| # tko/nightly.py code shared by various tko/*.cgi graphing scripts |
| |
| import cgi, cgitb |
| import os, sys |
| import common |
| from autotest_lib.tko import db, plotgraph, perf |
| from autotest_lib.client.common_lib import kernel_versions |
| |
| |
| def add_kernel_jobs(label_pattern): |
| cmd = "select job_idx from tko_jobs where label like '%s'" % label_pattern |
| nrows = perf.db_cur.execute(cmd) |
| return [row[0] for row in perf.db_cur.fetchall()] |
| |
| |
| def is_filtered_platform(platform, platforms_filter): |
| if not platforms_filter: |
| return True |
| for p in platforms_filter: |
| if platform.startswith(p): |
| return True |
| return False |
| |
| |
| def get_test_attributes(testrunx): |
| cmd = ( "select attribute, value from tko_test_attributes" |
| " where test_idx = %d" % testrunx ) |
| nrows = perf.db_cur.execute(cmd) |
| return dict(perf.db_cur.fetchall()) |
| |
| |
| def get_antag(testrunx): |
| attrs = get_test_attributes(testrunx) |
| return attrs.get('antag', None) |
| |
| |
| def matching_test_attributes(attrs, required_test_attributes): |
| if not required_test_attributes: |
| return True |
| matches = [attrs[key] == required_test_attributes[key] |
| for key in attrs if key in required_test_attributes] |
| return min(matches+[True]) # True if all jointly-existing keys matched |
| |
| |
| def collect_testruns(jobs, test, test_attributes, |
| platforms_filter, by_hosts, no_antag): |
| # get test_runs run #s for 1 test on 1 kernel and some platforms |
| # TODO: Is jobs list short enough to use directly in 1 sql cmd? |
| # TODO: add filtering on test series? |
| runs = {} # platform --> list of test runs |
| for jobx in jobs: |
| cmd = ( "select test_idx, machine_idx from tko_tests" |
| " where job_idx = %s and test = %s" ) |
| args = [jobx, test] |
| nrows = perf.db_cur.execute(cmd, args) |
| for testrunx, machx in perf.db_cur.fetchall(): |
| platform, host = perf.machine_idx_to_platform_host(machx) |
| if by_hosts: |
| platform += '.'+host |
| if ( is_filtered_platform(platform, platforms_filter) and |
| matching_test_attributes(get_test_attributes(testrunx), |
| test_attributes) and |
| (not no_antag or get_antag(testrunx) == '') ): |
| runs.setdefault(platform, []).append(testrunx) |
| return runs |
| |
| |
| def all_tested_platforms(test_runs): |
| # extract list of all tested platforms from test_runs table |
| platforms = set() |
| for kernel in test_runs: |
| platforms.update(set(test_runs[kernel].keys())) |
| return sorted(platforms) |
| |
| |
| def divide_twoway_testruns(test_runs, platform): |
| # partition all twoway runs based on name of antagonist progs |
| twoway_runs = {} |
| antagonists = set() |
| for kernel in test_runs: |
| runs = {} |
| for testrunx in test_runs[kernel].get(platform, []): |
| antag = get_antag(testrunx) |
| if antag is not None: |
| runs.setdefault(antag, []).append(testrunx) |
| antagonists.add(antag) |
| twoway_runs[kernel] = runs |
| return twoway_runs, sorted(antagonists) |
| |
| |
| def collect_raw_scores(runs, metric): |
| # get unscaled scores of test runs for 1 test on certain jobs |
| # arrange them by platform type |
| platform_scores = {} # platform --> list of perf scores |
| for platform in runs: |
| vals = perf.get_metric_at_point(runs[platform], metric) |
| if vals: |
| platform_scores[platform] = vals |
| return platform_scores |
| |
| |
| def collect_scaled_scores(metric, test_runs, regressed_platforms, relative): |
| # get scores of test runs for 1 test on some kernels and platforms |
| # optionally make relative to oldest (?) kernel on that platform |
| # arrange by plotline (ie platform) for gnuplot |
| plot_data = {} # platform --> (kernel --> list of perf scores) |
| baseline = {} |
| for kernel in sorted(test_runs.keys()): |
| for platform in test_runs[kernel]: |
| if not (regressed_platforms is None or |
| platform in regressed_platforms): |
| continue # delete results for uninteresting platforms |
| vals = perf.get_metric_at_point(test_runs[kernel][platform], |
| metric) |
| if vals: |
| if relative: |
| if platform not in baseline: |
| baseline[platform], std = plotgraph.avg_dev(vals) |
| vals = [v/baseline[platform] for v in vals] |
| pdp = plot_data.setdefault(platform, {}) |
| pdp.setdefault(kernel, []).extend(vals) |
| return plot_data |
| |
| |
| def collect_twoway_scores(metric, antagonists, twoway_runs, relative): |
| alone = '' |
| plot_data = {} |
| for kernel in twoway_runs: |
| for test2 in antagonists: |
| runs = twoway_runs[kernel].get(test2, []) |
| vals = perf.get_metric_at_point(runs, metric) |
| plot_data.setdefault(test2, {}) |
| if vals: |
| plot_data[test2][kernel] = vals |
| if relative: |
| vals = plot_data[alone].get(kernel, []) |
| if vals: |
| baseline = perf.average(vals) |
| for test2 in antagonists: |
| vals = plot_data[test2].get(kernel, []) |
| vals = [val/baseline for val in vals] |
| if vals: |
| plot_data[test2][kernel] = vals |
| else: |
| for test2 in antagonists: |
| if kernel in plot_data[test2]: |
| del plot_data[test2][kernel] |
| return plot_data |
| |
| |
| def find_regressions(kernels, test_runs, metric): |
| # A test is regressed on some platform if its latest results are |
| # definitely lower than on the reference kernel. |
| # Runs for the latest kernel may be underway and incomplete. |
| # In that case, selectively use next-latest kernel. |
| # TODO: the next-latest method hurts if latest run is not sorted last, |
| # or if there are several dev threads |
| ref = kernels[0] |
| latest = kernels[-1] |
| prev = kernels[-2:][0] |
| scores = {} # kernel --> (platform --> list of perf scores) |
| for k in [ref, prev, latest]: |
| if k in test_runs: |
| scores[k] = collect_raw_scores(test_runs[k], metric) |
| regressed_platforms = [] |
| for platform in scores[ref]: |
| if latest in scores and platform in scores[latest]: |
| k = latest |
| elif prev in scores and platform in scores[prev]: |
| k = prev |
| else: # perhaps due to decay of test machines |
| k = ref # no regression info avail |
| ref_avg, ref_std = plotgraph.avg_dev(scores[ref][platform]) |
| avg, std = plotgraph.avg_dev(scores[ k ][platform]) |
| if avg+std < ref_avg-ref_std: |
| regressed_platforms.append(platform) |
| return sorted(regressed_platforms) |
| |
| |
| def get_testrun_context(testrun): |
| cmd = ( 'select tko_jobs.label, tko_jobs.tag, tko_tests.subdir,' |
| ' tko_tests.started_time' |
| ' from tko_jobs, tko_tests' |
| ' where tko_jobs.job_idx = tko_tests.job_idx' |
| ' and tko_tests.test_idx = %d' % testrun ) |
| nrows = perf.db_cur.execute(cmd) |
| assert nrows == 1 |
| row = perf.db_cur.fetchone() |
| row = [row[0], row[1], row[2], row[3].strftime('%m/%d/%y %H:%M')] |
| return row |
| |
| |
| def html_top(): |
| print "Content-Type: text/html\n\n<html><body>" |
| |
| |
| def abs_rel_link(myurl, passthru): |
| # link redraws current page with opposite absolute/relative choice |
| mod_passthru = passthru[:] |
| if 'absolute' in passthru: |
| mod_passthru.remove('absolute') |
| opposite = 'relative' |
| else: |
| mod_passthru.append('absolute') |
| opposite = 'absolute' |
| url = '%s?%s' % (myurl, '&'.join(mod_passthru)) |
| return "<a href='%s'> %s </a>" % (url, opposite) |
| |
| |
| def table_1_metric_all_kernels(plot_data, columns, column_argname, |
| kernels, kernel_dates, |
| myurl, filtered_passthru): |
| # generate html table of graph's numbers |
| # for 1 benchmark metric over all kernels (rows), |
| # over various platforms or various antagonists etc (cols). |
| ref_thresholds = {} |
| print "<table border=1 cellpadding=3 cellspacing=0>" |
| print "<tr> <td><b> Kernel </b></td>", |
| for label in columns: |
| if not label and column_argname == 'antag': |
| label = 'no antag' |
| print "<td><b>", label.replace('_', '<br>_'), "</b></td>" |
| print "</tr>" |
| for kernel in kernels: |
| print "<tr> <td><b>", kernel, "</b>", |
| if kernel in kernel_dates: |
| print "<br><small>", kernel_dates[kernel], "</small>" |
| print "</td>" |
| for col in columns: |
| print "<td", |
| vals = plot_data[col].get(kernel, []) |
| if not vals: |
| print "> ?", |
| else: |
| (avg, std_dev) = plotgraph.avg_dev(vals) |
| if col not in ref_thresholds: |
| ref_thresholds[col] = avg - std_dev |
| if avg+std_dev < ref_thresholds[col]: |
| print "bgcolor=pink", |
| print "> ", |
| args = filtered_passthru[:] |
| perf.append_cgi_args(args, |
| {column_argname:col, 'kernel':kernel}) |
| print "<a href='%s?%s&runs&attrs'>" % (myurl, |
| '&'.join(args)) |
| print "<b>%.4g</b>" % avg, "</a><br>", |
| print " <small> %dr </small>" % len(vals), |
| print " <small> %.3g </small>" % std_dev, |
| print "</td>" |
| print "</tr>\n" |
| print "</table>" |
| print "<p> <b>Bold value:</b> Average of this metric, then <br>" |
| print "number of good test runs, then standard deviation of those runs" |
| print "<br> Pink if regressed from reference kernel" |
| |
| |
| def table_all_metrics_1_platform(test_runs, platform, relative): |
| # TODO: show std dev in cells |
| # can't mark regressions, since some metrics improve downwards |
| kernels = perf.sort_kernels(test_runs.keys()) |
| scores = {} |
| attrs = set() |
| for kernel in kernels: |
| testruns = test_runs[kernel].get(platform, []) |
| if testruns: |
| d = perf.collect_all_metrics_scores(testruns) |
| scores[kernel] = d |
| attrs.update(set(d.keys())) |
| else: |
| print "No runs completed on", kernel, "<br>" |
| attrs = sorted(list(attrs))[:100] |
| |
| print "<table border=1 cellpadding=4 cellspacing=0>" |
| print "<tr><td> Metric </td>" |
| for kernel in kernels: |
| kernel = kernel.replace("_", "_<br>") |
| print "<td>", kernel, "</td>" |
| print "</tr>" |
| for attr in attrs: |
| print "<tr>" |
| print "<td>", attr, "</td>" |
| baseline = None |
| for kernel in kernels: |
| print "<td>", |
| if kernel in scores and attr in scores[kernel]: |
| (avg, dev) = plotgraph.avg_dev(scores[kernel][attr]) |
| if baseline and relative: |
| percent = (avg/baseline - 1)*100 |
| print "%+.1f%%" % percent, |
| else: |
| baseline = avg |
| print "%.4g" % avg, |
| else: |
| print "?" |
| print "</td>" |
| print "</tr>" |
| print "</table>" |
| |
| |
| def table_variants_all_tests(plot_data, columns, colkeys, benchmarks, |
| myurl, filtered_passthru): |
| # generate html table of graph's numbers |
| # for primary metric over all benchmarks (rows), |
| # on one platform and one kernel, |
| # over various combos of test run attribute constraints (cols). |
| ref_thresholds = {} |
| print "<table border=1 cellpadding=3 cellspacing=0>" |
| print "<tr> <td><b> Benchmark </b></td>", |
| for col in columns: |
| print "<td><b>", colkeys[col].replace(',', ',<br>'), "</b></td>" |
| print "</tr>" |
| for benchmark in benchmarks: |
| print "<tr> <td><b>", benchmark, "</b></td>" |
| for col in columns: |
| print "<td>", |
| vals = plot_data[col].get(benchmark, []) |
| if not vals: |
| print "?", |
| else: |
| (avg, std_dev) = plotgraph.avg_dev(vals) |
| args = filtered_passthru[:] |
| perf.append_cgi_args(args, {'test':benchmark}) |
| for keyval in colkeys[col].split(','): |
| key, val = keyval.split('=', 1) |
| perf.append_cgi_args(args, {key:val}) |
| print "<a href='%s?%s&runs&attrs'>" % (myurl, |
| '&'.join(args)) |
| print "<b>%.4g</b>" % avg, "</a><br>", |
| print " <small> %dr </small>" % len(vals), |
| print " <small> %.3g </small>" % std_dev, |
| print "</td>" |
| print "</tr>\n" |
| print "</table>" |
| print "<p> <b>Bold value:</b> Average of this metric, then <br>" |
| print "number of good test runs, then standard deviation of those runs" |
| |
| |
| def table_testrun_details(runs, metric, tko_server, show_attrs): |
| print "<table border=1 cellpadding=4 cellspacing=0>" |
| print "<tr><td> %s metric </td>" % metric |
| print "<td> Job label </td> <td> Job tag </td> <td> Run results </td>" |
| print "<td> Started_time </td>" |
| if show_attrs: |
| print "<td> Test attributes </td>" |
| print "</tr>\n" |
| |
| for testrunx in runs: |
| print "<tr> <td>", |
| vals = perf.get_metric_at_point([testrunx], metric) |
| for v in vals: |
| print "%.4g " % v, |
| print "</td>" |
| row = get_testrun_context(testrunx) |
| row[2] = ( "<a href='//%s/results/%s/%s/results/keyval'> %s </a>" |
| % (tko_server, row[1], row[2], row[2]) ) |
| for v in row: |
| print "<td> %s </td>" % v |
| if show_attrs: |
| attrs = get_test_attributes(testrunx) |
| print "<td>", |
| for attr in sorted(attrs.keys()): |
| if attr == "sysinfo-cmdline": continue |
| if attr[:4] == "svs-": continue |
| val = attrs[attr] |
| if len(val) > 40: |
| val = val[:40-3] + "..." |
| print "%s=%s " % (attr, val) |
| print "</td>" |
| print "</tr>\n" |
| print "</table>" |
| |
| |
| def overview_thumb(test, metric, myurl, passthru): |
| pass_ = passthru + ['test=%s' % test] |
| if metric: |
| pass_ += ['metric=%s' % metric] |
| pass_ = '&'.join(pass_) |
| print "<a href='%s?%s&table'>" % (myurl, pass_) |
| print " <img src='%s?%s&size=450,500'> </a>" % (myurl, pass_) |
| # embedded graphs fit 3 across on 1400x1050 laptop |
| |
| |
| def graph_1_test(title, metric, plot_data, line_argname, lines, |
| kernel_legend, relative, size, dark=False): |
| # generate graph image for one benchmark, showing avg and |
| # std dev of one metric, over various kernels (X columns), |
| # over various platforms or antagonists etc (graphed lines) |
| xlegend = kernel_legend |
| ylegend = metric.capitalize() |
| if relative: |
| ylegend += ', Relative' |
| ymin = 0.8 |
| else: |
| ymin = None |
| if len(lines) > 1: |
| keytitle = line_argname.capitalize() + ':' |
| else: |
| keytitle = '' |
| graph = plotgraph.gnuplot(title, xlegend, ylegend, size=size, |
| xsort=perf.sort_kernels, keytitle=keytitle) |
| for line in lines: |
| label = line |
| if not label and line_argname == 'antag': |
| label = 'no antag' |
| graph.add_dataset(label, plot_data[line]) |
| graph.plot(cgi_header=True, ymin=ymin, dark=dark) |
| |
| |
| def graph_variants_all_tests(title, plot_data, linekeys, size, dark): |
| # generate graph image showing all benchmarks |
| # on one platform and one kernel, |
| # over various combos of test run attribute constraints (lines). |
| xlegend = "Benchmark" |
| ylegend = "Relative Perf" |
| graph = plotgraph.gnuplot(title, xlegend, ylegend, size=size) |
| for i in linekeys: |
| graph.add_dataset(linekeys[i], plot_data[i]) |
| graph.plot(cgi_header=True, dark=dark, ymin=0.8) |
| |
| |
| class generate_views(object): |
| |
| |
| def __init__(self, kernel_legend, benchmarks, test_group, |
| site_benchmark_metrics, tko_server, |
| jobs_selector, no_antag): |
| self.kernel_legend = kernel_legend |
| self.benchmarks = benchmarks |
| self.test_group = test_group |
| self.tko_server = tko_server |
| self.jobs_selector = jobs_selector |
| self.no_antag = no_antag |
| |
| cgitb.enable() |
| test, antagonists = self.parse_most_cgi_args() |
| |
| perf.init(tko_server=tko_server) |
| for b in site_benchmark_metrics: |
| perf.add_benchmark_main_metric(b, site_benchmark_metrics[b]) |
| |
| self.test_runs = {} # kernel --> (platform --> list of test runs) |
| self.job_table = {} # kernel id --> list of job idxs |
| self.kernel_dates = {} # kernel id --> date of nightly test |
| |
| vary = self.cgiform.getlist('vary') |
| if vary: |
| platform = self.platforms_filter[0] |
| self.analyze_variants_all_tests_1_platform(platform, vary) |
| elif test: |
| self.analyze_1_test(test, antagonists) |
| else: |
| self.overview_page_all_tests(self.benchmarks, antagonists) |
| |
| |
| def collect_all_testruns(self, trimmed_kernels, test): |
| # get test_runs run #s for 1 test on some kernels and platforms |
| for kernel in trimmed_kernels: |
| runs = collect_testruns(self.job_table[kernel], test, |
| self.test_attributes, self.platforms_filter, |
| 'by_hosts' in self.toggles, self.no_antag) |
| if runs: |
| self.test_runs[kernel] = runs |
| |
| |
| def table_for_graph_1_test(self, title, metric, plot_data, |
| column_argname, columns, filtered_passthru): |
| # generate detailed html page with 1 graph and corresp numbers |
| # for 1 benchmark metric over all kernels (rows), |
| # over various platforms or various antagonists etc (cols). |
| html_top() |
| print '<h3> %s </h3>' % title |
| print ('%s, machine group %s on //%s server <br>' % |
| (self.kernel_legend, self.test_group, self.tko_server)) |
| if self.test_tag: |
| print '%s test script series <br>' % self.test_tag[1:] |
| |
| print "<img src='%s?%s'>" % (self.myurl, '&'.join(self.passthru)) |
| |
| link = abs_rel_link(self.myurl, self.passthru+['table']) |
| print "<p><p> <h4> Redraw this with %s performance? </h4>" % link |
| |
| heading = "%s, %s metric" % (title, metric) |
| if self.relative: |
| heading += ", relative" |
| print "<p><p> <h3> %s: </h3>" % heading |
| table_1_metric_all_kernels(plot_data, columns, column_argname, |
| self.kernels, self.kernel_dates, |
| self.myurl, filtered_passthru) |
| print "</body></html>" |
| |
| |
| def graph_1_test_all_platforms(self, test, metric, platforms, plot_data): |
| # generate graph image for one benchmark |
| title = test.capitalize() |
| if 'regress' in self.toggles: |
| title += ' Regressions' |
| if 'table' in self.cgiform: |
| self.table_for_graph_1_test(title, metric, plot_data, |
| 'platforms', platforms, |
| filtered_passthru=self.passthru) |
| else: |
| graph_1_test(title, metric, plot_data, 'platforms', platforms, |
| self.kernel_legend, self.relative, |
| self.size, 'dark' in self.toggles) |
| |
| |
| def testrun_details(self, title, runs, metric): |
| html_top() |
| print '<h3> %s </h3>' % title |
| print ('%s, machine group %s on //%s server' % |
| (self.kernel_legend, self.test_group, self.tko_server)) |
| if self.test_tag: |
| print '<br> %s test script series' % self.test_tag[1:] |
| print '<p>' |
| table_testrun_details(runs, metric, |
| self.tko_server, 'attrs' in self.cgiform) |
| print "</body></html>" |
| |
| |
| def testrun_details_for_1_test_kernel_platform(self, test, |
| metric, platform): |
| default_kernel = min(self.test_runs.keys()) |
| kernel = self.cgiform.getvalue('kernel', default_kernel) |
| title = '%s on %s using %s' % (test.capitalize(), platform, kernel) |
| runs = self.test_runs[kernel].get(platform, []) |
| self.testrun_details(title, runs, metric) |
| |
| |
| def analyze_1_metric_all_platforms(self, test, metric): |
| if 'regress' in self.toggles: |
| regressed_platforms = find_regressions(self.kernels, self.test_runs, |
| metric) |
| else: |
| regressed_platforms = None |
| plot_data = collect_scaled_scores(metric, self.test_runs, |
| regressed_platforms, self.relative) |
| platforms = sorted(plot_data.keys()) |
| if not plot_data: |
| html_top() |
| print 'No runs' |
| elif 'runs' in self.cgiform: |
| self.testrun_details_for_1_test_kernel_platform(test, metric, |
| platforms[0]) |
| else: |
| self.graph_1_test_all_platforms(test, metric, platforms, plot_data) |
| |
| |
| def analyze_all_metrics_1_platform(self, test, platform): |
| # TODO: show #runs in header |
| html_top() |
| heading = "%s %s:  %s" % (self.test_group, self.kernel_legend, |
| test.capitalize()) |
| print "<h2> %s </h2>" % heading |
| print "platform=%s <br>" % platform |
| for attr in self.test_attributes: |
| print "%s=%s " % (attr, self.test_attributes[attr]) |
| print "<p>" |
| table_all_metrics_1_platform(self.test_runs, platform, self.relative) |
| print "</body></html>" |
| |
| |
| def table_for_variants_all_tests(self, title, plot_data, colkeys, columns, |
| filtered_passthru, test_tag): |
| # generate detailed html page with 1 graph and corresp numbers |
| # for primary metric over all benchmarks (rows), |
| # on one platform and one kernel, |
| # over various combos of test run attribute constraints (cols). |
| html_top() |
| print '<h3> %s </h3>' % title |
| print ('%s, machine group %s on //%s server <br>' % |
| (self.kernel_legend, self.test_group, self.tko_server)) |
| if test_tag: |
| print '%s test script series <br>' % test_tag[1:] |
| |
| varies = ['vary='+colkeys[col] for col in columns] |
| print "<img src='%s?%s'>" % (self.myurl, '&'.join(self.passthru+varies)) |
| |
| print "<p><p> <h3> %s: </h3>" % title |
| table_variants_all_tests(plot_data, columns, colkeys, self.benchmarks, |
| self.myurl, filtered_passthru) |
| print "</body></html>" |
| |
| |
| def analyze_variants_all_tests_1_platform(self, platform, vary): |
| # generate one graph image for results of all benchmarks |
| # on one platform and one kernel, comparing effects of |
| # two or more combos of kernel options (test run attributes) |
| # (numa_fake,stale_page,kswapd_merge,sched_idle, etc) |
| kernel = self.cgiform.getvalue('kernel', 'some_kernel') |
| self.passthru.append('kernel=%s' % kernel) |
| |
| # two or more vary_groups, one for each plotted line, |
| # each group begins with vary= and ends with next & |
| # each group has comma-separated list of test attribute key=val pairs |
| # eg vary=keyval1,keyval2&vary=keyval3,keyval4 |
| vary_groups = [dict(pair.split('=',1) for pair |
| in vary_group.split(',')) |
| for vary_group in vary] |
| |
| test = self.benchmarks[0] # pick any test in all jobs |
| kernels, test_tag = self.jobs_selector(test, self.job_table, |
| self.kernel_dates) |
| |
| linekeys = {} |
| plot_data = {} |
| baselines = {} |
| for i, vary_group in enumerate(vary_groups): |
| group_attributes = self.test_attributes.copy() |
| group_attributes.update(vary_group) |
| linekey = ','.join('%s=%s' % (attr, vary_group[attr]) |
| for attr in vary_group) |
| linekeys[i] = linekey |
| data = {} |
| for benchmark in self.benchmarks: |
| metric = perf.benchmark_main_metric(benchmark) |
| runs = collect_testruns(self.job_table[kernel], |
| benchmark+test_tag, |
| group_attributes, |
| self.platforms_filter, |
| 'by_hosts' in self.toggles, |
| self.no_antag) |
| vals = [] |
| for testrunx in runs[platform]: |
| vals += perf.get_metric_at_point([testrunx], metric) |
| if vals: |
| if benchmark not in baselines: |
| baselines[benchmark], stddev = plotgraph.avg_dev(vals) |
| vals = [val/baselines[benchmark] for val in vals] |
| data[benchmark] = vals |
| plot_data[i] = data |
| |
| title = "%s on %s" % (kernel, platform) |
| for attr in self.test_attributes: |
| title += ', %s=%s' % (attr, self.test_attributes[attr]) |
| if 'table' in self.cgiform: |
| self.table_for_variants_all_tests(title, plot_data, linekeys, |
| range(len(linekeys)), |
| filtered_passthru=self.passthru, |
| test_tag=test_tag) |
| else: |
| graph_variants_all_tests(title, plot_data, linekeys, |
| self.size, 'dark' in self.toggles) |
| |
| |
| def graph_twoway_antagonists_1_test_1_platform( |
| self, test, metric, platform, antagonists, twoway_runs): |
| # generate graph of one benchmark's performance paired with |
| # various antagonists, with one plotted line per antagonist, |
| # over most kernels (X axis), all on one machine type |
| # performance is relative to the no-antag baseline case |
| plot_data = collect_twoway_scores(metric, antagonists, |
| twoway_runs, self.relative) |
| title = "%s vs. an Antagonist on %s:" % (test.capitalize(), platform) |
| if 'table' in self.cgiform: |
| filtered_passthru = [arg for arg in self.passthru |
| if not arg.startswith('antag=')] |
| self.table_for_graph_1_test(title, metric, plot_data, |
| 'antag', antagonists, |
| filtered_passthru=filtered_passthru) |
| else: |
| graph_1_test(title, metric, plot_data, 'antag', antagonists, |
| self.kernel_legend, self.relative, |
| self.size, 'dark' in self.toggles) |
| |
| |
| def testrun_details_for_twoway_test(self, test, metric, platform, |
| antagonist, twoway_runs): |
| default_kernel = min(twoway_runs.keys()) |
| kernel = self.cgiform.getvalue('kernel', default_kernel) |
| title = '%s vs. Antagonist %s on %s using %s' % ( |
| test.capitalize(), antagonist.capitalize(), platform, kernel) |
| runs = twoway_runs[kernel].get(antagonist, []) |
| self.testrun_details(title, runs, metric) |
| |
| |
| def analyze_twoway_antagonists_1_test_1_platform( |
| self, test, metric, platform, antagonists): |
| twoway_runs, all_antagonists = divide_twoway_testruns(self.test_runs, |
| platform) |
| if antagonists == ['*']: |
| antagonists = all_antagonists |
| if not twoway_runs: |
| html_top() |
| print 'No runs' |
| elif 'runs' in self.cgiform: |
| self.testrun_details_for_twoway_test( |
| test, metric, platform, antagonists[0], twoway_runs) |
| else: |
| self.graph_twoway_antagonists_1_test_1_platform( |
| test, metric, platform, antagonists, twoway_runs) |
| |
| |
| def get_twoway_default_platform(self): |
| if self.platforms_filter: |
| return self.platforms_filter[0] |
| test = 'unixbench' |
| kernels, test_tag = self.jobs_selector(test, self.job_table, |
| self.kernel_dates) |
| self.collect_all_testruns(kernels, test+test_tag) |
| return all_tested_platforms(self.test_runs)[0] |
| |
| |
| def overview_page_all_tests(self, benchmarks, antagonists): |
| # generate overview html page with small graphs for each benchmark |
| # linking to detailed html page for that benchmark |
| # recursively link to this same cgi to generate each image |
| html_top() |
| if antagonists is not None: |
| heading = ('Twoway Container Isolation using %s on %s' % |
| (self.kernel_legend, self.get_twoway_default_platform())) |
| else: |
| heading = '%s, %s Benchmarks' % (self.kernel_legend, |
| self.test_group) |
| if 'regress' in self.toggles: |
| heading += ", Regressions Only" |
| print "<h3> %s </h3>" % heading |
| for test in benchmarks: |
| overview_thumb(test, '', self.myurl, self.passthru) |
| if test == 'unixbench': |
| overview_thumb('unixbench', 'Process_creation', |
| self.myurl, self.passthru) |
| |
| link = abs_rel_link(self.myurl, self.passthru) |
| print "<p><p> <h4> Redraw this with %s performance? </h4>" % link |
| print "</body></html>" |
| |
| |
| def analyze_1_test(self, test, antagonists): |
| self.passthru.append('test=%s' % test) |
| metric = self.cgiform.getvalue('metric', '') |
| if metric: |
| self.passthru.append('metric=%s' % metric) |
| else: |
| metric = perf.benchmark_main_metric(test) |
| assert metric, "no default metric for test %s" % test |
| self.kernels, self.test_tag = self.jobs_selector(test, self.job_table, |
| self.kernel_dates) |
| self.collect_all_testruns(self.kernels, test+self.test_tag) |
| if not self.platforms_filter and (metric == '*' or |
| antagonists is not None): |
| # choose default platform |
| self.platforms_filter = all_tested_platforms(self.test_runs)[0:1] |
| self.passthru.append('platforms=%s' % |
| ','.join(self.platforms_filter)) |
| if antagonists is not None: |
| antagonists = antagonists.split(',') |
| if len(antagonists) == 1 and antagonists != ['*']: |
| self.relative = False |
| self.analyze_twoway_antagonists_1_test_1_platform( |
| test, metric, self.platforms_filter[0], antagonists) |
| elif metric == '*': |
| platform = self.platforms_filter[0] |
| self.analyze_all_metrics_1_platform(test, platform) |
| else: |
| self.analyze_1_metric_all_platforms(test, metric) |
| |
| |
| def parse_most_cgi_args(self): |
| self.myurl = os.path.basename(sys.argv[0]) |
| self.cgiform = cgi.FieldStorage(keep_blank_values=True) |
| self.size = self.cgiform.getvalue('size', '1200,850') |
| all_toggles = set(('absolute', 'regress', 'dark', 'by_hosts')) |
| self.toggles = set(tog for tog in all_toggles if tog in self.cgiform) |
| platforms = self.cgiform.getvalue('platforms', '') |
| if '.' in platforms: |
| self.toggles.add('by_hosts') |
| self.passthru = list(self.toggles) |
| self.relative = 'absolute' not in self.toggles |
| if platforms: |
| self.passthru.append('platforms=%s' % platforms) |
| self.platforms_filter = platforms.split(',') |
| else: |
| self.platforms_filter = [] |
| self.test_attributes = perf.parse_test_attr_args(self.cgiform) |
| perf.append_cgi_args(self.passthru, self.test_attributes) |
| test = self.cgiform.getvalue('test', '') |
| if 'antag' in self.cgiform: |
| antagonists = ','.join(self.cgiform.getlist('antag')) |
| # antag=* |
| # or antag=test1,test2,test3,... |
| # or antag=test1&antag=test2&... |
| # testN is empty for solo case of no antagonist |
| self.passthru.append('antag=%s' % antagonists) |
| else: |
| antagonists = None # not same as '' |
| return test, antagonists |