blob: b878082aeeecca2afa9f089cec78a15473eae485 [file] [log] [blame]
/*
* Copyright (c) 2014-2016, Freescale Semiconductor, Inc.
* Copyright 2017-2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <arch_helpers.h>
#include <cassert.h>
#include <common/debug.h>
#include <csf_hdr.h>
#include <dcfg.h>
#include <drivers/auth/crypto_mod.h>
#include <lib/utils.h>
#include <sfp.h>
/* Maximum OID string length ("a.b.c.d.e.f ...") */
#define MAX_OID_STR_LEN 64
#define LIB_NAME "NXP CSFv2"
#ifdef CSF_HDR_CH3
/* Barker Code for LS Ch3 ESBC Header */
static const uint8_t barker_code[CSF_BARKER_LEN] = { 0x12, 0x19, 0x20, 0x01 };
#else
static const uint8_t barker_code[CSF_BARKER_LEN] = { 0x68, 0x39, 0x27, 0x81 };
#endif
#define CHECK_KEY_LEN(key_len) (((key_len) == 2 * RSA_1K_KEY_SZ_BYTES) || \
((key_len) == 2 * RSA_2K_KEY_SZ_BYTES) || \
((key_len) == 2 * RSA_4K_KEY_SZ_BYTES))
/* Flag to indicate if values are there in rotpk_hash_table */
bool rotpk_not_dpld = true;
uint8_t rotpk_hash_table[MAX_KEY_ENTRIES][SHA256_BYTES];
uint32_t num_rotpk_hash_entries;
/*
* This function deploys the hashes of the various platform keys in
* rotpk_hash_table. This is done in case of secure boot after comparison
* of table's hash with the hash in SFP fuses. This installation is done
* only in the first header parsing.
*/
static int deploy_rotpk_hash_table(void *srk_buffer, uint16_t num_srk)
{
void *ctx;
int ret = 0;
int i, j = 0;
unsigned int digest_size = SHA256_BYTES;
enum hash_algo algo = SHA256;
uint8_t hash[SHA256_BYTES];
uint32_t srk_hash[SHA256_BYTES/4] __aligned(CACHE_WRITEBACK_GRANULE);
struct srk_table *srktbl = (void *)srk_buffer;
struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(get_sfp_addr()
+ SFP_FUSE_REGS_OFFSET);
if (num_srk > MAX_KEY_ENTRIES) {
return -1;
}
ret = hash_init(algo, &ctx);
if (ret != 0) {
return -1;
}
/* Update hash with that of SRK table */
ret = hash_update(algo, ctx, (uint8_t *)((uint8_t *)srk_buffer),
num_srk * sizeof(struct srk_table));
if (ret != 0) {
return -1;
}
/* Copy hash at destination buffer */
ret = hash_final(algo, ctx, hash, digest_size);
if (ret != 0) {
return -1;
}
/* Add comparison of hash with SFP hash here */
for (i = 0; i < SHA256_BYTES/4; i++) {
srk_hash[i] =
mmio_read_32((uintptr_t)&sfp_ccsr_regs->srk_hash[i]);
}
VERBOSE("SRK table HASH\n");
for (i = 0; i < 8; i++) {
VERBOSE("%x\n", *((uint32_t *)hash + i));
}
if (memcmp(hash, srk_hash, SHA256_BYTES) != 0) {
ERROR("Error in installing ROTPK table\n");
ERROR("SRK hash doesn't match the fuse hash\n");
return -1;
}
/* Hash table already deployed */
if (rotpk_not_dpld == false) {
return 0;
}
for (i = 0; i < num_srk; i++) {
ret = hash_init(algo, &ctx);
if (ret != 0) {
return -1;
}
/* Update hash with that of SRK table */
ret = hash_update(algo, ctx, srktbl[i].pkey, srktbl[i].key_len);
if (ret != 0) {
return -1;
}
/* Copy hash at destination buffer */
ret = hash_final(algo, ctx, rotpk_hash_table[i], digest_size);
if (ret != 0) {
return -1;
}
VERBOSE("Table key %d HASH\n", i);
for (j = 0; j < 8; j++) {
VERBOSE("%x\n", *((uint32_t *)rotpk_hash_table[i] + j));
}
}
rotpk_not_dpld = false;
num_rotpk_hash_entries = num_srk;
return 0;
}
/*
* Calculate hash of ESBC hdr and ESBC. This function calculates the
* single hash of ESBC header and ESBC image
*/
int calc_img_hash(struct csf_hdr *hdr,
void *img_addr, uint32_t img_size,
uint8_t *img_hash, uint32_t *hash_len)
{
void *ctx;
int ret = 0;
unsigned int digest_size = SHA256_BYTES;
enum hash_algo algo = SHA256;
ret = hash_init(algo, &ctx);
/* Copy hash at destination buffer */
if (ret != 0) {
return -1;
}
/* Update hash for CSF Header */
ret = hash_update(algo, ctx, (uint8_t *)hdr, sizeof(struct csf_hdr));
if (ret != 0) {
return -1;
}
/* Update hash with that of SRK table */
ret = hash_update(algo, ctx,
(uint8_t *)((uint8_t *)hdr + hdr->srk_tbl_off),
hdr->len_kr.num_srk * sizeof(struct srk_table));
if (ret != 0) {
return -1;
}
/* Update hash for actual Image */
ret = hash_update(algo, ctx, (uint8_t *)(img_addr), img_size);
if (ret != 0) {
return -1;
}
/* Copy hash at destination buffer */
ret = hash_final(algo, ctx, img_hash, digest_size);
if (ret != 0) {
return -1;
}
*hash_len = digest_size;
VERBOSE("IMG encoded HASH\n");
for (int i = 0; i < 8; i++) {
VERBOSE("%x\n", *((uint32_t *)img_hash + i));
}
return 0;
}
/* This function checks if selected key is revoked or not.*/
static uint32_t is_key_revoked(uint32_t keynum, uint32_t rev_flag)
{
if (keynum == UNREVOCABLE_KEY) {
return 0;
}
if (((uint32_t)(1 << (REVOC_KEY_ALIGN - keynum)) & rev_flag) != 0) {
return 1;
}
return 0;
}
/* Parse the header to extract the type of key,
* Check if key is not revoked
* and return the key , key length and key_type
*/
static int32_t get_key(struct csf_hdr *hdr, uint8_t **key, uint32_t *len,
enum sig_alg *key_type)
{
int i = 0;
uint32_t ret = 0U;
uint32_t key_num, key_revoc_flag;
void *esbc = hdr;
struct srk_table *srktbl = (void *)((uint8_t *)esbc + hdr->srk_tbl_off);
bool sb;
uint32_t mode;
/* We currently support only RSA keys and signature */
*key_type = RSA;
/* Check for number of SRK entries */
if ((hdr->len_kr.num_srk == 0) ||
(hdr->len_kr.num_srk > MAX_KEY_ENTRIES)) {
ERROR("Error in NUM entries in SRK Table\n");
return -1;
}
/*
* Check the key number field. It should be not greater than
* number of entries in SRK table.
*/
key_num = hdr->len_kr.srk_sel;
if ((key_num == 0) || (key_num > hdr->len_kr.num_srk)) {
ERROR("Invalid Key number\n");
return -1;
}
/* Get revoc key from sfp */
key_revoc_flag = get_key_revoc();
/* Check if selected key has been revoked */
ret = is_key_revoked(key_num, key_revoc_flag);
if (ret != 0) {
ERROR("Selected key has been revoked\n");
return -1;
}
/* Check for valid key length - allowed key sized 1k, 2k and 4K */
for (i = 0; i < hdr->len_kr.num_srk; i++) {
if (CHECK_KEY_LEN(srktbl[i].key_len) == 0) {
ERROR("Invalid key length\n");
return -1;
}
}
/* We don't return error from here. While parsing we just try to
* install the srk table. Failure needs to be taken care of in
* case of secure boot. This failure will be handled at the time
* of rotpk comparison in plat_get_rotpk_info function
*/
sb = check_boot_mode_secure(&mode);
if (sb) {
ret = deploy_rotpk_hash_table(srktbl, hdr->len_kr.num_srk);
if (ret != 0) {
ERROR("ROTPK FAILURE\n");
/* For ITS =1 , return failure */
if (mode != 0) {
return -1;
}
ERROR("SECURE BOOT DEV-ENV MODE:\n");
ERROR("\tCHECK ROTPK !\n");
ERROR("\tCONTINUING ON FAILURE...\n");
}
}
/* Return the length of the selected key */
*len = srktbl[key_num - 1].key_len;
/* Point key to the selected key */
*key = (uint8_t *)&(srktbl[key_num - 1].pkey);
return 0;
}
/*
* This function would parse the CSF header and do the following:
* 1. Basic integrity checks
* 2. Key checks and extract the key from SRK/IE Table
* 3. Key hash comparison with SRKH in fuses in case of SRK Table
* 4. OEM/UID checks - To be added
* 5. Hash calculation for various components used in signature
* 6. Signature integrity checks
* return -> 0 on success, -1 on failure
*/
int validate_esbc_header(void *img_hdr, void **img_key, uint32_t *key_len,
void **img_sign, uint32_t *sign_len,
enum sig_alg *algo)
{
struct csf_hdr *hdr = img_hdr;
uint8_t *s;
int32_t ret = 0;
void *esbc = (uint8_t *)img_hdr;
uint8_t *key;
uint32_t klen;
/* check barker code */
if (memcmp(hdr->barker, barker_code, CSF_BARKER_LEN) != 0) {
ERROR("Wrong barker code in header\n");
return -1;
}
ret = get_key(hdr, &key, &klen, algo);
if (ret != 0) {
return -1;
}
/* check signaure */
if (klen == (2 * hdr->sign_len)) {
/* check signature length */
if (((hdr->sign_len == RSA_1K_KEY_SZ_BYTES) ||
(hdr->sign_len == RSA_2K_KEY_SZ_BYTES) ||
(hdr->sign_len == RSA_4K_KEY_SZ_BYTES)) == 0) {
ERROR("Wrong Signature length in header\n");
return -1;
}
} else {
ERROR("RSA key length not twice the signature length\n");
return -1;
}
/* modulus most significant bit should be set */
if ((key[0] & 0x80) == 0U) {
ERROR("RSA Public key MSB not set\n");
return -1;
}
/* modulus value should be odd */
if ((key[klen / 2 - 1] & 0x1) == 0U) {
ERROR("Public key Modulus in header not odd\n");
return -1;
}
/* Check signature value < modulus value */
s = (uint8_t *)(esbc + hdr->psign);
if (!(memcmp(s, key, hdr->sign_len) < 0)) {
ERROR("Signature not less than modulus");
return -1;
}
/* Populate the return addresses */
*img_sign = (void *)(s);
/* Save the length of signature */
*sign_len = hdr->sign_len;
*img_key = (uint8_t *)key;
*key_len = klen;
return ret;
}