blob: a70820002374ff26415ce50ed8631319908a860a [file] [log] [blame]
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +08001# Copyright 2015 The Chromium OS Authors. All rights reserved.
2# Use of this source code is governed by a BSD-style license that can be
3# found in the LICENSE file.
4
5"""This module provides utilities to do audio data analysis."""
6
7import logging
8import numpy
9import operator
10
11# Only peaks with coefficient greater than 0.01 of the first peak should be
12# considered. Note that this correspond to -40dB in the spectrum.
13DEFAULT_MIN_PEAK_RATIO = 0.01
14
15PEAK_WINDOW_SIZE_HZ = 20 # Window size for peak detection.
16
17# The minimum RMS value of meaningful audio data.
18MEANINGFUL_RMS_THRESHOLD = 0.001
19
20class RMSTooSmallError(Exception):
21 """Error when signal RMS is too small."""
22 pass
23
24
Cheng-Yi Chiang3f282552015-12-08 09:06:35 +080025class EmptyDataError(Exception):
26 """Error when signal is empty."""
27
28
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +080029def normalize_signal(signal, saturate_value):
30 """Normalizes the signal with respect to the saturate value.
31
32 @param signal: A list for one-channel PCM data.
33 @param saturate_value: The maximum value that the PCM data might be.
34
35 @returns: A numpy array containing normalized signal. The normalized signal
36 has value -1 and 1 when it saturates.
37
38 """
39 signal = numpy.array(signal)
40 return signal / float(saturate_value)
41
42
43def spectral_analysis(signal, rate, min_peak_ratio=DEFAULT_MIN_PEAK_RATIO,
44 peak_window_size_hz=PEAK_WINDOW_SIZE_HZ):
45 """Gets the dominant frequencies by spectral analysis.
46
47 @param signal: A list of numbers for one-channel PCM data. This should be
48 normalized to [-1, 1] so the function can check if signal RMS
49 is too small to be meaningful.
50 @param rate: Sampling rate.
51 @param min_peak_ratio: The minimum peak_0/peak_i ratio such that the
52 peaks other than the greatest one should be
53 considered.
54 This is to ignore peaks that are too small compared
55 to the first peak peak_0.
56 @param peak_window_size_hz: The window size in Hz to find the peaks.
57 The minimum differences between found peaks will
58 be half of this value.
59
60 @returns: A list of tuples:
61 [(peak_frequency_0, peak_coefficient_0),
62 (peak_frequency_1, peak_coefficient_1),
63 (peak_frequency_2, peak_coefficient_2), ...]
64 where the tuples are sorted by coefficients.
65 The last peak_coefficient will be no less than
66 peak_coefficient * min_peak_ratio.
67
68 """
69 # Checks the signal is meaningful.
Cheng-Yi Chiang3f282552015-12-08 09:06:35 +080070 if len(signal) == 0:
71 raise EmptyDataError('Signal data is empty')
72
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +080073 signal_rms = numpy.linalg.norm(signal) / numpy.sqrt(len(signal))
74 logging.debug('signal RMS = %s', signal_rms)
75 if signal_rms < MEANINGFUL_RMS_THRESHOLD:
76 raise RMSTooSmallError(
77 'RMS %s is too small to be meaningful' % signal_rms)
78
79 # First, pass signal through a window function to mitigate spectral leakage.
80 y_conv_w = signal * numpy.hanning(len(signal))
81
82 length = len(y_conv_w)
83
84 # x_f is the frequency in Hz, y_f is the transformed coefficient.
85 x_f = _rfft_freq(length, rate)
86 y_f = 2.0 / length * numpy.fft.rfft(y_conv_w)
87
88 # y_f is complex so consider its absolute value for magnitude.
89 abs_y_f = numpy.abs(y_f)
90 threshold = max(abs_y_f) * min_peak_ratio
91
92 # Suppresses all coefficients that are below threshold.
93 for i in xrange(len(abs_y_f)):
94 if abs_y_f[i] < threshold:
95 abs_y_f[i] = 0
96
97 # Gets the peak detection window size in indice.
98 # x_f[1] is the frequency difference per index.
99 peak_window_size = int(peak_window_size_hz / x_f[1])
100
101 # Detects peaks.
102 peaks = _peak_detection(abs_y_f, peak_window_size)
103
104 # Transform back the peak location from index to frequency.
105 results = []
106 for index, value in peaks:
107 results.append((x_f[index], value))
108 return results
109
110
111def _rfft_freq(length, rate):
112 """Gets the frequency at each index of real FFT.
113
114 @param length: The window length of FFT.
115 @param rate: Sampling rate.
116
117 @returns: A numpy array containing frequency corresponding to
118 numpy.fft.rfft result at each index.
119
120 """
121 # The difference in Hz between each index.
122 val = rate / float(length)
123 # Only care half of frequencies for FFT on real signal.
124 result_length = length // 2 + 1
125 return numpy.linspace(0, (result_length - 1) * val, result_length)
126
127
128def _peak_detection(array, window_size):
129 """Detects peaks in an array.
130
131 A point (i, array[i]) is a peak if array[i] is the maximum among
132 array[i - half_window_size] to array[i + half_window_size].
133 If array[i - half_window_size] to array[i + half_window_size] are all equal,
134 then there is no peak in this window.
135
136 @param window_size: The window to detect peaks.
137
138 @returns: A list of tuples:
139 [(peak_index_1, peak_value_1), (peak_index_2, peak_value_2), ...]
140 where the tuples are sorted by peak values.
141
142 """
143 half_window_size = window_size / 2
144 length = len(array)
145
146 def find_max(numbers):
147 """Gets the index where maximum value happens.
148
149 @param numbers: A list of numbers.
150
151 @returns: (index, value) where value = numbers[index] is the maximum
152 among numbers.
153
154 """
155 index, value = max(enumerate(numbers), key=lambda x: x[1])
156 return index, value
157
158 results = []
159 for mid in xrange(length):
160 left = max(0, mid - half_window_size)
161 right = min(length - 1, mid + half_window_size)
162 numbers_in_window = array[left:right + 1]
163 max_index, max_value = find_max(numbers_in_window)
164
165 # Add the offset back.
166 max_index = max_index + left
167
168 # If all values are the same then there is no peak in this window.
169 if max_value != min(numbers_in_window) and max_index == mid:
170 results.append((mid, max_value))
171
172 # Sort the peaks by values.
173 return sorted(results, key=lambda x: x[1], reverse=True)
Cheng-Yi Chiang4085acc2015-11-16 15:31:35 -0800174
175
176# The default pattern mathing threshold. By experiment, this threshold
177# can tolerate normal noise of 0.3 amplitude when sine wave signal
178# amplitude is 1.
179PATTERN_MATCHING_THRESHOLD = 0.85
180
Cheng-Yi Chiang7dfe9c82015-12-30 16:08:21 +0800181# The default block size of pattern matching.
182ANOMALY_DETECTION_BLOCK_SIZE = 120
183
184def anomaly_detection(signal, rate, freq,
185 block_size=ANOMALY_DETECTION_BLOCK_SIZE,
Cheng-Yi Chiang4085acc2015-11-16 15:31:35 -0800186 threshold=PATTERN_MATCHING_THRESHOLD):
187 """Detects anomaly in a sine wave signal.
188
189 This method detects anomaly in a sine wave signal by matching
190 patterns of each block.
191 For each moving window of block in the test signal, checks if there
192 is any block in golden signal that is similar to this block of test signal.
193 If there is such a block in golden signal, then this block of test
194 signal is matched and there is no anomaly in this block of test signal.
195 If there is any block in test signal that is not matched, then this block
196 covers an anomaly.
197 The block of test signal starts from index 0, and proceeds in steps of
198 half block size. The overlapping of test signal blocks makes sure there must
199 be at least one block covering the transition from sine wave to anomaly.
200
201 @param signal: A 1-D array-like object for 1-channel PCM data.
202 @param rate: The sampling rate.
203 @param freq: The expected frequency of signal.
204 @param block_size: The block size in samples to detect anomaly.
205 @param threshold: The threshold of correlation index to be judge as matched.
206
207 @returns: A list containing detected anomaly time in seconds.
208
209 """
Cheng-Yi Chiang3f282552015-12-08 09:06:35 +0800210 if len(signal) == 0:
211 raise EmptyDataError('Signal data is empty')
212
Cheng-Yi Chiang4085acc2015-11-16 15:31:35 -0800213 golden_y = _generate_golden_pattern(rate, freq, block_size)
214
215 results = []
216
217 for start in xrange(0, len(signal), block_size / 2):
218 end = start + block_size
219 test_signal = signal[start:end]
220 matched = _moving_pattern_matching(golden_y, test_signal, threshold)
221 if not matched:
222 results.append(start)
223
224 results = [float(x) / rate for x in results]
225
226 return results
227
228
229def _generate_golden_pattern(rate, freq, block_size):
230 """Generates a golden pattern of certain frequency.
231
232 The golden pattern must cover all the possibilities of waveforms in a
233 block. So, we need a golden pattern covering 1 period + 1 block size,
234 such that the test block can start anywhere in a period, and extends
235 a block size.
236
237 |period |1 bk|
238 | | |
239 . . . .
240 . . . .
241 . . .
242
243 @param rate: The sampling rate.
244 @param freq: The frequency of golden pattern.
245 @param block_size: The block size in samples to detect anomaly.
246
247 @returns: A 1-D array for golden pattern.
248
249 """
250 samples_in_a_period = int(rate / freq) + 1
251 samples_in_golden_pattern = samples_in_a_period + block_size
252 golden_x = numpy.linspace(
253 0.0, (samples_in_golden_pattern - 1) * 1.0 / rate,
254 samples_in_golden_pattern)
255 golden_y = numpy.sin(freq * 2.0 * numpy.pi * golden_x)
256 return golden_y
257
258
259def _moving_pattern_matching(golden_signal, test_signal, threshold):
260 """Checks if test_signal is similar to any block of golden_signal.
261
262 Compares test signal with each block of golden signal by correlation
263 index. If there is any block of golden signal that is similar to
264 test signal, then it is matched.
265
266 @param golden_signal: A 1-D array for golden signal.
267 @param test_signal: A 1-D array for test signal.
268 @param threshold: The threshold of correlation index to be judge as matched.
269
270 @returns: True if there is a match. False otherwise.
271
272 @raises: ValueError: if test signal is longer than golden signal.
273
274 """
275 if len(golden_signal) < len(test_signal):
276 raise ValueError('Test signal is longer than golden signal')
277
278 block_length = len(test_signal)
279 number_of_movings = len(golden_signal) - block_length + 1
280 correlation_indices = []
281 for moving_index in xrange(number_of_movings):
282 # Cuts one block of golden signal from start index.
283 # The block length is the same as test signal.
284 start = moving_index
285 end = start + block_length
286 golden_signal_block = golden_signal[start:end]
287 try:
288 correlation_index = _get_correlation_index(
289 golden_signal_block, test_signal)
290 except TestSignalNormTooSmallError:
291 logging.info('Caught one block of test signal that has no meaningful norm')
292 return False
293 correlation_indices.append(correlation_index)
294
295 # Checks if the maximum correlation index is high enough.
296 max_corr = max(correlation_indices)
297 if max_corr < threshold:
298 logging.debug('Got one unmatched block with max_corr: %s', max_corr)
299 return False
300 return True
301
302
303class GoldenSignalNormTooSmallError(Exception):
304 """Exception when golden signal norm is too small."""
305 pass
306
307
308class TestSignalNormTooSmallError(Exception):
309 """Exception when test signal norm is too small."""
310 pass
311
312
313_MINIMUM_SIGNAL_NORM = 0.001
314
315def _get_correlation_index(golden_signal, test_signal):
316 """Computes correlation index of two signal of same length.
317
318 @param golden_signal: An 1-D array-like object.
319 @param test_signal: An 1-D array-like object.
320
321 @raises: ValueError: if two signal have different lengths.
322 @raises: GoldenSignalNormTooSmallError: if golden signal norm is too small
323 @raises: TestSignalNormTooSmallError: if test signal norm is too small.
324
325 @returns: The correlation index.
326 """
327 if len(golden_signal) != len(test_signal):
328 raise ValueError(
329 'Only accepts signal of same length: %s, %s' % (
330 len(golden_signal), len(test_signal)))
331
332 norm_golden = numpy.linalg.norm(golden_signal)
333 norm_test = numpy.linalg.norm(test_signal)
334 if norm_golden <= _MINIMUM_SIGNAL_NORM:
335 raise GoldenSignalNormTooSmallError(
336 'No meaningful data as norm is too small.')
337 if norm_test <= _MINIMUM_SIGNAL_NORM:
338 raise TestSignalNormTooSmallError(
339 'No meaningful data as norm is too small.')
340
341 # The 'valid' cross correlation result of two signals of same length will
342 # contain only one number.
343 correlation = numpy.correlate(golden_signal, test_signal, 'valid')[0]
344 return correlation / (norm_golden * norm_test)