid scale when -1023*N < k < 1024*N. */
236 sbits = T[idx + 1] + top;
237 /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
238 /* Evaluation is optimized assuming superscalar pipelined execution. */
239 r2 = r*r;
240 /* Without fma the worst case error is 0.25/N ulp larger. */
241 /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
242#if EXP_POLY_ORDER == 4
243 tmp = tail + r + r2*C2 + r*r2*(C3 + r*C4);
244#elif EXP_POLY_ORDER == 5
245 tmp = tail + r + r2*(C2 + r*C3) + r2*r2*(C4 + r*C5);
246#elif EXP_POLY_ORDER == 6
247 tmp = tail + r + r2*(0.5 + r*C3) + r2*r2*(C4 + r*C5 + r2*C6);
248#endif
249 if (unlikely (abstop == 0))
250 return specialcase (tmp, sbits, ki);
251 scale = asdouble (sbits);
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100252 /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
253 is no spurious underflow here even without fma. */
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100254 return scale + scale * tmp;
255}
256
257/* Returns 0 if not int, 1 if odd int, 2 if even int. */
258static inline int
259checkint (uint64_t iy)
260{
261 int e = iy >> 52 & 0x7ff;
262 if (e < 0x3ff)
263 return 0;
264 if (e > 0x3ff + 52)
265 return 2;
266 if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
267 return 0;
268 if (iy & (1ULL << (0x3ff + 52 - e)))
269 return 1;
270 return 2;
271}
272
273static inline int
274zeroinfnan (uint64_t i)
275{
276 return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
277}
278
279double
280pow (double x, double y)
281{
282 uint64_t sign_bias = 0;
283 uint64_t ix, iy;
284 uint32_t topx, topy;
285
286 ix = asuint64 (x);
287 iy = asuint64 (y);
Szabolcs Nagy2117b832018-06-14 10:54:06 +0100288 topx = top12 (x);
289 topy = top12 (y);
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100290 if (unlikely (topx - 0x001 >= 0x7ff - 0x001 || (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be))
291 {
292 /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
293 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
294 /* Special cases: (x < 0x1p-126 or inf or nan) or
295 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
296 if (unlikely (zeroinfnan (iy)))
297 {
298 if (2 * iy == 0)
299 return issignaling_inline (x) ? x + y : 1.0;
300 if (ix == asuint64 (1.0))
301 return issignaling_inline (y) ? x + y : 1.0;
302 if (2 * ix > 2 * asuint64 (INFINITY) || 2 * iy > 2 * asuint64 (INFINITY))
303 return x + y;
304 if (2 * ix == 2 * asuint64 (1.0))
305 return 1.0;
306 if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
307 return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
308 return y * y;
309 }
310 if (unlikely (zeroinfnan (ix)))
311 {
312 double_t x2 = x * x;
313 if (ix >> 63 && checkint (iy) == 1)
314 {
315 x2 = -x2;
316 sign_bias = 1;
317 }
318 if (WANT_ERRNO && 2 * ix == 0 && iy >> 63)
319 return __math_divzero (sign_bias);
Szabolcs Nagy5fa69e12018-06-12 17:18:24 +0100320 /* Without the barrier some versions of clang hoist the 1/x2 and
321 thus division by zero exception can be signaled spuriously. */
322 return iy >> 63 ? opt_barrier_double (1 / x2) : x2;
Szabolcs Nagyed0ecff2018-06-06 18:17:16 +0100323 }
324 /* Here x and y are non-zero finite. */
325 if (ix >> 63)
326 {
327 /* Finite x < 0. */
328 int yint = checkint (iy);
329 if (yint == 0)
330 return __math_invalid (x);
331 if (yint == 1)
332 sign_bias = SIGN_BIAS;
333 ix &= 0x7fffffffffffffff;
334 topx &= 0x7ff;
335 }
336 if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)
337 {
338 /* Note: sign_bias == 0 here because y is not odd. */
339 if (ix == asuint64 (1.0))
340 return 1.0;
341 if ((topy & 0x7ff) < 0x3be)
342 {
343 /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
344 if (WANT_ROUNDING)
345 return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y;
346 else
347 return 1.0;
348 }
349 return (ix > asuint64 (1.0)) == (topy < 0x800)
350 ? __math_oflow (0) : __math_uflow (0);
351 }
352 if (topx == 0)
353 {
354 /* Normalize subnormal x so exponent becomes negative. */
355 ix = asuint64 (x * 0x1p52);
356 ix &= 0x7fffffffffffffff;
357 ix -= 52ULL << 52;
358 }
359 }
360
361 double_t lo;
362 double_t hi = log_inline (ix, &lo);
363 double_t ehi, elo;
364#if HAVE_FAST_FMA
365 ehi = y*hi;
366 elo = y*lo + fma (y, hi, -ehi);
367#else
368 double_t yhi = asdouble (iy & -1ULL << 27);
369 double_t ylo = y - yhi;
370 double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27);
371 double_t llo = hi - lhi + lo;
372 ehi = yhi*lhi;
373 elo = ylo*lhi + y*llo; /* |elo| < |ehi| * 2^-25. */
374#endif
375 return exp_inline (ehi, elo, sign_bias);
376}
Szabolcs Nagyb7d568d2018-06-06 12:26:56 +0100377#if USE_GLIBC_ABI
378strong_alias (pow, __pow_finite)
379hidden_alias (pow, __ieee754_pow)
380#endif