blob: 87ba7327818c22ddcdc842cc72cc36bc1ca3a220 [file] [log] [blame]
/*
* Copyright (c) 2019-2020, Xilinx, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* Top-level SMC handler for Versal power management calls and
* IPI setup functions for communication with PMC.
*/
#include <errno.h>
#include <plat_private.h>
#include <stdbool.h>
#include <common/runtime_svc.h>
#include <plat/common/platform.h>
#include "pm_api_sys.h"
#include "pm_client.h"
#include "pm_ipi.h"
#include <drivers/arm/gicv3.h>
#define XSCUGIC_SGIR_EL1_INITID_SHIFT 24U
#define INVALID_SGI 0xFF
DEFINE_RENAME_SYSREG_RW_FUNCS(icc_asgi1r_el1, S3_0_C12_C11_6)
/* pm_up = true - UP, pm_up = false - DOWN */
static bool pm_up;
static unsigned int sgi = INVALID_SGI;
static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle,
void *cookie)
{
int cpu;
unsigned int reg;
(void)plat_ic_acknowledge_interrupt();
cpu = plat_my_core_pos() + 1;
if (sgi != INVALID_SGI) {
reg = (cpu | (sgi << XSCUGIC_SGIR_EL1_INITID_SHIFT));
write_icc_asgi1r_el1(reg);
}
/* Clear FIQ */
plat_ic_end_of_interrupt(id);
return 0;
}
/**
* pm_register_sgi() - PM register the IPI interrupt
*
* @sgi - SGI number to be used for communication.
* @return On success, the initialization function must return 0.
* Any other return value will cause the framework to ignore
* the service
*
* Update the SGI number to be used.
*
*/
int pm_register_sgi(unsigned int sgi_num)
{
if (sgi != INVALID_SGI) {
return -EBUSY;
}
if (sgi_num >= GICV3_MAX_SGI_TARGETS) {
return -EINVAL;
}
sgi = sgi_num;
return 0;
}
/**
* pm_setup() - PM service setup
*
* @return On success, the initialization function must return 0.
* Any other return value will cause the framework to ignore
* the service
*
* Initialization functions for Versal power management for
* communicaton with PMC.
*
* Called from sip_svc_setup initialization function with the
* rt_svc_init signature.
*/
int pm_setup(void)
{
int status, ret = 0;
status = pm_ipi_init(primary_proc);
if (status < 0) {
INFO("BL31: PM Service Init Failed, Error Code %d!\n", status);
ret = status;
} else {
pm_up = true;
}
/*
* Enable IPI IRQ
* assume the rich OS is OK to handle callback IRQs now.
* Even if we were wrong, it would not enable the IRQ in
* the GIC.
*/
pm_ipi_irq_enable(primary_proc);
ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler);
if (ret) {
WARN("BL31: registering IPI interrupt failed\n");
}
return ret;
}
/**
* pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
* @smc_fid - Function Identifier
* @x1 - x4 - Arguments
* @cookie - Unused
* @handler - Pointer to caller's context structure
*
* @return - Unused
*
* Determines that smc_fid is valid and supported PM SMC Function ID from the
* list of pm_api_ids, otherwise completes the request with
* the unknown SMC Function ID
*
* The SMC calls for PM service are forwarded from SIP Service SMC handler
* function with rt_svc_handle signature
*/
uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
uint64_t x4, void *cookie, void *handle, uint64_t flags)
{
enum pm_ret_status ret;
uint32_t pm_arg[4];
uint32_t security_flag = SECURE_FLAG;
/* Handle case where PM wasn't initialized properly */
if (!pm_up)
SMC_RET1(handle, SMC_UNK);
pm_arg[0] = (uint32_t)x1;
pm_arg[1] = (uint32_t)(x1 >> 32);
pm_arg[2] = (uint32_t)x2;
pm_arg[3] = (uint32_t)(x2 >> 32);
/*
* Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as non-secure (1)
* if smc called is non secure
*/
if (is_caller_non_secure(flags)) {
security_flag = NON_SECURE_FLAG;
}
switch (smc_fid & FUNCID_NUM_MASK) {
/* PM API Functions */
case PM_SELF_SUSPEND:
ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_FORCE_POWERDOWN:
ret = pm_force_powerdown(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_REQ_SUSPEND:
ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_ABORT_SUSPEND:
ret = pm_abort_suspend(pm_arg[0], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_SYSTEM_SHUTDOWN:
ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_REQ_WAKEUP:
ret = pm_req_wakeup(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_SET_WAKEUP_SOURCE:
ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2],
security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_REQUEST_DEVICE:
ret = pm_request_device(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_RELEASE_DEVICE:
ret = pm_release_device(pm_arg[0], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_SET_REQUIREMENT:
ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_GET_API_VERSION:
{
uint32_t api_version;
ret = pm_get_api_version(&api_version, security_flag);
SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
((uint64_t)api_version << 32));
}
case PM_GET_DEVICE_STATUS:
{
uint32_t buff[3];
ret = pm_get_device_status(pm_arg[0], buff, security_flag);
SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buff[0] << 32),
(uint64_t)buff[1] | ((uint64_t)buff[2] << 32));
}
case PM_RESET_ASSERT:
ret = pm_reset_assert(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_RESET_GET_STATUS:
{
uint32_t reset_status;
ret = pm_reset_get_status(pm_arg[0], &reset_status,
security_flag);
SMC_RET1(handle, (uint64_t)ret |
((uint64_t)reset_status << 32));
}
case PM_INIT_FINALIZE:
ret = pm_init_finalize(security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_GET_CALLBACK_DATA:
{
uint32_t result[4] = {0};
pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag);
SMC_RET2(handle,
(uint64_t)result[0] | ((uint64_t)result[1] << 32),
(uint64_t)result[2] | ((uint64_t)result[3] << 32));
}
case PM_PINCTRL_REQUEST:
ret = pm_pinctrl_request(pm_arg[0], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_PINCTRL_RELEASE:
ret = pm_pinctrl_release(pm_arg[0], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_PINCTRL_GET_FUNCTION:
{
uint32_t value = 0;
ret = pm_pinctrl_get_function(pm_arg[0], &value, security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_PINCTRL_SET_FUNCTION:
ret = pm_pinctrl_set_function(pm_arg[0], pm_arg[1],
security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_PINCTRL_CONFIG_PARAM_GET:
{
uint32_t value;
ret = pm_pinctrl_get_pin_param(pm_arg[0], pm_arg[1], &value,
security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_PINCTRL_CONFIG_PARAM_SET:
ret = pm_pinctrl_set_pin_param(pm_arg[0], pm_arg[1], pm_arg[2],
security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_IOCTL:
{
uint32_t value;
ret = pm_api_ioctl(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], &value, security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_QUERY_DATA:
{
uint32_t data[8] = { 0 };
ret = pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], data, security_flag);
SMC_RET2(handle, (uint64_t)ret | ((uint64_t)data[0] << 32),
(uint64_t)data[1] | ((uint64_t)data[2] << 32));
}
case PM_CLOCK_ENABLE:
ret = pm_clock_enable(pm_arg[0], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_DISABLE:
ret = pm_clock_disable(pm_arg[0], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_GETSTATE:
{
uint32_t value;
ret = pm_clock_get_state(pm_arg[0], &value, security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_CLOCK_SETDIVIDER:
ret = pm_clock_set_divider(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_GETDIVIDER:
{
uint32_t value;
ret = pm_clock_get_divider(pm_arg[0], &value, security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_CLOCK_SETPARENT:
ret = pm_clock_set_parent(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_GETPARENT:
{
uint32_t value;
ret = pm_clock_get_parent(pm_arg[0], &value, security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_CLOCK_GETRATE:
{
uint32_t rate[2] = { 0 };
ret = pm_clock_get_rate(pm_arg[0], rate, security_flag);
SMC_RET2(handle, (uint64_t)ret | ((uint64_t)rate[0] << 32),
rate[1]);
}
case PM_PLL_SET_PARAMETER:
ret = pm_pll_set_param(pm_arg[0], pm_arg[1], pm_arg[2],
security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_PLL_GET_PARAMETER:
{
uint32_t value;
ret = pm_pll_get_param(pm_arg[0], pm_arg[1], &value,
security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value << 32));
}
case PM_PLL_SET_MODE:
ret = pm_pll_set_mode(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (uint64_t)ret);
case PM_PLL_GET_MODE:
{
uint32_t mode;
ret = pm_pll_get_mode(pm_arg[0], &mode, security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)mode << 32));
}
case PM_GET_TRUSTZONE_VERSION:
SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
((uint64_t)VERSAL_TZ_VERSION << 32));
case PM_GET_CHIPID:
{
uint32_t result[2];
ret = pm_get_chipid(result, security_flag);
SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32),
result[1]);
}
case PM_FEATURE_CHECK:
{
uint32_t version;
ret = pm_feature_check(pm_arg[0], &version, security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)version << 32));
}
case PM_LOAD_PDI:
{
ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2],
security_flag);
SMC_RET1(handle, (uint64_t)ret);
}
case PM_GET_OP_CHARACTERISTIC:
{
uint32_t result;
ret = pm_get_op_characteristic(pm_arg[0], pm_arg[1], &result,
security_flag);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result << 32));
}
case PM_SET_MAX_LATENCY:
{
ret = pm_set_max_latency(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (uint64_t)ret);
}
case PM_REGISTER_NOTIFIER:
{
ret = pm_register_notifier(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], security_flag);
SMC_RET1(handle, (uint64_t)ret);
}
default:
WARN("Unimplemented PM Service Call: 0x%x\n", smc_fid);
SMC_RET1(handle, SMC_UNK);
}
}