blob: 16c804491fbee7d8f4a11758a393ee29bf8f5f8d [file] [log] [blame]
mblighef8fd9c2009-08-24 21:57:25 +00001# tko/nightly.py code shared by various tko/*.cgi graphing scripts
mbligh4bfe3612009-02-26 00:38:13 +00002
3import cgi, cgitb
mbligh5b380be2009-06-22 19:02:09 +00004import os, sys
5import common
mbligh4bfe3612009-02-26 00:38:13 +00006from autotest_lib.tko import db, plotgraph, perf
mbligh5b380be2009-06-22 19:02:09 +00007from autotest_lib.client.common_lib import kernel_versions
mbligh4bfe3612009-02-26 00:38:13 +00008
9
mblighef8fd9c2009-08-24 21:57:25 +000010def add_kernel_jobs(label_pattern):
showardeab66ce2009-12-23 00:03:56 +000011 cmd = "select job_idx from tko_jobs where label like '%s'" % label_pattern
mblighef8fd9c2009-08-24 21:57:25 +000012 nrows = perf.db_cur.execute(cmd)
13 return [row[0] for row in perf.db_cur.fetchall()]
mbligh4bfe3612009-02-26 00:38:13 +000014
15
mblighef8fd9c2009-08-24 21:57:25 +000016def is_filtered_platform(platform, platforms_filter):
17 if not platforms_filter:
18 return True
19 for p in platforms_filter:
20 if platform.startswith(p):
21 return True
22 return False
mbligh4bfe3612009-02-26 00:38:13 +000023
24
mblighef8fd9c2009-08-24 21:57:25 +000025def get_test_attributes(testrunx):
showardeab66ce2009-12-23 00:03:56 +000026 cmd = ( "select attribute, value from tko_test_attributes"
mblighef8fd9c2009-08-24 21:57:25 +000027 " where test_idx = %d" % testrunx )
28 nrows = perf.db_cur.execute(cmd)
29 return dict(perf.db_cur.fetchall())
mbligh4bfe3612009-02-26 00:38:13 +000030
31
mblighef8fd9c2009-08-24 21:57:25 +000032def get_antag(testrunx):
33 attrs = get_test_attributes(testrunx)
34 return attrs.get('antag', None)
mbligh4bfe3612009-02-26 00:38:13 +000035
36
mblighef8fd9c2009-08-24 21:57:25 +000037def matching_test_attributes(attrs, required_test_attributes):
38 if not required_test_attributes:
39 return True
40 matches = [attrs[key] == required_test_attributes[key]
41 for key in attrs if key in required_test_attributes]
42 return min(matches+[True]) # True if all jointly-existing keys matched
mbligh4bfe3612009-02-26 00:38:13 +000043
44
mblighef8fd9c2009-08-24 21:57:25 +000045def collect_testruns(jobs, test, test_attributes,
46 platforms_filter, by_hosts, no_antag):
47 # get test_runs run #s for 1 test on 1 kernel and some platforms
48 # TODO: Is jobs list short enough to use directly in 1 sql cmd?
49 # TODO: add filtering on test series?
50 runs = {} # platform --> list of test runs
51 for jobx in jobs:
showardeab66ce2009-12-23 00:03:56 +000052 cmd = ( "select test_idx, machine_idx from tko_tests"
mblighef8fd9c2009-08-24 21:57:25 +000053 " where job_idx = %s and test = %s" )
54 args = [jobx, test]
55 nrows = perf.db_cur.execute(cmd, args)
56 for testrunx, machx in perf.db_cur.fetchall():
57 platform, host = perf.machine_idx_to_platform_host(machx)
58 if by_hosts:
59 platform += '.'+host
60 if ( is_filtered_platform(platform, platforms_filter) and
61 matching_test_attributes(get_test_attributes(testrunx),
62 test_attributes) and
63 (not no_antag or get_antag(testrunx) == '') ):
64 runs.setdefault(platform, []).append(testrunx)
65 return runs
66
67
68def all_tested_platforms(test_runs):
69 # extract list of all tested platforms from test_runs table
70 platforms = set()
71 for kernel in test_runs:
72 platforms.update(set(test_runs[kernel].keys()))
73 return sorted(platforms)
74
75
76def divide_twoway_testruns(test_runs, platform):
77 # partition all twoway runs based on name of antagonist progs
78 twoway_runs = {}
79 antagonists = set()
80 for kernel in test_runs:
81 runs = {}
82 for testrunx in test_runs[kernel].get(platform, []):
83 antag = get_antag(testrunx)
84 if antag is not None:
85 runs.setdefault(antag, []).append(testrunx)
86 antagonists.add(antag)
87 twoway_runs[kernel] = runs
88 return twoway_runs, sorted(antagonists)
89
90
91def collect_raw_scores(runs, metric):
92 # get unscaled scores of test runs for 1 test on certain jobs
93 # arrange them by platform type
94 platform_scores = {} # platform --> list of perf scores
95 for platform in runs:
96 vals = perf.get_metric_at_point(runs[platform], metric)
97 if vals:
98 platform_scores[platform] = vals
99 return platform_scores
100
101
102def collect_scaled_scores(metric, test_runs, regressed_platforms, relative):
103 # get scores of test runs for 1 test on some kernels and platforms
104 # optionally make relative to oldest (?) kernel on that platform
105 # arrange by plotline (ie platform) for gnuplot
106 plot_data = {} # platform --> (kernel --> list of perf scores)
107 baseline = {}
108 for kernel in sorted(test_runs.keys()):
109 for platform in test_runs[kernel]:
110 if not (regressed_platforms is None or
111 platform in regressed_platforms):
112 continue # delete results for uninteresting platforms
113 vals = perf.get_metric_at_point(test_runs[kernel][platform],
114 metric)
mbligh1ef218d2009-08-03 16:57:56 +0000115 if vals:
mblighef8fd9c2009-08-24 21:57:25 +0000116 if relative:
117 if platform not in baseline:
118 baseline[platform], std = plotgraph.avg_dev(vals)
119 vals = [v/baseline[platform] for v in vals]
120 pdp = plot_data.setdefault(platform, {})
121 pdp.setdefault(kernel, []).extend(vals)
122 return plot_data
mbligh4bfe3612009-02-26 00:38:13 +0000123
124
mblighef8fd9c2009-08-24 21:57:25 +0000125def collect_twoway_scores(metric, antagonists, twoway_runs, relative):
126 alone = ''
127 plot_data = {}
128 for kernel in twoway_runs:
129 for test2 in antagonists:
130 runs = twoway_runs[kernel].get(test2, [])
131 vals = perf.get_metric_at_point(runs, metric)
132 plot_data.setdefault(test2, {})
133 if vals:
134 plot_data[test2][kernel] = vals
mbligh1ef218d2009-08-03 16:57:56 +0000135 if relative:
mblighef8fd9c2009-08-24 21:57:25 +0000136 vals = plot_data[alone].get(kernel, [])
137 if vals:
138 baseline = perf.average(vals)
139 for test2 in antagonists:
140 vals = plot_data[test2].get(kernel, [])
141 vals = [val/baseline for val in vals]
142 if vals:
143 plot_data[test2][kernel] = vals
144 else:
145 for test2 in antagonists:
146 if kernel in plot_data[test2]:
147 del plot_data[test2][kernel]
148 return plot_data
mbligh4bfe3612009-02-26 00:38:13 +0000149
150
mblighef8fd9c2009-08-24 21:57:25 +0000151def find_regressions(kernels, test_runs, metric):
152 # A test is regressed on some platform if its latest results are
153 # definitely lower than on the reference kernel.
154 # Runs for the latest kernel may be underway and incomplete.
155 # In that case, selectively use next-latest kernel.
156 # TODO: the next-latest method hurts if latest run is not sorted last,
157 # or if there are several dev threads
158 ref = kernels[0]
159 latest = kernels[-1]
160 prev = kernels[-2:][0]
161 scores = {} # kernel --> (platform --> list of perf scores)
162 for k in [ref, prev, latest]:
163 if k in test_runs:
164 scores[k] = collect_raw_scores(test_runs[k], metric)
165 regressed_platforms = []
166 for platform in scores[ref]:
167 if latest in scores and platform in scores[latest]:
168 k = latest
169 elif prev in scores and platform in scores[prev]:
170 k = prev
171 else: # perhaps due to decay of test machines
172 k = ref # no regression info avail
173 ref_avg, ref_std = plotgraph.avg_dev(scores[ref][platform])
174 avg, std = plotgraph.avg_dev(scores[ k ][platform])
175 if avg+std < ref_avg-ref_std:
176 regressed_platforms.append(platform)
177 return sorted(regressed_platforms)
mbligh4bfe3612009-02-26 00:38:13 +0000178
179
mblighef8fd9c2009-08-24 21:57:25 +0000180def get_testrun_context(testrun):
showardeab66ce2009-12-23 00:03:56 +0000181 cmd = ( 'select tko_jobs.label, tko_jobs.tag, tko_tests.subdir,'
182 ' tko_tests.started_time'
183 ' from tko_jobs, tko_tests'
184 ' where tko_jobs.job_idx = tko_tests.job_idx'
185 ' and tko_tests.test_idx = %d' % testrun )
mblighef8fd9c2009-08-24 21:57:25 +0000186 nrows = perf.db_cur.execute(cmd)
187 assert nrows == 1
188 row = perf.db_cur.fetchone()
189 row = [row[0], row[1], row[2], row[3].strftime('%m/%d/%y %H:%M')]
190 return row
mbligh4bfe3612009-02-26 00:38:13 +0000191
192
mblighef8fd9c2009-08-24 21:57:25 +0000193def html_top():
194 print "Content-Type: text/html\n\n<html><body>"
mbligh4bfe3612009-02-26 00:38:13 +0000195
mblighef8fd9c2009-08-24 21:57:25 +0000196
197def abs_rel_link(myurl, passthru):
198 # link redraws current page with opposite absolute/relative choice
199 mod_passthru = passthru[:]
200 if 'absolute' in passthru:
201 mod_passthru.remove('absolute')
202 opposite = 'relative'
203 else:
204 mod_passthru.append('absolute')
205 opposite = 'absolute'
206 url = '%s?%s' % (myurl, '&'.join(mod_passthru))
207 return "<a href='%s'> %s </a>" % (url, opposite)
208
209
210def table_1_metric_all_kernels(plot_data, columns, column_argname,
211 kernels, kernel_dates,
212 myurl, filtered_passthru):
213 # generate html table of graph's numbers
214 # for 1 benchmark metric over all kernels (rows),
215 # over various platforms or various antagonists etc (cols).
216 ref_thresholds = {}
217 print "<table border=1 cellpadding=3 cellspacing=0>"
218 print "<tr> <td><b> Kernel </b></td>",
219 for label in columns:
220 if not label and column_argname == 'antag':
221 label = 'no antag'
222 print "<td><b>", label.replace('_', '<br>_'), "</b></td>"
223 print "</tr>"
224 for kernel in kernels:
225 print "<tr> <td><b>", kernel, "</b>",
226 if kernel in kernel_dates:
227 print "<br><small>", kernel_dates[kernel], "</small>"
228 print "</td>"
229 for col in columns:
230 print "<td",
231 vals = plot_data[col].get(kernel, [])
232 if not vals:
233 print "> ?",
234 else:
235 (avg, std_dev) = plotgraph.avg_dev(vals)
236 if col not in ref_thresholds:
237 ref_thresholds[col] = avg - std_dev
238 if avg+std_dev < ref_thresholds[col]:
239 print "bgcolor=pink",
240 print "> ",
241 args = filtered_passthru[:]
242 perf.append_cgi_args(args,
243 {column_argname:col, 'kernel':kernel})
244 print "<a href='%s?%s&runs&attrs'>" % (myurl,
245 '&'.join(args))
246 print "<b>%.4g</b>" % avg, "</a><br>",
247 print "&nbsp; <small> %dr </small>" % len(vals),
248 print "&nbsp; <small> %.3g </small>" % std_dev,
mbligh4bfe3612009-02-26 00:38:13 +0000249 print "</td>"
mblighef8fd9c2009-08-24 21:57:25 +0000250 print "</tr>\n"
251 print "</table>"
252 print "<p> <b>Bold value:</b> Average of this metric, then <br>"
253 print "number of good test runs, then standard deviation of those runs"
254 print "<br> Pink if regressed from reference kernel"
255
256
257def table_all_metrics_1_platform(test_runs, platform, relative):
258 # TODO: show std dev in cells
259 # can't mark regressions, since some metrics improve downwards
260 kernels = perf.sort_kernels(test_runs.keys())
261 scores = {}
262 attrs = set()
263 for kernel in kernels:
264 testruns = test_runs[kernel].get(platform, [])
265 if testruns:
266 d = perf.collect_all_metrics_scores(testruns)
267 scores[kernel] = d
268 attrs.update(set(d.keys()))
269 else:
270 print "No runs completed on", kernel, "<br>"
271 attrs = sorted(list(attrs))[:100]
272
273 print "<table border=1 cellpadding=4 cellspacing=0>"
274 print "<tr><td> Metric </td>"
275 for kernel in kernels:
276 kernel = kernel.replace("_", "_<br>")
277 print "<td>", kernel, "</td>"
278 print "</tr>"
279 for attr in attrs:
280 print "<tr>"
281 print "<td>", attr, "</td>"
282 baseline = None
283 for kernel in kernels:
284 print "<td>",
285 if kernel in scores and attr in scores[kernel]:
286 (avg, dev) = plotgraph.avg_dev(scores[kernel][attr])
287 if baseline and relative:
288 percent = (avg/baseline - 1)*100
289 print "%+.1f%%" % percent,
290 else:
291 baseline = avg
292 print "%.4g" % avg,
293 else:
294 print "?"
295 print "</td>"
296 print "</tr>"
297 print "</table>"
298
299
300def table_variants_all_tests(plot_data, columns, colkeys, benchmarks,
301 myurl, filtered_passthru):
302 # generate html table of graph's numbers
303 # for primary metric over all benchmarks (rows),
304 # on one platform and one kernel,
305 # over various combos of test run attribute constraints (cols).
306 ref_thresholds = {}
307 print "<table border=1 cellpadding=3 cellspacing=0>"
308 print "<tr> <td><b> Benchmark </b></td>",
309 for col in columns:
310 print "<td><b>", colkeys[col].replace(',', ',<br>'), "</b></td>"
311 print "</tr>"
312 for benchmark in benchmarks:
313 print "<tr> <td><b>", benchmark, "</b></td>"
314 for col in columns:
315 print "<td>",
316 vals = plot_data[col].get(benchmark, [])
317 if not vals:
318 print "?",
319 else:
320 (avg, std_dev) = plotgraph.avg_dev(vals)
321 args = filtered_passthru[:]
322 perf.append_cgi_args(args, {'test':benchmark})
323 for keyval in colkeys[col].split(','):
324 key, val = keyval.split('=', 1)
325 perf.append_cgi_args(args, {key:val})
326 print "<a href='%s?%s&runs&attrs'>" % (myurl,
327 '&'.join(args))
328 print "<b>%.4g</b>" % avg, "</a><br>",
329 print "&nbsp; <small> %dr </small>" % len(vals),
330 print "&nbsp; <small> %.3g </small>" % std_dev,
331 print "</td>"
332 print "</tr>\n"
333 print "</table>"
334 print "<p> <b>Bold value:</b> Average of this metric, then <br>"
335 print "number of good test runs, then standard deviation of those runs"
336
337
338def table_testrun_details(runs, metric, tko_server, show_attrs):
339 print "<table border=1 cellpadding=4 cellspacing=0>"
340 print "<tr><td> %s metric </td>" % metric
341 print "<td> Job label </td> <td> Job tag </td> <td> Run results </td>"
342 print "<td> Started_time </td>"
343 if show_attrs:
344 print "<td> Test attributes </td>"
345 print "</tr>\n"
346
347 for testrunx in runs:
348 print "<tr> <td>",
349 vals = perf.get_metric_at_point([testrunx], metric)
350 for v in vals:
351 print "%.4g&nbsp;" % v,
352 print "</td>"
353 row = get_testrun_context(testrunx)
354 row[2] = ( "<a href='//%s/results/%s/%s/results/keyval'> %s </a>"
355 % (tko_server, row[1], row[2], row[2]) )
356 for v in row:
357 print "<td> %s </td>" % v
358 if show_attrs:
359 attrs = get_test_attributes(testrunx)
360 print "<td>",
361 for attr in sorted(attrs.keys()):
362 if attr == "sysinfo-cmdline": continue
363 if attr[:4] == "svs-": continue
364 val = attrs[attr]
365 if len(val) > 40:
366 val = val[:40-3] + "..."
367 print "%s=%s &nbsp; &nbsp; " % (attr, val)
368 print "</td>"
369 print "</tr>\n"
370 print "</table>"
371
372
373def overview_thumb(test, metric, myurl, passthru):
374 pass_ = passthru + ['test=%s' % test]
375 if metric:
376 pass_ += ['metric=%s' % metric]
377 pass_ = '&'.join(pass_)
378 print "<a href='%s?%s&table'>" % (myurl, pass_)
379 print " <img src='%s?%s&size=450,500'> </a>" % (myurl, pass_)
380 # embedded graphs fit 3 across on 1400x1050 laptop
381
382
383def graph_1_test(title, metric, plot_data, line_argname, lines,
384 kernel_legend, relative, size, dark=False):
385 # generate graph image for one benchmark, showing avg and
386 # std dev of one metric, over various kernels (X columns),
387 # over various platforms or antagonists etc (graphed lines)
388 xlegend = kernel_legend
389 ylegend = metric.capitalize()
390 if relative:
391 ylegend += ', Relative'
392 ymin = 0.8
393 else:
394 ymin = None
395 if len(lines) > 1:
396 keytitle = line_argname.capitalize() + ':'
397 else:
398 keytitle = ''
399 graph = plotgraph.gnuplot(title, xlegend, ylegend, size=size,
400 xsort=perf.sort_kernels, keytitle=keytitle)
401 for line in lines:
402 label = line
403 if not label and line_argname == 'antag':
404 label = 'no antag'
405 graph.add_dataset(label, plot_data[line])
406 graph.plot(cgi_header=True, ymin=ymin, dark=dark)
407
408
409def graph_variants_all_tests(title, plot_data, linekeys, size, dark):
410 # generate graph image showing all benchmarks
411 # on one platform and one kernel,
412 # over various combos of test run attribute constraints (lines).
413 xlegend = "Benchmark"
414 ylegend = "Relative Perf"
415 graph = plotgraph.gnuplot(title, xlegend, ylegend, size=size)
416 for i in linekeys:
417 graph.add_dataset(linekeys[i], plot_data[i])
418 graph.plot(cgi_header=True, dark=dark, ymin=0.8)
419
420
421class generate_views(object):
422
423
424 def __init__(self, kernel_legend, benchmarks, test_group,
425 site_benchmark_metrics, tko_server,
426 jobs_selector, no_antag):
427 self.kernel_legend = kernel_legend
428 self.benchmarks = benchmarks
429 self.test_group = test_group
430 self.tko_server = tko_server
431 self.jobs_selector = jobs_selector
432 self.no_antag = no_antag
433
434 cgitb.enable()
435 test, antagonists = self.parse_most_cgi_args()
436
437 perf.init(tko_server=tko_server)
438 for b in site_benchmark_metrics:
439 perf.add_benchmark_main_metric(b, site_benchmark_metrics[b])
440
441 self.test_runs = {} # kernel --> (platform --> list of test runs)
442 self.job_table = {} # kernel id --> list of job idxs
443 self.kernel_dates = {} # kernel id --> date of nightly test
444
445 vary = self.cgiform.getlist('vary')
446 if vary:
447 platform = self.platforms_filter[0]
448 self.analyze_variants_all_tests_1_platform(platform, vary)
449 elif test:
450 self.analyze_1_test(test, antagonists)
451 else:
452 self.overview_page_all_tests(self.benchmarks, antagonists)
453
454
455 def collect_all_testruns(self, trimmed_kernels, test):
456 # get test_runs run #s for 1 test on some kernels and platforms
457 for kernel in trimmed_kernels:
458 runs = collect_testruns(self.job_table[kernel], test,
459 self.test_attributes, self.platforms_filter,
460 'by_hosts' in self.toggles, self.no_antag)
461 if runs:
462 self.test_runs[kernel] = runs
463
464
465 def table_for_graph_1_test(self, title, metric, plot_data,
466 column_argname, columns, filtered_passthru):
467 # generate detailed html page with 1 graph and corresp numbers
468 # for 1 benchmark metric over all kernels (rows),
469 # over various platforms or various antagonists etc (cols).
470 html_top()
471 print '<h3> %s </h3>' % title
472 print ('%s, machine group %s on //%s server <br>' %
473 (self.kernel_legend, self.test_group, self.tko_server))
474 if self.test_tag:
475 print '%s test script series <br>' % self.test_tag[1:]
476
477 print "<img src='%s?%s'>" % (self.myurl, '&'.join(self.passthru))
478
479 link = abs_rel_link(self.myurl, self.passthru+['table'])
480 print "<p><p> <h4> Redraw this with %s performance? </h4>" % link
481
482 heading = "%s, %s metric" % (title, metric)
483 if self.relative:
484 heading += ", relative"
485 print "<p><p> <h3> %s: </h3>" % heading
486 table_1_metric_all_kernels(plot_data, columns, column_argname,
487 self.kernels, self.kernel_dates,
488 self.myurl, filtered_passthru)
mbligh4bfe3612009-02-26 00:38:13 +0000489 print "</body></html>"
490
491
mblighef8fd9c2009-08-24 21:57:25 +0000492 def graph_1_test_all_platforms(self, test, metric, platforms, plot_data):
493 # generate graph image for one benchmark
494 title = test.capitalize()
495 if 'regress' in self.toggles:
496 title += ' Regressions'
497 if 'table' in self.cgiform:
498 self.table_for_graph_1_test(title, metric, plot_data,
499 'platforms', platforms,
500 filtered_passthru=self.passthru)
501 else:
502 graph_1_test(title, metric, plot_data, 'platforms', platforms,
503 self.kernel_legend, self.relative,
504 self.size, 'dark' in self.toggles)
mbligh4bfe3612009-02-26 00:38:13 +0000505
506
mblighef8fd9c2009-08-24 21:57:25 +0000507 def testrun_details(self, title, runs, metric):
508 html_top()
509 print '<h3> %s </h3>' % title
510 print ('%s, machine group %s on //%s server' %
511 (self.kernel_legend, self.test_group, self.tko_server))
512 if self.test_tag:
513 print '<br> %s test script series' % self.test_tag[1:]
514 print '<p>'
515 table_testrun_details(runs, metric,
516 self.tko_server, 'attrs' in self.cgiform)
517 print "</body></html>"
518
519
520 def testrun_details_for_1_test_kernel_platform(self, test,
521 metric, platform):
522 default_kernel = min(self.test_runs.keys())
523 kernel = self.cgiform.getvalue('kernel', default_kernel)
524 title = '%s on %s using %s' % (test.capitalize(), platform, kernel)
525 runs = self.test_runs[kernel].get(platform, [])
526 self.testrun_details(title, runs, metric)
527
528
529 def analyze_1_metric_all_platforms(self, test, metric):
530 if 'regress' in self.toggles:
531 regressed_platforms = find_regressions(self.kernels, self.test_runs,
532 metric)
533 else:
534 regressed_platforms = None
535 plot_data = collect_scaled_scores(metric, self.test_runs,
536 regressed_platforms, self.relative)
537 platforms = sorted(plot_data.keys())
538 if not plot_data:
539 html_top()
540 print 'No runs'
541 elif 'runs' in self.cgiform:
542 self.testrun_details_for_1_test_kernel_platform(test, metric,
543 platforms[0])
544 else:
545 self.graph_1_test_all_platforms(test, metric, platforms, plot_data)
546
547
548 def analyze_all_metrics_1_platform(self, test, platform):
549 # TODO: show #runs in header
550 html_top()
551 heading = "%s %s:&nbsp %s" % (self.test_group, self.kernel_legend,
552 test.capitalize())
553 print "<h2> %s </h2>" % heading
554 print "platform=%s <br>" % platform
555 for attr in self.test_attributes:
556 print "%s=%s &nbsp; " % (attr, self.test_attributes[attr])
557 print "<p>"
558 table_all_metrics_1_platform(self.test_runs, platform, self.relative)
559 print "</body></html>"
560
561
562 def table_for_variants_all_tests(self, title, plot_data, colkeys, columns,
563 filtered_passthru, test_tag):
564 # generate detailed html page with 1 graph and corresp numbers
565 # for primary metric over all benchmarks (rows),
566 # on one platform and one kernel,
567 # over various combos of test run attribute constraints (cols).
568 html_top()
569 print '<h3> %s </h3>' % title
570 print ('%s, machine group %s on //%s server <br>' %
571 (self.kernel_legend, self.test_group, self.tko_server))
572 if test_tag:
573 print '%s test script series <br>' % test_tag[1:]
574
575 varies = ['vary='+colkeys[col] for col in columns]
576 print "<img src='%s?%s'>" % (self.myurl, '&'.join(self.passthru+varies))
577
578 print "<p><p> <h3> %s: </h3>" % title
579 table_variants_all_tests(plot_data, columns, colkeys, self.benchmarks,
580 self.myurl, filtered_passthru)
581 print "</body></html>"
582
583
584 def analyze_variants_all_tests_1_platform(self, platform, vary):
585 # generate one graph image for results of all benchmarks
586 # on one platform and one kernel, comparing effects of
587 # two or more combos of kernel options (test run attributes)
588 # (numa_fake,stale_page,kswapd_merge,sched_idle, etc)
589 kernel = self.cgiform.getvalue('kernel', 'some_kernel')
590 self.passthru.append('kernel=%s' % kernel)
591
592 # two or more vary_groups, one for each plotted line,
593 # each group begins with vary= and ends with next &
594 # each group has comma-separated list of test attribute key=val pairs
595 # eg vary=keyval1,keyval2&vary=keyval3,keyval4
596 vary_groups = [dict(pair.split('=',1) for pair
597 in vary_group.split(','))
598 for vary_group in vary]
599
600 test = self.benchmarks[0] # pick any test in all jobs
601 kernels, test_tag = self.jobs_selector(test, self.job_table,
602 self.kernel_dates)
603
604 linekeys = {}
605 plot_data = {}
606 baselines = {}
607 for i, vary_group in enumerate(vary_groups):
608 group_attributes = self.test_attributes.copy()
609 group_attributes.update(vary_group)
610 linekey = ','.join('%s=%s' % (attr, vary_group[attr])
611 for attr in vary_group)
612 linekeys[i] = linekey
613 data = {}
614 for benchmark in self.benchmarks:
615 metric = perf.benchmark_main_metric(benchmark)
616 runs = collect_testruns(self.job_table[kernel],
617 benchmark+test_tag,
618 group_attributes,
619 self.platforms_filter,
620 'by_hosts' in self.toggles,
621 self.no_antag)
622 vals = []
623 for testrunx in runs[platform]:
624 vals += perf.get_metric_at_point([testrunx], metric)
625 if vals:
626 if benchmark not in baselines:
627 baselines[benchmark], stddev = plotgraph.avg_dev(vals)
628 vals = [val/baselines[benchmark] for val in vals]
629 data[benchmark] = vals
630 plot_data[i] = data
631
632 title = "%s on %s" % (kernel, platform)
633 for attr in self.test_attributes:
634 title += ', %s=%s' % (attr, self.test_attributes[attr])
635 if 'table' in self.cgiform:
636 self.table_for_variants_all_tests(title, plot_data, linekeys,
637 range(len(linekeys)),
638 filtered_passthru=self.passthru,
639 test_tag=test_tag)
640 else:
641 graph_variants_all_tests(title, plot_data, linekeys,
642 self.size, 'dark' in self.toggles)
643
644
645 def graph_twoway_antagonists_1_test_1_platform(
646 self, test, metric, platform, antagonists, twoway_runs):
647 # generate graph of one benchmark's performance paired with
648 # various antagonists, with one plotted line per antagonist,
649 # over most kernels (X axis), all on one machine type
650 # performance is relative to the no-antag baseline case
651 plot_data = collect_twoway_scores(metric, antagonists,
652 twoway_runs, self.relative)
653 title = "%s vs. an Antagonist on %s:" % (test.capitalize(), platform)
654 if 'table' in self.cgiform:
655 filtered_passthru = [arg for arg in self.passthru
656 if not arg.startswith('antag=')]
657 self.table_for_graph_1_test(title, metric, plot_data,
658 'antag', antagonists,
659 filtered_passthru=filtered_passthru)
660 else:
661 graph_1_test(title, metric, plot_data, 'antag', antagonists,
662 self.kernel_legend, self.relative,
663 self.size, 'dark' in self.toggles)
664
665
666 def testrun_details_for_twoway_test(self, test, metric, platform,
667 antagonist, twoway_runs):
668 default_kernel = min(twoway_runs.keys())
669 kernel = self.cgiform.getvalue('kernel', default_kernel)
670 title = '%s vs. Antagonist %s on %s using %s' % (
671 test.capitalize(), antagonist.capitalize(), platform, kernel)
672 runs = twoway_runs[kernel].get(antagonist, [])
673 self.testrun_details(title, runs, metric)
674
675
676 def analyze_twoway_antagonists_1_test_1_platform(
677 self, test, metric, platform, antagonists):
678 twoway_runs, all_antagonists = divide_twoway_testruns(self.test_runs,
679 platform)
680 if antagonists == ['*']:
681 antagonists = all_antagonists
682 if not twoway_runs:
683 html_top()
684 print 'No runs'
685 elif 'runs' in self.cgiform:
686 self.testrun_details_for_twoway_test(
687 test, metric, platform, antagonists[0], twoway_runs)
688 else:
689 self.graph_twoway_antagonists_1_test_1_platform(
690 test, metric, platform, antagonists, twoway_runs)
691
692
693 def get_twoway_default_platform(self):
694 if self.platforms_filter:
695 return self.platforms_filter[0]
696 test = 'unixbench'
697 kernels, test_tag = self.jobs_selector(test, self.job_table,
698 self.kernel_dates)
699 self.collect_all_testruns(kernels, test+test_tag)
700 return all_tested_platforms(self.test_runs)[0]
701
702
703 def overview_page_all_tests(self, benchmarks, antagonists):
mbligh4bfe3612009-02-26 00:38:13 +0000704 # generate overview html page with small graphs for each benchmark
705 # linking to detailed html page for that benchmark
706 # recursively link to this same cgi to generate each image
mblighef8fd9c2009-08-24 21:57:25 +0000707 html_top()
708 if antagonists is not None:
709 heading = ('Twoway Container Isolation using %s on %s' %
710 (self.kernel_legend, self.get_twoway_default_platform()))
711 else:
712 heading = '%s, %s Benchmarks' % (self.kernel_legend,
713 self.test_group)
714 if 'regress' in self.toggles:
mbligh4bfe3612009-02-26 00:38:13 +0000715 heading += ", Regressions Only"
mblighef8fd9c2009-08-24 21:57:25 +0000716 print "<h3> %s </h3>" % heading
mbligh4bfe3612009-02-26 00:38:13 +0000717 for test in benchmarks:
mblighef8fd9c2009-08-24 21:57:25 +0000718 overview_thumb(test, '', self.myurl, self.passthru)
mbligh9b2cd042009-06-22 19:02:47 +0000719 if test == 'unixbench':
mblighef8fd9c2009-08-24 21:57:25 +0000720 overview_thumb('unixbench', 'Process_creation',
721 self.myurl, self.passthru)
722
723 link = abs_rel_link(self.myurl, self.passthru)
724 print "<p><p> <h4> Redraw this with %s performance? </h4>" % link
mbligh4bfe3612009-02-26 00:38:13 +0000725 print "</body></html>"
726
727
mblighef8fd9c2009-08-24 21:57:25 +0000728 def analyze_1_test(self, test, antagonists):
729 self.passthru.append('test=%s' % test)
730 metric = self.cgiform.getvalue('metric', '')
mbligh4bfe3612009-02-26 00:38:13 +0000731 if metric:
mblighef8fd9c2009-08-24 21:57:25 +0000732 self.passthru.append('metric=%s' % metric)
mbligh4bfe3612009-02-26 00:38:13 +0000733 else:
734 metric = perf.benchmark_main_metric(test)
735 assert metric, "no default metric for test %s" % test
mblighef8fd9c2009-08-24 21:57:25 +0000736 self.kernels, self.test_tag = self.jobs_selector(test, self.job_table,
737 self.kernel_dates)
738 self.collect_all_testruns(self.kernels, test+self.test_tag)
739 if not self.platforms_filter and (metric == '*' or
740 antagonists is not None):
741 # choose default platform
742 self.platforms_filter = all_tested_platforms(self.test_runs)[0:1]
743 self.passthru.append('platforms=%s' %
744 ','.join(self.platforms_filter))
745 if antagonists is not None:
746 antagonists = antagonists.split(',')
747 if len(antagonists) == 1 and antagonists != ['*']:
748 self.relative = False
749 self.analyze_twoway_antagonists_1_test_1_platform(
750 test, metric, self.platforms_filter[0], antagonists)
751 elif metric == '*':
752 platform = self.platforms_filter[0]
753 self.analyze_all_metrics_1_platform(test, platform)
mbligh4bfe3612009-02-26 00:38:13 +0000754 else:
mblighef8fd9c2009-08-24 21:57:25 +0000755 self.analyze_1_metric_all_platforms(test, metric)
mbligh5b380be2009-06-22 19:02:09 +0000756
757
mblighef8fd9c2009-08-24 21:57:25 +0000758 def parse_most_cgi_args(self):
759 self.myurl = os.path.basename(sys.argv[0])
760 self.cgiform = cgi.FieldStorage(keep_blank_values=True)
761 self.size = self.cgiform.getvalue('size', '1200,850')
762 all_toggles = set(('absolute', 'regress', 'dark', 'by_hosts'))
763 self.toggles = set(tog for tog in all_toggles if tog in self.cgiform)
764 platforms = self.cgiform.getvalue('platforms', '')
765 if '.' in platforms:
766 self.toggles.add('by_hosts')
767 self.passthru = list(self.toggles)
768 self.relative = 'absolute' not in self.toggles
769 if platforms:
770 self.passthru.append('platforms=%s' % platforms)
771 self.platforms_filter = platforms.split(',')
772 else:
773 self.platforms_filter = []
774 self.test_attributes = perf.parse_test_attr_args(self.cgiform)
775 perf.append_cgi_args(self.passthru, self.test_attributes)
776 test = self.cgiform.getvalue('test', '')
777 if 'antag' in self.cgiform:
778 antagonists = ','.join(self.cgiform.getlist('antag'))
779 # antag=*
780 # or antag=test1,test2,test3,...
781 # or antag=test1&antag=test2&...
782 # testN is empty for solo case of no antagonist
783 self.passthru.append('antag=%s' % antagonists)
784 else:
785 antagonists = None # not same as ''
786 return test, antagonists