| Szabolcs Nagy | d69e504 | 2018-06-05 16:15:27 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Double-precision log2(x) function. |
| 3 | * |
| 4 | * Copyright (c) 2018, Arm Limited. |
| 5 | * SPDX-License-Identifier: Apache-2.0 |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | * you may not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | */ |
| 19 | |
| 20 | #include <math.h> |
| 21 | #include <stdint.h> |
| 22 | #include "math_config.h" |
| 23 | |
| 24 | #define T __log2_data.tab |
| 25 | #define T2 __log2_data.tab2 |
| 26 | #define B __log2_data.poly1 |
| 27 | #define A __log2_data.poly |
| 28 | #define InvLn2hi __log2_data.invln2hi |
| 29 | #define InvLn2lo __log2_data.invln2lo |
| 30 | #define N (1 << LOG2_TABLE_BITS) |
| 31 | #define OFF 0x3fe6000000000000 |
| 32 | |
| 33 | static inline uint32_t |
| 34 | top16 (double x) |
| 35 | { |
| 36 | return asuint64 (x) >> 48; |
| 37 | } |
| 38 | |
| 39 | double |
| 40 | log2 (double x) |
| 41 | { |
| 42 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
| 43 | double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; |
| 44 | uint64_t ix, iz, tmp; |
| 45 | uint32_t top; |
| 46 | int k, i; |
| 47 | |
| 48 | ix = asuint64 (x); |
| 49 | top = top16 (x); |
| 50 | |
| 51 | #if LOG2_POLY1_ORDER == 11 |
| 52 | # define LO asuint64 (1.0 - 0x1.5b51p-5) |
| 53 | # define HI asuint64 (1.0 + 0x1.6ab2p-5) |
| 54 | #endif |
| 55 | if (unlikely (ix - LO < HI - LO)) |
| 56 | { |
| 57 | /* Handle close to 1.0 inputs separately. */ |
| 58 | /* Fix sign of zero with downward rounding when x==1. */ |
| 59 | if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0))) |
| 60 | return 0; |
| 61 | r = x - 1.0; |
| 62 | #if HAVE_FAST_FMA |
| 63 | hi = r*InvLn2hi; |
| 64 | lo = r*InvLn2lo + fma (r, InvLn2hi, -hi); |
| 65 | #else |
| 66 | double_t rhi, rlo; |
| 67 | rhi = asdouble (asuint64 (r) & -1ULL<<32); |
| 68 | rlo = r - rhi; |
| 69 | hi = rhi*InvLn2hi; |
| 70 | lo = rlo*InvLn2hi + r*InvLn2lo; |
| 71 | #endif |
| 72 | r2 = r * r; /* rounding error: 0x1p-62. */ |
| 73 | r4 = r2 * r2; |
| 74 | #if LOG2_POLY1_ORDER == 11 |
| 75 | /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ |
| 76 | p = r2*(B[0] + r*B[1]); |
| 77 | y = hi + p; |
| 78 | lo += hi - y + p; |
| 79 | lo += r4*(B[2] + r*B[3] + r2*(B[4] + r*B[5]) |
| 80 | + r4*(B[6] + r*B[7] + r2*(B[8] + r*B[9]))); |
| 81 | y += lo; |
| 82 | #endif |
| 83 | return y; |
| 84 | } |
| 85 | if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) |
| 86 | { |
| 87 | /* x < 0x1p-1022 or inf or nan. */ |
| 88 | if (ix * 2 == 0) |
| 89 | return __math_divzero (1); |
| 90 | if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ |
| 91 | return x; |
| 92 | if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
| 93 | return __math_invalid (x); |
| 94 | /* x is subnormal, normalize it. */ |
| 95 | ix = asuint64 (x * 0x1p52); |
| 96 | ix -= 52ULL << 52; |
| 97 | } |
| 98 | |
| 99 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
| 100 | The range is split into N subintervals. |
| 101 | The ith subinterval contains z and c is near its center. */ |
| 102 | tmp = ix - OFF; |
| 103 | i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; |
| 104 | k = (int64_t) tmp >> 52; /* arithmetic shift */ |
| 105 | iz = ix - (tmp & 0xfffULL << 52); |
| 106 | invc = T[i].invc; |
| 107 | logc = T[i].logc; |
| 108 | z = asdouble (iz); |
| 109 | kd = (double_t) k; |
| 110 | |
| 111 | /* log2(x) = log2(z/c) + log2(c) + k. */ |
| 112 | /* r ~= z/c - 1, |r| < 1/(2*N). */ |
| 113 | #if HAVE_FAST_FMA |
| 114 | /* rounding error: 0x1p-55/N. */ |
| 115 | r = fma (z, invc, -1.0); |
| 116 | t1 = r*InvLn2hi; |
| 117 | t2 = r*InvLn2lo + fma (r, InvLn2hi, -t1); |
| 118 | #else |
| 119 | double_t rhi, rlo; |
| 120 | /* rounding error: 0x1p-55/N + 0x1p-65. */ |
| 121 | r = (z - T2[i].chi - T2[i].clo)*invc; |
| 122 | rhi = asdouble (asuint64 (r) & -1ULL << 32); |
| 123 | rlo = r - rhi; |
| 124 | t1 = rhi*InvLn2hi; |
| 125 | t2 = rlo*InvLn2hi + r*InvLn2lo; |
| 126 | #endif |
| 127 | |
| 128 | /* hi + lo = r/ln2 + log2(c) + k. */ |
| 129 | t3 = kd + logc; |
| 130 | hi = t3 + t1; |
| 131 | lo = t3 - hi + t1 + t2; |
| 132 | |
| 133 | /* log2(r+1) = r/ln2 + r^2*poly(r). */ |
| 134 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
| 135 | r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
| 136 | r4 = r2 * r2; |
| 137 | #if LOG2_POLY_ORDER == 7 |
| 138 | /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). |
| 139 | ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ |
| 140 | p = A[0] + r*A[1] + r2*(A[2] + r*A[3]) + r4*(A[4] + r*A[5]); |
| 141 | y = lo + r2*p + hi; |
| 142 | #endif |
| 143 | return y; |
| 144 | } |