| # Copyright (c) 2013 The Chromium OS Authors. All rights reserved. |
| # Use of this source code is governed by a BSD-style license that can be |
| # found in the LICENSE file. |
| |
| """Library to run fio scripts. |
| |
| fio_runner launch fio and collect results. |
| The output dictionary can be add to autotest keyval: |
| results = {} |
| results.update(fio_util.fio_runner(job_file, env_vars)) |
| self.write_perf_keyval(results) |
| |
| Decoding class can be invoked independently. |
| |
| """ |
| |
| import json |
| import logging |
| import re |
| |
| import common |
| from autotest_lib.client.bin import utils |
| |
| class fio_graph_generator(): |
| """ |
| Generate graph from fio log that created when specified these options. |
| - write_bw_log |
| - write_iops_log |
| - write_lat_log |
| |
| The following limitations apply |
| - Log file name must be in format jobname_testpass |
| - Graph is generate using Google graph api -> Internet require to view. |
| """ |
| |
| html_head = """ |
| <html> |
| <head> |
| <script type="text/javascript" src="https://www.google.com/jsapi"></script> |
| <script type="text/javascript"> |
| google.load("visualization", "1", {packages:["corechart"]}); |
| google.setOnLoadCallback(drawChart); |
| function drawChart() { |
| """ |
| |
| html_tail = """ |
| var chart_div = document.getElementById('chart_div'); |
| var chart = new google.visualization.ScatterChart(chart_div); |
| chart.draw(data, options); |
| } |
| </script> |
| </head> |
| <body> |
| <div id="chart_div" style="width: 100%; height: 100%;"></div> |
| </body> |
| </html> |
| """ |
| |
| h_title = { True: 'Percentile', False: 'Time (s)' } |
| v_title = { 'bw' : 'Bandwidth (KB/s)', |
| 'iops': 'IOPs', |
| 'lat' : 'Total latency (us)', |
| 'clat': 'Completion latency (us)', |
| 'slat': 'Submission latency (us)' } |
| graph_title = { 'bw' : 'bandwidth', |
| 'iops': 'IOPs', |
| 'lat' : 'total latency', |
| 'clat': 'completion latency', |
| 'slat': 'submission latency' } |
| |
| test_name = '' |
| test_type = '' |
| pass_list = '' |
| |
| @classmethod |
| def _parse_log_file(cls, file_name, pass_index, pass_count, percentile): |
| """ |
| Generate row for google.visualization.DataTable from one log file. |
| Log file is the one that generated using write_{bw,lat,iops}_log |
| option in the FIO job file. |
| |
| The fio log file format is timestamp, value, direction, blocksize |
| The output format for each row is { c: list of { v: value} } |
| |
| @param file_name: log file name to read data from |
| @param pass_index: index of current run pass |
| @param pass_count: number of all test run passes |
| @param percentile: flag to use percentile as key instead of timestamp |
| |
| @return: list of data rows in google.visualization.DataTable format |
| """ |
| # Read data from log |
| with open(file_name, 'r') as f: |
| data = [] |
| |
| for line in f.readlines(): |
| if not line: |
| break |
| t, v, _, _ = [int(x) for x in line.split(', ')] |
| data.append([t / 1000.0, v]) |
| |
| # Sort & calculate percentile |
| if percentile: |
| data.sort(key=lambda x: x[1]) |
| l = len(data) |
| for i in range(l): |
| data[i][0] = 100 * (i + 0.5) / l |
| |
| # Generate the data row |
| all_row = [] |
| row = [None] * (pass_count + 1) |
| for d in data: |
| row[0] = {'v' : '%.3f' % d[0]} |
| row[pass_index + 1] = {'v': d[1]} |
| all_row.append({'c': row[:]}) |
| |
| return all_row |
| |
| @classmethod |
| def _gen_data_col(cls, pass_list, percentile): |
| """ |
| Generate col for google.visualization.DataTable |
| |
| The output format is list of dict of label and type. In this case, |
| type is always number. |
| |
| @param pass_list: list of test run passes |
| @param percentile: flag to use percentile as key instead of timestamp |
| |
| @return: list of column in google.visualization.DataTable format |
| """ |
| if percentile: |
| col_name_list = ['percentile'] + [p[0] for p in pass_list] |
| else: |
| col_name_list = ['time'] + [p[0] for p in pass_list] |
| |
| return [{'label': name, 'type': 'number'} for name in col_name_list] |
| |
| @classmethod |
| def _gen_data_row(cls, test_type, pass_list, percentile): |
| """ |
| Generate row for google.visualization.DataTable by generate all log |
| file name and call _parse_log_file for each file |
| |
| @param test_type: type of value collected for current test. i.e. IOPs |
| @param pass_list: list of run passes for current test |
| @param percentile: flag to use percentile as key instead of timestamp |
| |
| @return: list of data rows in google.visualization.DataTable format |
| """ |
| all_row = [] |
| pass_count = len(pass_list) |
| for pass_index, log_file_name in enumerate([p[1] for p in pass_list]): |
| all_row.extend(cls._parse_log_file(log_file_name, pass_index, |
| pass_count, percentile)) |
| return all_row |
| |
| @classmethod |
| def _write_data(cls, f, test_type, pass_list, percentile): |
| """ |
| Write google.visualization.DataTable object to output file. |
| https://developers.google.com/chart/interactive/docs/reference |
| |
| @param f: html file to update |
| @param test_type: type of value collected for current test. i.e. IOPs |
| @param pass_list: list of run passes for current test |
| @param percentile: flag to use percentile as key instead of timestamp |
| """ |
| col = cls._gen_data_col(pass_list, percentile) |
| row = cls._gen_data_row(test_type, pass_list, percentile) |
| data_dict = {'cols' : col, 'rows' : row} |
| |
| f.write('var data = new google.visualization.DataTable(') |
| json.dump(data_dict, f) |
| f.write(');\n') |
| |
| @classmethod |
| def _write_option(cls, f, test_name, test_type, percentile): |
| """ |
| Write option to render scatter graph to output file. |
| https://google-developers.appspot.com/chart/interactive/docs/gallery/scatterchart |
| |
| @param test_name: name of current workload. i.e. randwrite |
| @param test_type: type of value collected for current test. i.e. IOPs |
| @param percentile: flag to use percentile as key instead of timestamp |
| """ |
| option = {'pointSize': 1} |
| if percentile: |
| option['title'] = ('Percentile graph of %s for %s workload' % |
| (cls.graph_title[test_type], test_name)) |
| else: |
| option['title'] = ('Graph of %s for %s workload over time' % |
| (cls.graph_title[test_type], test_name)) |
| |
| option['hAxis'] = {'title': cls.h_title[percentile]} |
| option['vAxis'] = {'title': cls.v_title[test_type]} |
| |
| f.write('var options = ') |
| json.dump(option, f) |
| f.write(';\n') |
| |
| @classmethod |
| def _write_graph(cls, test_name, test_type, pass_list, percentile=False): |
| """ |
| Generate graph for test name / test type |
| |
| @param test_name: name of current workload. i.e. randwrite |
| @param test_type: type of value collected for current test. i.e. IOPs |
| @param pass_list: list of run passes for current test |
| @param percentile: flag to use percentile as key instead of timestamp |
| """ |
| logging.info('fio_graph_generator._write_graph %s %s %s', |
| test_name, test_type, str(pass_list)) |
| |
| |
| if percentile: |
| out_file_name = '%s_%s_percentile.html' % (test_name, test_type) |
| else: |
| out_file_name = '%s_%s.html' % (test_name, test_type) |
| |
| with open(out_file_name, 'w') as f: |
| f.write(cls.html_head) |
| cls._write_data(f, test_type, pass_list, percentile) |
| cls._write_option(f, test_name, test_type, percentile) |
| f.write(cls.html_tail) |
| |
| def __init__(self, test_name, test_type, pass_list): |
| """ |
| @param test_name: name of current workload. i.e. randwrite |
| @param test_type: type of value collected for current test. i.e. IOPs |
| @param pass_list: list of run passes for current test |
| """ |
| self.test_name = test_name |
| self.test_type = test_type |
| self.pass_list = pass_list |
| |
| def run(self): |
| """ |
| Run the graph generator. |
| """ |
| self._write_graph(self.test_name, self.test_type, self.pass_list, False) |
| self._write_graph(self.test_name, self.test_type, self.pass_list, True) |
| |
| |
| def fio_parse_dict(d, prefix): |
| """ |
| Parse fio json dict |
| |
| Recursively flaten json dict to generate autotest perf dict |
| |
| @param d: input dict |
| @param prefix: name prefix of the key |
| """ |
| |
| # No need to parse something that didn't run such as read stat in write job. |
| if 'io_bytes' in d and d['io_bytes'] == 0: |
| return {} |
| |
| results = {} |
| for k, v in d.items(): |
| |
| # remove >, >=, <, <= |
| for c in '>=<': |
| k = k.replace(c, '') |
| |
| key = prefix + '_' + k |
| |
| if type(v) is dict: |
| results.update(fio_parse_dict(v, key)) |
| else: |
| results[key] = v |
| return results |
| |
| |
| def fio_parser(lines, prefix=None): |
| """ |
| Parse the json fio output |
| |
| This collects all metrics given by fio and labels them according to unit |
| of measurement and test case name. |
| |
| @param lines: text output of json fio output. |
| @param prefix: prefix for result keys. |
| """ |
| results = {} |
| fio_dict = json.loads(lines) |
| |
| if prefix: |
| prefix = prefix + '_' |
| else: |
| prefix = '' |
| |
| results[prefix + 'fio_version'] = fio_dict['fio version'] |
| |
| if 'disk_util' in fio_dict: |
| results.update(fio_parse_dict(fio_dict['disk_util'][0], |
| prefix + 'disk')) |
| |
| for job in fio_dict['jobs']: |
| job_prefix = '_' + prefix + job['jobname'] |
| job.pop('jobname') |
| |
| |
| for k, v in job.iteritems(): |
| # Igonre "job options", its alphanumerc keys confuses tko. |
| # Besides, these keys are redundant. |
| if k == 'job options': |
| continue |
| results.update(fio_parse_dict({k:v}, job_prefix)) |
| |
| return results |
| |
| def fio_generate_graph(): |
| """ |
| Scan for fio log file in output directory and send data to generate each |
| graph to fio_graph_generator class. |
| """ |
| log_types = ['bw', 'iops', 'lat', 'clat', 'slat'] |
| |
| # move fio log to result dir |
| for log_type in log_types: |
| logging.info('log_type %s', log_type) |
| logs = utils.system_output('ls *_%s.*log' % log_type, ignore_status=True) |
| if not logs: |
| continue |
| |
| pattern = r"""(?P<jobname>.*)_ # jobname |
| ((?P<runpass>p\d+)_|) # pass |
| (?P<type>bw|iops|lat|clat|slat) # type |
| (.(?P<thread>\d+)|) # thread id for newer fio. |
| .log |
| """ |
| matcher = re.compile(pattern, re.X) |
| |
| pass_list = [] |
| current_job = '' |
| |
| for log in logs.split(): |
| match = matcher.match(log) |
| if not match: |
| logging.warn('Unknown log file %s', log) |
| continue |
| |
| jobname = match.group('jobname') |
| runpass = match.group('runpass') or '1' |
| if match.group('thread'): |
| runpass += '_' + match.group('thread') |
| |
| # All files for particular job name are group together for create |
| # graph that can compare performance between result from each pass. |
| if jobname != current_job: |
| if pass_list: |
| fio_graph_generator(current_job, log_type, pass_list).run() |
| current_job = jobname |
| pass_list = [] |
| pass_list.append((runpass, log)) |
| |
| if pass_list: |
| fio_graph_generator(current_job, log_type, pass_list).run() |
| |
| |
| cmd = 'mv *_%s.*log results' % log_type |
| utils.run(cmd, ignore_status=True) |
| utils.run('mv *.html results', ignore_status=True) |
| |
| |
| def fio_runner(test, job, env_vars, |
| name_prefix=None, |
| graph_prefix=None): |
| """ |
| Runs fio. |
| |
| Build a result keyval and performence json. |
| The JSON would look like: |
| {"description": "<name_prefix>_<modle>_<size>G", |
| "graph": "<graph_prefix>_1m_write_wr_lat_99.00_percent_usec", |
| "higher_is_better": false, "units": "us", "value": "xxxx"} |
| {... |
| |
| |
| @param test: test to upload perf value |
| @param job: fio config file to use |
| @param env_vars: environment variable fio will substituete in the fio |
| config file. |
| @param name_prefix: prefix of the descriptions to use in chrome perfi |
| dashboard. |
| @param graph_prefix: prefix of the graph name in chrome perf dashboard |
| and result keyvals. |
| @return fio results. |
| |
| """ |
| |
| # running fio with ionice -c 3 so it doesn't lock out other |
| # processes from the disk while it is running. |
| # If you want to run the fio test for performance purposes, |
| # take out the ionice and disable hung process detection: |
| # "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" |
| # -c 3 = Idle |
| # Tried lowest priority for "best effort" but still failed |
| ionice = 'ionice -c 3' |
| options = ['--output-format=json'] |
| fio_cmd_line = ' '.join([env_vars, ionice, 'fio', |
| ' '.join(options), |
| '"' + job + '"']) |
| fio = utils.run(fio_cmd_line) |
| |
| logging.debug(fio.stdout) |
| |
| fio_generate_graph() |
| |
| filename = re.match('.*FILENAME=(?P<f>[^ ]*)', env_vars).group('f') |
| diskname = utils.get_disk_from_filename(filename) |
| |
| if diskname: |
| model = utils.get_disk_model(diskname) |
| size = utils.get_disk_size_gb(diskname) |
| perfdb_name = '%s_%dG' % (model, size) |
| else: |
| perfdb_name = filename.replace('/', '_') |
| |
| if name_prefix: |
| perfdb_name = name_prefix + '_' + perfdb_name |
| |
| result = fio_parser(fio.stdout, prefix=name_prefix) |
| if not graph_prefix: |
| graph_prefix = '' |
| |
| for k, v in result.iteritems(): |
| # Remove the prefix for value, and replace it the graph prefix. |
| if name_prefix: |
| k = k.replace('_' + name_prefix, graph_prefix) |
| |
| # Make graph name to be same as the old code. |
| if k.endswith('bw'): |
| test.output_perf_value(description=perfdb_name, graph=k, value=v, |
| units='KB_per_sec', higher_is_better=True) |
| elif k.rstrip('0').endswith('clat_percentile_99.'): |
| test.output_perf_value(description=perfdb_name, graph=k, value=v, |
| units='us', higher_is_better=False) |
| elif k.rstrip('0').endswith('clat_ns_percentile_99.'): |
| test.output_perf_value(description=perfdb_name, graph=k, value=v, |
| units='ns', higher_is_better=False) |
| return result |