blob: d33ad77839b10f823d8cdfb2a842726a94b3b484 [file] [log] [blame]
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <common/debug.h>
#include <ddr.h>
#include <immap.h>
#include <lib/mmio.h>
#define UL_5POW12 244140625UL
#define ULL_2E12 2000000000000ULL
#define UL_2POW13 (1UL << 13)
#define ULL_8FS 0xFFFFFFFFULL
#define do_div(n, base) ({ \
unsigned int __base = (base); \
unsigned int __rem; \
__rem = ((unsigned long long)(n)) % __base; \
(n) = ((unsigned long long)(n)) / __base; \
__rem; \
})
#define CCN_HN_F_SAM_NODEID_MASK 0x7f
#ifdef NXP_HAS_CCN504
#define CCN_HN_F_SAM_NODEID_DDR0 0x4
#define CCN_HN_F_SAM_NODEID_DDR1 0xe
#elif defined(NXP_HAS_CCN508)
#define CCN_HN_F_SAM_NODEID_DDR0 0x8
#define CCN_HN_F_SAM_NODEID_DDR1 0x18
#endif
unsigned long get_ddr_freq(struct sysinfo *sys, int ctrl_num)
{
if (sys->freq_ddr_pll0 == 0) {
get_clocks(sys);
}
switch (ctrl_num) {
case 0:
return sys->freq_ddr_pll0;
case 1:
return sys->freq_ddr_pll0;
case 2:
return sys->freq_ddr_pll1;
}
return 0;
}
unsigned int get_memory_clk_ps(const unsigned long data_rate)
{
unsigned int result;
/* Round to nearest 10ps, being careful about 64-bit multiply/divide */
unsigned long long rem, mclk_ps = ULL_2E12;
/* Now perform the big divide, the result fits in 32-bits */
rem = do_div(mclk_ps, data_rate);
result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
return result;
}
unsigned int picos_to_mclk(unsigned long data_rate, unsigned int picos)
{
unsigned long long clks, clks_rem;
/* Short circuit for zero picos */
if ((picos == 0U) || (data_rate == 0UL)) {
return 0U;
}
/* First multiply the time by the data rate (32x32 => 64) */
clks = picos * (unsigned long long)data_rate;
/*
* Now divide by 5^12 and track the 32-bit remainder, then divide
* by 2*(2^12) using shifts (and updating the remainder).
*/
clks_rem = do_div(clks, UL_5POW12);
clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
clks >>= 13U;
/* If we had a remainder greater than the 1ps error, then round up */
if (clks_rem > data_rate) {
clks++;
}
/* Clamp to the maximum representable value */
if (clks > ULL_8FS) {
clks = ULL_8FS;
}
return (unsigned int) clks;
}
/* valid_spd_mask has been checked by parse_spd */
int disable_unused_ddrc(struct ddr_info *priv,
int valid_spd_mask, uintptr_t nxp_ccn_hn_f0_addr)
{
#if defined(NXP_HAS_CCN504) || defined(NXP_HAS_CCN508)
void *hnf_sam_ctrl = (void *)(nxp_ccn_hn_f0_addr + CCN_HN_F_SAM_CTL);
uint32_t val, nodeid;
#ifdef NXP_HAS_CCN504
uint32_t num_hnf_nodes = 4U;
#else
uint32_t num_hnf_nodes = 8U;
#endif
int disable_ddrc = 0;
int i;
if (priv->num_ctlrs < 2) {
debug("%s: nothing to do.\n", __func__);
}
switch (priv->dimm_on_ctlr) {
case 1:
disable_ddrc = ((valid_spd_mask &0x2) == 0) ? 2 : 0;
disable_ddrc = ((valid_spd_mask &0x1) == 0) ? 1 : disable_ddrc;
break;
case 2:
disable_ddrc = ((valid_spd_mask &0x4) == 0) ? 2 : 0;
disable_ddrc = ((valid_spd_mask &0x1) == 0) ? 1 : disable_ddrc;
break;
default:
ERROR("Invalid number of DIMMs %d\n", priv->dimm_on_ctlr);
return -EINVAL;
}
if (disable_ddrc != 0) {
debug("valid_spd_mask = 0x%x\n", valid_spd_mask);
}
switch (disable_ddrc) {
case 1:
priv->num_ctlrs = 1;
priv->spd_addr = &priv->spd_addr[priv->dimm_on_ctlr];
priv->ddr[0] = priv->ddr[1];
priv->ddr[1] = NULL;
priv->phy[0] = priv->phy[0];
priv->phy[1] = NULL;
debug("Disable first DDR controller\n");
break;
case 2:
priv->num_ctlrs = 1;
priv->ddr[1] = NULL;
priv->phy[1] = NULL;
debug("Disable second DDR controller\n");
/* fallthrough */
case 0:
break;
default:
ERROR("Program error.\n");
return -EINVAL;
}
if (disable_ddrc == 0) {
debug("Both controllers in use.\n");
return 0;
}
for (i = 0; i < num_hnf_nodes; i++) {
val = mmio_read_64((uintptr_t)hnf_sam_ctrl);
nodeid = disable_ddrc == 1 ? CCN_HN_F_SAM_NODEID_DDR1 :
(disable_ddrc == 2 ? CCN_HN_F_SAM_NODEID_DDR0 :
(i < 4 ? CCN_HN_F_SAM_NODEID_DDR0
: CCN_HN_F_SAM_NODEID_DDR1));
if (nodeid != (val & CCN_HN_F_SAM_NODEID_MASK)) {
debug("Setting HN-F node %d\n", i);
debug("nodeid = 0x%x\n", nodeid);
val &= ~CCN_HN_F_SAM_NODEID_MASK;
val |= nodeid;
mmio_write_64((uintptr_t)hnf_sam_ctrl, val);
}
hnf_sam_ctrl += CCN_HN_F_REGION_SIZE;
}
#endif
return 0;
}
unsigned int get_ddrc_version(const struct ccsr_ddr *ddr)
{
unsigned int ver;
ver = (ddr_in32(&ddr->ip_rev1) & 0xFFFF) << 8U;
ver |= (ddr_in32(&ddr->ip_rev2) & 0xFF00) >> 8U;
return ver;
}
void print_ddr_info(struct ccsr_ddr *ddr)
{
unsigned int cs0_config = ddr_in32(&ddr->csn_cfg[0]);
unsigned int sdram_cfg = ddr_in32(&ddr->sdram_cfg);
int cas_lat;
if ((sdram_cfg & SDRAM_CFG_MEM_EN) == 0U) {
printf(" (DDR not enabled)\n");
return;
}
printf("DDR");
switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
SDRAM_CFG_SDRAM_TYPE_SHIFT) {
case SDRAM_TYPE_DDR4:
printf("4");
break;
default:
printf("?");
break;
}
switch (sdram_cfg & SDRAM_CFG_DBW_MASK) {
case SDRAM_CFG_32_BW:
printf(", 32-bit");
break;
case SDRAM_CFG_16_BW:
printf(", 16-bit");
break;
case SDRAM_CFG_8_BW:
printf(", 8-bit");
break;
default:
printf(", 64-bit");
break;
}
/* Calculate CAS latency based on timing cfg values */
cas_lat = ((ddr_in32(&ddr->timing_cfg_1) >> 16) & 0xf);
cas_lat += 2; /* for DDRC newer than 4.4 */
cas_lat += ((ddr_in32(&ddr->timing_cfg_3) >> 12) & 3) << 4;
printf(", CL=%d", cas_lat >> 1);
if ((cas_lat & 0x1) != 0) {
printf(".5");
}
if ((sdram_cfg & SDRAM_CFG_ECC_EN) != 0) {
printf(", ECC on");
} else {
printf(", ECC off");
}
if ((cs0_config & 0x20000000) != 0) {
printf(", ");
switch ((cs0_config >> 24) & 0xf) {
case DDR_256B_INTLV:
printf("256B");
break;
default:
printf("invalid");
break;
}
}
if (((sdram_cfg >> 8) & 0x7f) != 0) {
printf(", ");
switch (sdram_cfg >> 8 & 0x7f) {
case DDR_BA_INTLV_CS0123:
printf("CS0+CS1+CS2+CS3");
break;
case DDR_BA_INTLV_CS01:
printf("CS0+CS1");
break;
default:
printf("invalid");
break;
}
}
printf("\n");
}