blob: cadb2ab2111bc1f7200c8c42f964787d08b180f1 [file] [log] [blame]
/*
* *****************************************************************************
*
* Copyright (c) 2018-2019 Gavin D. Howard and contributors.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* *****************************************************************************
*
* Code for the number type.
*
*/
#include <assert.h>
#include <ctype.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <status.h>
#include <num.h>
#include <vm.h>
static BcStatus bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static ssize_t bc_num_neg(size_t n, bool neg) {
return (((ssize_t) n) ^ -((ssize_t) neg)) + neg;
}
ssize_t bc_num_cmpZero(const BcNum *n) {
return bc_num_neg((n)->len != 0, (n)->neg);
}
static size_t bc_num_int(const BcNum *n) {
return n->len ? n->len - n->rdx : 0;
}
static void bc_num_expand(BcNum *restrict n, size_t req) {
assert(n);
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
if (req > n->cap) {
n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req));
n->cap = req;
}
}
static void bc_num_setToZero(BcNum *restrict n, size_t scale) {
assert(n);
n->scale = scale;
n->len = n->rdx = 0;
n->neg = false;
}
static void bc_num_zero(BcNum *restrict n) {
bc_num_setToZero(n, 0);
}
void bc_num_one(BcNum *restrict n) {
bc_num_setToZero(n, 0);
n->len = 1;
n->num[0] = 1;
}
static void bc_num_clean(BcNum *restrict n) {
while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) n->len -= 1;
if (BC_NUM_ZERO(n)) {
n->neg = false;
n->rdx = 0;
}
else if (n->len < n->rdx) n->len = n->rdx;
}
static size_t bc_num_log10(size_t i) {
size_t len;
for (len = 1; i; i /= BC_BASE, ++len);
assert(len - 1 <= BC_BASE_DIGS + 1);
return len - 1;
}
static size_t bc_num_zeroDigits(const BcDig *n) {
return BC_BASE_DIGS - bc_num_log10((size_t) *n);
}
static size_t bc_num_intDigits(const BcNum *n) {
size_t digits = bc_num_int(n) * BC_BASE_DIGS;
if (digits > 0) digits -= bc_num_zeroDigits(n->num + n->len - 1);
return digits;
}
static size_t bc_num_nonzeroLen(const BcNum *restrict n) {
size_t i, len = n->len;
assert(len == n->rdx);
for (i = len - 1; i < len && !n->num[i]; --i);
assert(i + 1 > 0);
return i + 1;
}
static BcBigDig bc_num_addDigit(BcDig *restrict num, BcBigDig d, BcBigDig c) {
d += c;
*num = (BcDig) (d % BC_BASE_POW);
assert(*num >= 0 && *num < BC_BASE_POW);
return d / BC_BASE_POW;
}
static BcStatus bc_num_addArrays(BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
BcBigDig carry = 0;
for (i = 0; BC_NO_SIG && i < len; ++i) {
BcBigDig in = ((BcBigDig) a[i]) + ((BcBigDig) b[i]);
carry = bc_num_addDigit(a + i, in, carry);
}
for (; BC_NO_SIG && carry; ++i)
carry = bc_num_addDigit(a + i, (BcBigDig) a[i], carry);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_subArrays(BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
BcBigDig acc;
bool carry = false;
for (i = 0; i < len; ++i) {
BcBigDig sub;
acc = (BcBigDig) a[i];
sub = ((BcBigDig) b[i]) + carry;
carry = (acc < sub);
acc += carry ? BC_BASE_POW : 0;
assert(acc - sub < BC_BASE_POW);
a[i] = (BcDig) (acc - sub);
}
while (carry) {
acc = (BcBigDig) a[i];
carry = (acc == 0);
a[i] = (BcDig) (carry ? BC_BASE_POW - 1 : acc - 1);
i += 1;
}
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_mulArray(const BcNum *restrict a, BcBigDig b,
BcNum *restrict c)
{
size_t i;
BcBigDig carry = 0;
assert(b <= BC_BASE_POW);
if (a->len + 1 > c->cap) bc_num_expand(c, a->len + 1);
memset(c->num, 0, BC_NUM_SIZE(c->cap));
for (i = 0; BC_NO_SIG && i < a->len; ++i) {
BcBigDig in = ((BcBigDig) a->num[i]) * b + carry;
c->num[i] = in % BC_BASE_POW;
carry = in / BC_BASE_POW;
}
if (BC_NO_SIG) {
assert(carry < BC_BASE_POW);
c->num[i] = (BcDig) carry;
c->len = a->len;
c->len += (carry != 0);
}
bc_num_clean(c);
assert(!c->neg || BC_NUM_NONZERO(c));
assert(c->rdx <= c->len || !c->len || BC_SIG);
assert(!c->len || c->num[c->len - 1] || c->rdx == c->len);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_divArray(const BcNum *restrict a, BcBigDig b,
BcNum *restrict c, BcBigDig *rem)
{
size_t i;
BcBigDig carry = 0;
assert(c->cap >= a->len);
for (i = a->len - 1; BC_NO_SIG && i < a->len; --i) {
BcBigDig in = ((BcBigDig) a->num[i]) + carry * BC_BASE_POW;
assert(in / b < BC_BASE_POW);
c->num[i] = (BcDig) (in / b);
carry = in % b;
}
c->len = a->len;
bc_num_clean(c);
*rem = carry;
assert(!c->neg || BC_NUM_NONZERO(c));
assert(c->rdx <= c->len || !c->len || BC_SIG);
assert(!c->len || c->num[c->len - 1] || c->rdx == c->len);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static ssize_t bc_num_compare(const BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
BcDig c = 0;
for (i = len - 1; BC_NO_SIG && i < len && !(c = a[i] - b[i]); --i);
return BC_SIG ? BC_NUM_CMP_SIGNAL_VAL : bc_num_neg(i + 1, c < 0);
}
ssize_t bc_num_cmp(const BcNum *a, const BcNum *b) {
size_t i, min, a_int, b_int, diff;
BcDig *max_num, *min_num;
bool a_max, neg = false;
ssize_t cmp;
assert(a && b);
if (a == b) return 0;
if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !b->neg);
if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a);
if (a->neg) {
if (b->neg) neg = true;
else return -1;
}
else if (b->neg) return 1;
a_int = bc_num_int(a);
b_int = bc_num_int(b);
a_int -= b_int;
a_max = (a->rdx > b->rdx);
if (a_int) return (ssize_t) a_int;
if (a_max) {
min = b->rdx;
diff = a->rdx - b->rdx;
max_num = a->num + diff;
min_num = b->num;
}
else {
min = a->rdx;
diff = b->rdx - a->rdx;
max_num = b->num + diff;
min_num = a->num;
}
cmp = bc_num_compare(max_num, min_num, b_int + min);
#if BC_ENABLE_SIGNALS
if (BC_NUM_CMP_SIGNAL(cmp)) return cmp;
#endif // BC_ENABLE_SIGNALS
if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg);
for (max_num -= diff, i = diff - 1; BC_NO_SIG && i < diff; --i) {
if (max_num[i]) return bc_num_neg(1, !a_max == !neg);
}
return BC_SIG ? BC_NUM_CMP_SIGNAL_VAL : 0;
}
void bc_num_truncate(BcNum *restrict n, size_t places) {
size_t places_rdx;
if (!places) return;
places_rdx = n->rdx ? n->rdx - BC_NUM_RDX(n->scale - places) : 0;
assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len));
n->scale -= places;
n->rdx -= places_rdx;
if (BC_NUM_NONZERO(n)) {
size_t pow;
pow = n->scale % BC_BASE_DIGS;
pow = pow ? BC_BASE_DIGS - pow : 0;
pow = bc_num_pow10[pow];
n->len -= places_rdx;
memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len));
// Clear the lower part of the last digit.
if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow;
bc_num_clean(n);
}
}
static void bc_num_extend(BcNum *restrict n, size_t places) {
size_t places_rdx;
if (!places) return;
if (BC_NUM_ZERO(n)) {
n->scale += places;
return;
}
places_rdx = BC_NUM_RDX(places + n->scale) - n->rdx;
if (places_rdx) {
bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
memset(n->num, 0, BC_NUM_SIZE(places_rdx));
}
n->rdx += places_rdx;
n->scale += places;
n->len += places_rdx;
assert(n->rdx == BC_NUM_RDX(n->scale));
}
static void bc_num_retireMul(BcNum *restrict n, size_t scale,
bool neg1, bool neg2)
{
if (n->scale < scale) bc_num_extend(n, scale - n->scale);
else bc_num_truncate(n, n->scale - scale);
bc_num_clean(n);
if (BC_NUM_NONZERO(n)) n->neg = (!neg1 != !neg2);
}
static void bc_num_split(const BcNum *restrict n, size_t idx,
BcNum *restrict a, BcNum *restrict b)
{
if (idx < n->len) {
b->len = n->len - idx;
a->len = idx;
a->scale = a->rdx = b->scale = b->rdx = 0;
memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len));
memcpy(a->num, n->num, BC_NUM_SIZE(idx));
bc_num_clean(b);
}
else bc_num_copy(a, n);
bc_num_clean(a);
}
static size_t bc_num_shiftZero(BcNum *restrict n) {
size_t i;
assert(!n->rdx || BC_NUM_ZERO(n));
for (i = 0; i < n->len && !n->num[i]; ++i);
n->len -= i;
n->num += i;
return i;
}
static void bc_num_unshiftZero(BcNum *restrict n, size_t places_rdx) {
n->len += places_rdx;
n->num -= places_rdx;
}
static BcStatus bc_num_shift(BcNum *restrict n, BcBigDig dig) {
size_t i, len = n->len;
BcBigDig carry = 0, pow;
BcDig *ptr = n->num;
assert(dig < BC_BASE_DIGS);
pow = bc_num_pow10[dig];
dig = bc_num_pow10[BC_BASE_DIGS - dig];
for (i = len - 1; BC_NO_SIG && i < len; --i) {
BcBigDig in, temp;
in = ((BcBigDig) ptr[i]);
temp = carry * dig;
carry = in % pow;
ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp;
}
assert(!carry);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_shiftLeft(BcNum *restrict n, size_t places) {
BcStatus s = BC_STATUS_SUCCESS;
BcBigDig dig;
size_t places_rdx;
bool shift;
if (!places) return s;
if (places > n->scale) {
size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len);
if (size > SIZE_MAX - 1) return bc_vm_err(BC_ERROR_MATH_OVERFLOW);
}
if (BC_NUM_ZERO(n)) {
if (n->scale >= places) n->scale -= places;
else n->scale = 0;
return s;
}
dig = (BcBigDig) (places % BC_BASE_DIGS);
shift = (dig != 0);
places_rdx = BC_NUM_RDX(places);
if (n->scale) {
if (n->rdx >= places_rdx) {
size_t mod = n->scale % BC_BASE_DIGS, revdig;
mod = mod ? mod : BC_BASE_DIGS;
revdig = dig ? BC_BASE_DIGS - dig : 0;
if (mod + revdig > BC_BASE_DIGS) places_rdx = 1;
else places_rdx = 0;
}
else places_rdx -= n->rdx;
}
if (places_rdx) {
bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
memset(n->num, 0, BC_NUM_SIZE(places_rdx));
n->len += places_rdx;
}
if (places > n->scale) n->scale = n->rdx = 0;
else {
n->scale -= places;
n->rdx = BC_NUM_RDX(n->scale);
}
if (shift) s = bc_num_shift(n, BC_BASE_DIGS - dig);
bc_num_clean(n);
return BC_SIG && !s ? BC_STATUS_SIGNAL : s;
}
static BcStatus bc_num_shiftRight(BcNum *restrict n, size_t places) {
BcStatus s = BC_STATUS_SUCCESS;
BcBigDig dig;
size_t places_rdx, scale, scale_mod, int_len, expand;
bool shift;
if (!places) return s;
if (BC_NUM_ZERO(n)) {
n->scale += places;
bc_num_expand(n, BC_NUM_RDX(n->scale));
return s;
}
dig = (BcBigDig) (places % BC_BASE_DIGS);
shift = (dig != 0);
scale = n->scale;
scale_mod = scale % BC_BASE_DIGS;
scale_mod = scale_mod ? scale_mod : BC_BASE_DIGS;
int_len = bc_num_int(n);
places_rdx = BC_NUM_RDX(places);
if (scale_mod + dig > BC_BASE_DIGS) {
expand = places_rdx - 1;
places_rdx = 1;
}
else {
expand = places_rdx;
places_rdx = 0;
}
if (expand > int_len) expand -= int_len;
else expand = 0;
bc_num_extend(n, places_rdx * BC_BASE_DIGS);
bc_num_expand(n, bc_vm_growSize(expand, n->len));
memset(n->num + n->len, 0, BC_NUM_SIZE(expand));
n->len += expand;
n->scale = n->rdx = 0;
if (shift) s = bc_num_shift(n, dig);
n->scale = scale + places;
n->rdx = BC_NUM_RDX(n->scale);
bc_num_clean(n);
assert(n->rdx <= n->len && n->len <= n->cap);
assert(n->rdx == BC_NUM_RDX(n->scale));
return BC_SIG && !s ? BC_STATUS_SIGNAL : s;
}
static BcStatus bc_num_inv(BcNum *a, BcNum *b, size_t scale) {
BcNum one;
BcDig num[2];
assert(BC_NUM_NONZERO(a));
bc_num_setup(&one, num, sizeof(num) / sizeof(BcDig));
bc_num_one(&one);
return bc_num_div(&one, a, b, scale);
}
#if BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_intop(const BcNum *a, const BcNum *b, BcNum *restrict c,
BcBigDig *v)
{
if (BC_ERR(b->rdx)) return bc_vm_err(BC_ERROR_MATH_NON_INTEGER);
bc_num_copy(c, a);
return bc_num_bigdig(b, v);
}
#endif // BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) {
BcDig *ptr, *ptr_a, *ptr_b, *ptr_c;
size_t i, max, min_rdx, min_int, diff, a_int, b_int;
BcBigDig carry;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (BC_NUM_ZERO(a)) {
bc_num_copy(c, b);
if (sub && BC_NUM_NONZERO(c)) c->neg = !c->neg;
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ZERO(b)) {
bc_num_copy(c, a);
return BC_STATUS_SUCCESS;
}
c->neg = a->neg;
c->rdx = BC_MAX(a->rdx, b->rdx);
c->scale = BC_MAX(a->scale, b->scale);
min_rdx = BC_MIN(a->rdx, b->rdx);
if (a->rdx > b->rdx) {
diff = a->rdx - b->rdx;
ptr = a->num;
ptr_a = a->num + diff;
ptr_b = b->num;
}
else {
diff = b->rdx - a->rdx;
ptr = b->num;
ptr_a = a->num;
ptr_b = b->num + diff;
}
for (ptr_c = c->num, i = 0; i < diff; ++i) ptr_c[i] = ptr[i];
c->len = diff;
ptr_c += diff;
a_int = bc_num_int(a);
b_int = bc_num_int(b);
if (a_int > b_int) {
min_int = b_int;
max = a_int;
ptr = ptr_a;
}
else {
min_int = a_int;
max = b_int;
ptr = ptr_b;
}
for (carry = 0, i = 0; BC_NO_SIG && i < min_rdx + min_int; ++i) {
BcBigDig in = ((BcBigDig) ptr_a[i]) + ((BcBigDig) ptr_b[i]);
carry = bc_num_addDigit(ptr_c + i, in, carry);
}
for (; BC_NO_SIG && i < max + min_rdx; ++i)
carry = bc_num_addDigit(ptr_c + i, (BcBigDig) ptr[i], carry);
c->len += i;
if (carry) c->num[c->len++] = (BcDig) carry;
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) {
BcStatus s;
ssize_t cmp;
BcNum *minuend, *subtrahend;
size_t start;
bool aneg, bneg, neg;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (BC_NUM_ZERO(a)) {
bc_num_copy(c, b);
if (sub && BC_NUM_NONZERO(c)) c->neg = !c->neg;
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ZERO(b)) {
bc_num_copy(c, a);
return BC_STATUS_SUCCESS;
}
aneg = a->neg;
bneg = b->neg;
a->neg = b->neg = false;
cmp = bc_num_cmp(a, b);
a->neg = aneg;
b->neg = bneg;
#if BC_ENABLE_SIGNALS
if (BC_NUM_CMP_SIGNAL(cmp)) return BC_STATUS_SIGNAL;
#endif // BC_ENABLE_SIGNALS
if (!cmp) {
bc_num_setToZero(c, BC_MAX(a->rdx, b->rdx));
return BC_STATUS_SUCCESS;
}
if (cmp > 0) {
neg = a->neg;
minuend = a;
subtrahend = b;
}
else {
neg = b->neg;
if (sub) neg = !neg;
minuend = b;
subtrahend = a;
}
bc_num_copy(c, minuend);
c->neg = neg;
if (c->scale < subtrahend->scale) {
bc_num_extend(c, subtrahend->scale - c->scale);
start = 0;
}
else start = c->rdx - subtrahend->rdx;
memset(c->num + c->len, 0, BC_NUM_SIZE(c->cap - c->len));
s = bc_num_subArrays(c->num + start, subtrahend->num, subtrahend->len);
bc_num_clean(c);
return s;
}
static BcStatus bc_num_m_simp(const BcNum *a, const BcNum *b, BcNum *restrict c)
{
size_t i, alen = a->len, blen = b->len, clen;
BcDig *ptr_a = a->num, *ptr_b = b->num, *ptr_c;
BcBigDig sum = 0, carry = 0;
assert(sizeof(sum) >= sizeof(BcDig) * 2);
assert(!a->rdx && !b->rdx);
clen = bc_vm_growSize(alen, blen);
bc_num_expand(c, bc_vm_growSize(clen, 1));
ptr_c = c->num;
memset(ptr_c, 0, BC_NUM_SIZE(c->cap));
for (i = 0; BC_NO_SIG && i < clen; ++i) {
ssize_t sidx = (ssize_t) (i - blen + 1);
size_t j = (size_t) BC_MAX(0, sidx), k = BC_MIN(i, blen - 1);
for (; BC_NO_SIG && j < alen && k < blen; ++j, --k) {
sum += ((BcBigDig) ptr_a[j]) * ((BcBigDig) ptr_b[k]);
if (sum >= BC_BASE_POW) {
carry += sum / BC_BASE_POW;
sum %= BC_BASE_POW;
}
}
ptr_c[i] = (BcDig) sum;
assert(ptr_c[i] < BC_BASE_POW);
sum = carry;
carry = 0;
}
if (sum) {
assert(sum < BC_BASE_POW);
ptr_c[clen] = (BcDig) sum;
clen += 1;
}
c->len = clen;
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_shiftAddSub(BcNum *restrict n, const BcNum *restrict a,
size_t shift, BcNumShiftAddOp op)
{
assert(n->len >= shift + a->len);
assert(!n->rdx && !a->rdx);
return op(n->num + shift, a->num, a->len);
}
static BcStatus bc_num_k(BcNum *a, BcNum *b, BcNum *restrict c) {
BcStatus s;
size_t max, max2, total;
BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp;
BcDig *digs, *dig_ptr;
BcNumShiftAddOp op;
bool aone = BC_NUM_ONE(a);
assert(BC_NUM_ZERO(c));
// This is here because the function is recursive.
if (BC_SIG) return BC_STATUS_SIGNAL;
if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) return BC_STATUS_SUCCESS;
if (aone || BC_NUM_ONE(b)) {
bc_num_copy(c, aone ? b : a);
if ((aone && a->neg) || b->neg) c->neg = !c->neg;
return BC_STATUS_SUCCESS;
}
if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN)
return bc_num_m_simp(a, b, c);
max = BC_MAX(a->len, b->len);
max = BC_MAX(max, BC_NUM_DEF_SIZE);
max2 = (max + 1) / 2;
total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max);
digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total));
bc_num_setup(&l1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&h1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&l2, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&h2, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&m1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&m2, dig_ptr, max);
max = bc_vm_growSize(max, 1);
bc_num_init(&z0, max);
bc_num_init(&z1, max);
bc_num_init(&z2, max);
max = bc_vm_growSize(max, max) + 1;
bc_num_init(&temp, max);
bc_num_split(a, max2, &l1, &h1);
bc_num_clean(&l1);
bc_num_clean(&h1);
bc_num_split(b, max2, &l2, &h2);
bc_num_clean(&l2);
bc_num_clean(&h2);
bc_num_expand(c, max);
c->len = max;
memset(c->num, 0, BC_NUM_SIZE(c->len));
s = bc_num_sub(&h1, &l1, &m1, 0);
if (BC_ERR(s)) goto err;
s = bc_num_sub(&l2, &h2, &m2, 0);
if (BC_ERR(s)) goto err;
if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) {
s = bc_num_m(&h1, &h2, &z2, 0);
if (BC_ERR(s)) goto err;
bc_num_clean(&z2);
s = bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays);
if (BC_ERR(s)) goto err;
s = bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays);
if (BC_ERR(s)) goto err;
}
if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) {
s = bc_num_m(&l1, &l2, &z0, 0);
if (BC_ERR(s)) goto err;
bc_num_clean(&z0);
s = bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays);
if (BC_ERR(s)) goto err;
s = bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays);
if (BC_ERR(s)) goto err;
}
if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) {
s = bc_num_m(&m1, &m2, &z1, 0);
if (BC_ERR(s)) goto err;
bc_num_clean(&z1);
op = (m1.neg != m2.neg) ? bc_num_subArrays : bc_num_addArrays;
s = bc_num_shiftAddSub(c, &z1, max2, op);
if (BC_ERR(s)) goto err;
}
err:
free(digs);
bc_num_free(&temp);
bc_num_free(&z2);
bc_num_free(&z1);
bc_num_free(&z0);
return s;
}
static BcStatus bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcStatus s;
BcNum cpa, cpb;
size_t ascale, bscale, ardx, brdx, azero = 0, bzero = 0, zero, len, rscale;
bc_num_setToZero(c, 0);
ascale = a->scale;
bscale = b->scale;
scale = BC_MAX(scale, ascale);
scale = BC_MAX(scale, bscale);
rscale = ascale + bscale;
scale = BC_MIN(rscale, scale);
if ((a->len == 1 || b->len == 1) && !a->rdx && !b->rdx) {
BcNum *operand;
BcBigDig dig;
if (a->len == 1) {
dig = (BcBigDig) a->num[0];
operand = b;
}
else {
dig = (BcBigDig) b->num[0];
operand = a;
}
s = bc_num_mulArray(operand, dig, c);
if (BC_ERROR_SIGNAL_ONLY(s)) return s;
if (BC_NUM_NONZERO(c)) c->neg = (a->neg != b->neg);
return s;
}
bc_num_init(&cpa, a->len + a->rdx);
bc_num_init(&cpb, b->len + b->rdx);
bc_num_copy(&cpa, a);
bc_num_copy(&cpb, b);
cpa.neg = cpb.neg = false;
ardx = cpa.rdx * BC_BASE_DIGS;
s = bc_num_shiftLeft(&cpa, ardx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_clean(&cpa);
azero = bc_num_shiftZero(&cpa);
brdx = cpb.rdx * BC_BASE_DIGS;
s = bc_num_shiftLeft(&cpb, brdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bzero = bc_num_shiftZero(&cpb);
bc_num_clean(&cpb);
s = bc_num_k(&cpa, &cpb, c);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
zero = bc_vm_growSize(azero, bzero);
len = bc_vm_growSize(c->len, zero);
bc_num_expand(c, len);
s = bc_num_shiftLeft(c, (len - c->len) * BC_BASE_DIGS);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_shiftRight(c, ardx + brdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_retireMul(c, scale, a->neg, b->neg);
err:
bc_num_unshiftZero(&cpb, bzero);
bc_num_free(&cpb);
bc_num_unshiftZero(&cpa, azero);
bc_num_free(&cpa);
return s;
}
static bool bc_num_nonZeroDig(BcDig *restrict a, size_t len)
{
size_t i;
bool nonzero = false;
for (i = len - 1; !nonzero && i < len; --i) nonzero = (a[i] != 0);
return nonzero;
}
static ssize_t bc_num_divCmp(const BcDig *a, const BcNum *b, size_t len) {
ssize_t cmp;
if (b->len > len && a[len]) cmp = bc_num_compare(a, b->num, len + 1);
else if (b->len <= len) {
if (a[len]) cmp = 1;
else cmp = bc_num_compare(a, b->num, len);
}
else cmp = -1;
return cmp;
}
static BcStatus bc_num_divExtend(BcNum *restrict a, BcNum *restrict b,
BcBigDig divisor)
{
BcStatus s;
size_t pow;
pow = BC_BASE_DIGS - bc_num_log10((size_t) divisor);
s = bc_num_shiftLeft(a, pow);
if (BC_ERROR_SIGNAL_ONLY(s)) return s;
return bc_num_shiftLeft(b, pow);
}
static BcStatus bc_num_d_long(BcNum *restrict a, BcNum *restrict b,
BcNum *restrict c, size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
BcBigDig divisor;
size_t len, end, i, rdx;
BcNum cpb;
bool nonzero = false;
assert(b->len < a->len);
len = b->len;
end = a->len - len;
assert(len >= 1);
bc_num_expand(c, a->len);
memset(c->num, 0, c->cap * sizeof(BcDig));
c->rdx = a->rdx;
c->scale = a->scale;
c->len = a->len;
divisor = (BcBigDig) b->num[len - 1];
if (len > 1 && bc_num_nonZeroDig(b->num, len - 1)) {
nonzero = (divisor > 1 << ((10 * BC_BASE_DIGS) / 6 + 1));
if (!nonzero) {
s = bc_num_divExtend(a, b, divisor);
if (BC_ERROR_SIGNAL_ONLY(s)) return s;
len = BC_MAX(a->len, b->len);
bc_num_expand(a, len + 1);
if (len + 1 > a->len)
a->len = len + 1;
len = b->len;
end = a->len - len;
divisor = (BcBigDig) b->num[len - 1];
nonzero = bc_num_nonZeroDig(b->num, len - 1);
}
}
divisor += nonzero;
bc_num_expand(c, a->len);
memset(c->num, 0, BC_NUM_SIZE(c->cap));
assert(c->scale >= scale);
rdx = c->rdx - BC_NUM_RDX(scale);
bc_num_init(&cpb, len + 1);
i = end - 1;
for (; BC_NO_SIG && i < end && i >= rdx && BC_NUM_NONZERO(a); --i) {
ssize_t cmp;
BcDig *n;
BcBigDig q, result;
n = a->num + i;
assert(n >= a->num);
result = q = 0;
cmp = bc_num_divCmp(n, b, len);
#if BC_ENABLE_SIGNALS
if (BC_NUM_CMP_SIGNAL(cmp)) goto err;
#endif // BC_ENABLE_SIGNALS
while (cmp >= 0) {
BcBigDig n1, dividend;
n1 = (BcBigDig) n[len];
dividend = n1 * BC_BASE_POW + (BcBigDig) n[len - 1];
q = (dividend / divisor);
if (q <= 1) {
q = 1;
s = bc_num_subArrays(n, b->num, len);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
else {
assert(q <= BC_BASE_POW);
s = bc_num_mulArray(b, (BcBigDig) q, &cpb);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_subArrays(n, cpb.num, cpb.len);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
result += q;
assert(result <= BC_BASE_POW);
bc_num_clean(a);
if (a->len > i) {
cmp = bc_num_divCmp(n, b, len);
#if BC_ENABLE_SIGNALS
if (BC_NUM_CMP_SIGNAL(cmp)) goto err;
#endif // BC_ENABLE_SIGNALS
}
else cmp = -1;
}
assert(result < BC_BASE_POW);
c->num[i] = (BcDig) result;
}
err:
if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL;
bc_num_free(&cpb);
return s;
}
static BcStatus bc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcStatus s = BC_STATUS_SUCCESS;
size_t len;
BcNum cpa, cpb;
if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, scale);
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ONE(b)) {
bc_num_copy(c, a);
bc_num_retireMul(c, scale, a->neg, b->neg);
return BC_STATUS_SUCCESS;
}
if (!a->rdx && !b->rdx && b->len == 1 && !scale) {
BcBigDig rem;
s = bc_num_divArray(a, (BcBigDig) b->num[0], c, &rem);
bc_num_retireMul(c, scale, a->neg, b->neg);
return s;
}
len = bc_num_mulReq(a, b, scale);
bc_num_init(&cpa, len);
bc_num_copy(&cpa, a);
bc_num_createCopy(&cpb, b);
len = b->len;
if (len > cpa.len) {
bc_num_expand(&cpa, bc_vm_growSize(len, 2));
bc_num_extend(&cpa, (len - cpa.len) * BC_BASE_DIGS);
}
cpa.scale = cpa.rdx * BC_BASE_DIGS;
bc_num_extend(&cpa, b->scale);
cpa.rdx -= BC_NUM_RDX(b->scale);
cpa.scale = cpa.rdx * BC_BASE_DIGS;
if (scale > cpa.scale) {
bc_num_extend(&cpa, scale);
cpa.scale = cpa.rdx * BC_BASE_DIGS;
}
if (cpa.cap == cpa.len) bc_num_expand(&cpa, bc_vm_growSize(cpa.len, 1));
// We want an extra zero in front to make things simpler.
cpa.num[cpa.len++] = 0;
if (cpa.rdx == cpa.len) cpa.len = bc_num_nonzeroLen(&cpa);
if (cpb.rdx == cpb.len) cpb.len = bc_num_nonzeroLen(&cpb);
cpb.scale = cpb.rdx = 0;
s = bc_num_d_long(&cpa, &cpb, c, scale);
if (BC_NO_ERR(!s)) {
bc_num_retireMul(c, scale, a->neg, b->neg);
if (BC_SIG) s = BC_STATUS_SIGNAL;
}
bc_num_free(&cpb);
bc_num_free(&cpa);
return s;
}
static BcStatus bc_num_r(BcNum *a, BcNum *b, BcNum *restrict c,
BcNum *restrict d, size_t scale, size_t ts)
{
BcStatus s;
BcNum temp;
bool neg;
if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, ts);
bc_num_setToZero(d, ts);
return BC_STATUS_SUCCESS;
}
bc_num_init(&temp, d->cap);
s = bc_num_d(a, b, c, scale);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (scale) scale = ts + 1;
s = bc_num_m(c, b, &temp, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_sub(a, &temp, d, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale);
neg = d->neg;
bc_num_retireMul(d, ts, a->neg, b->neg);
d->neg = BC_NUM_NONZERO(d) ? neg : false;
err:
bc_num_free(&temp);
return s;
}
static BcStatus bc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s;
BcNum c1;
size_t ts;
ts = bc_vm_growSize(scale, b->scale);
ts = BC_MAX(ts, a->scale);
bc_num_init(&c1, bc_num_mulReq(a, b, ts));
s = bc_num_r(a, b, &c1, c, scale, ts);
bc_num_free(&c1);
return s;
}
static BcStatus bc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcStatus s = BC_STATUS_SUCCESS;
BcNum copy;
BcBigDig pow = 0;
size_t i, powrdx, resrdx;
bool neg, zero;
if (BC_ERR(b->rdx)) return bc_vm_err(BC_ERROR_MATH_NON_INTEGER);
if (BC_NUM_ZERO(b)) {
bc_num_one(c);
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ZERO(a)) {
if (b->neg) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
bc_num_setToZero(c, scale);
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ONE(b)) {
if (!b->neg) bc_num_copy(c, a);
else s = bc_num_inv(a, c, scale);
return s;
}
neg = b->neg;
b->neg = false;
s = bc_num_bigdig(b, &pow);
b->neg = neg;
if (s) return s;
bc_num_createCopy(&copy, a);
if (!neg) {
size_t max = BC_MAX(scale, a->scale), scalepow = a->scale * pow;
scale = BC_MIN(scalepow, max);
}
for (powrdx = a->scale; BC_NO_SIG && !(pow & 1); pow >>= 1) {
powrdx <<= 1;
s = bc_num_mul(&copy, &copy, &copy, powrdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
if (BC_SIG) goto sig_err;
bc_num_copy(c, &copy);
resrdx = powrdx;
while (BC_NO_SIG && (pow >>= 1)) {
powrdx <<= 1;
s = bc_num_mul(&copy, &copy, &copy, powrdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (pow & 1) {
resrdx += powrdx;
s = bc_num_mul(c, &copy, c, resrdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
}
if (BC_SIG) goto sig_err;
if (neg) {
s = bc_num_inv(c, c, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
if (c->scale > scale) bc_num_truncate(c, c->scale - scale);
// We can't use bc_num_clean() here.
for (zero = true, i = 0; zero && i < c->len; ++i) zero = !c->num[i];
if (zero) bc_num_setToZero(c, scale);
sig_err:
if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL;
err:
bc_num_free(&copy);
return s;
}
#if BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_place(BcNum *a, BcNum *b, BcNum *restrict c,
size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
BcBigDig val = 0;
BC_UNUSED(scale);
s = bc_num_intop(a, b, c, &val);
if (BC_ERR(s)) return s;
if (val < c->scale) bc_num_truncate(c, c->scale - val);
else if (val > c->scale) bc_num_extend(c, val - c->scale);
return s;
}
static BcStatus bc_num_left(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
BcBigDig val = 0;
BC_UNUSED(scale);
s = bc_num_intop(a, b, c, &val);
if (BC_ERR(s)) return s;
return bc_num_shiftLeft(c, (size_t) val);
}
static BcStatus bc_num_right(BcNum *a, BcNum *b, BcNum *restrict c,
size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
BcBigDig val = 0;
BC_UNUSED(scale);
s = bc_num_intop(a, b, c, &val);
if (BC_ERR(s)) return s;
if (BC_NUM_ZERO(c)) return s;
return bc_num_shiftRight(c, (size_t) val);
}
#endif // BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale,
BcNumBinaryOp op, size_t req)
{
BcStatus s;
BcNum num2, *ptr_a, *ptr_b;
bool init = false;
assert(a && b && c && op);
if (c == a) {
ptr_a = &num2;
memcpy(ptr_a, c, sizeof(BcNum));
init = true;
}
else ptr_a = a;
if (c == b) {
ptr_b = &num2;
if (c != a) {
memcpy(ptr_b, c, sizeof(BcNum));
init = true;
}
}
else ptr_b = b;
if (init) bc_num_init(c, req);
else bc_num_expand(c, req);
s = op(ptr_a, ptr_b, c, scale);
assert(!c->neg || BC_NUM_NONZERO(c));
assert(c->rdx <= c->len || !c->len || s);
assert(!c->len || c->num[c->len - 1] || c->rdx == c->len);
if (init) bc_num_free(&num2);
return s;
}
#ifndef NDEBUG
static bool bc_num_strValid(const char *val) {
bool radix = false;
size_t i, len = strlen(val);
if (!len) return true;
for (i = 0; i < len; ++i) {
BcDig c = val[i];
if (c == '.') {
if (radix) return false;
radix = true;
continue;
}
if (!(isdigit(c) || isupper(c))) return false;
}
return true;
}
#endif // NDEBUG
static BcBigDig bc_num_parseChar(char c, size_t base_t) {
if (isupper(c)) {
c = BC_NUM_NUM_LETTER(c);
c = ((size_t) c) >= base_t ? (char) base_t - 1 : c;
}
else c -= '0';
return (BcBigDig) (uchar) c;
}
static void bc_num_parseDecimal(BcNum *restrict n, const char *restrict val) {
size_t len, i, temp, mod;
const char *ptr;
bool zero = true, rdx;
for (i = 0; val[i] == '0'; ++i);
val += i;
assert(!val[0] || isalnum(val[0]) || val[0] == '.');
// All 0's. We can just return, since this
// procedure expects a virgin (already 0) BcNum.
if (!val[0]) return;
len = strlen(val);
ptr = strchr(val, '.');
rdx = (ptr != NULL);
for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i);
n->scale = (size_t) (rdx * ((val + len) - (ptr + 1)));
n->rdx = BC_NUM_RDX(n->scale);
i = len - (ptr == val ? 0 : i) - rdx;
temp = BC_NUM_ROUND_POW(i);
mod = n->scale % BC_BASE_DIGS;
i = mod ? BC_BASE_DIGS - mod : 0;
n->len = ((temp + i) / BC_BASE_DIGS);
bc_num_expand(n, n->len);
memset(n->num, 0, BC_NUM_SIZE(n->len));
if (zero) n->len = n->rdx = 0;
else {
BcBigDig exp, pow;
assert(i <= BC_NUM_BIGDIG_MAX);
exp = (BcBigDig) i;
pow = bc_num_pow10[exp];
for (i = len - 1; i < len; --i, ++exp) {
char c = val[i];
if (c == '.') exp -= 1;
else {
size_t idx = exp / BC_BASE_DIGS;
if (isupper(c)) c = '9';
n->num[idx] += (((BcBigDig) c) - '0') * pow;
if ((exp + 1) % BC_BASE_DIGS == 0) pow = 1;
else pow *= BC_BASE;
}
}
}
}
static BcStatus bc_num_parseBase(BcNum *restrict n, const char *restrict val,
BcBigDig base)
{
BcStatus s = BC_STATUS_SUCCESS;
BcNum temp, mult1, mult2, result1, result2, *m1, *m2, *ptr;
char c = 0;
bool zero = true;
BcBigDig v;
size_t i, digs, len = strlen(val);
for (i = 0; zero && i < len; ++i) zero = (val[i] == '.' || val[i] == '0');
if (zero) return BC_STATUS_SUCCESS;
bc_num_init(&temp, BC_NUM_BIGDIG_LOG10);
bc_num_init(&mult1, BC_NUM_BIGDIG_LOG10);
for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) {
v = bc_num_parseChar(c, base);
s = bc_num_mulArray(n, base, &mult1);
if (BC_ERROR_SIGNAL_ONLY(s)) goto int_err;
bc_num_bigdig2num(&temp, v);
s = bc_num_add(&mult1, &temp, n, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto int_err;
}
if (i == len && !(c = val[i])) goto int_err;
assert(c == '.');
bc_num_init(&mult2, BC_NUM_BIGDIG_LOG10);
bc_num_init(&result1, BC_NUM_DEF_SIZE);
bc_num_init(&result2, BC_NUM_DEF_SIZE);
bc_num_one(&mult1);
m1 = &mult1;
m2 = &mult2;
for (i += 1, digs = 0; BC_NO_SIG && i < len && (c = val[i]); ++i, ++digs) {
v = bc_num_parseChar(c, base);
s = bc_num_mulArray(&result1, base, &result2);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_bigdig2num(&temp, v);
s = bc_num_add(&result2, &temp, &result1, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_mulArray(m1, base, m2);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (m2->len < m2->rdx) m2->len = m2->rdx;
ptr = m1;
m1 = m2;
m2 = ptr;
}
if (BC_SIG) {
s = BC_STATUS_SIGNAL;
goto err;
}
// This one cannot be a divide by 0 because mult starts out at 1, then is
// multiplied by base, and base cannot be 0, so mult cannot be 0.
s = bc_num_div(&result1, m1, &result2, digs * 2);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_truncate(&result2, digs);
s = bc_num_add(n, &result2, n, digs);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (BC_NUM_NONZERO(n)) {
if (n->scale < digs) bc_num_extend(n, digs - n->scale);
}
else bc_num_zero(n);
err:
bc_num_free(&result2);
bc_num_free(&result1);
bc_num_free(&mult2);
int_err:
bc_num_free(&mult1);
bc_num_free(&temp);
return s;
}
static void bc_num_printNewline(void) {
if (vm->nchars >= (size_t) (vm->line_len - 1)) {
bc_vm_putchar('\\');
bc_vm_putchar('\n');
}
}
static void bc_num_putchar(int c) {
if (c != '\n') bc_num_printNewline();
bc_vm_putchar(c);
}
#if DC_ENABLED
static void bc_num_printChar(size_t n, size_t len, bool rdx) {
BC_UNUSED(rdx);
BC_UNUSED(len);
assert(len == 1);
bc_vm_putchar((uchar) n);
}
#endif // DC_ENABLED
static void bc_num_printDigits(size_t n, size_t len, bool rdx) {
size_t exp, pow;
bc_num_putchar(rdx ? '.' : ' ');
for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE);
for (exp = 0; exp < len; pow /= BC_BASE, ++exp) {
size_t dig = n / pow;
n -= dig * pow;
bc_num_putchar(((uchar) dig) + '0');
}
}
static void bc_num_printHex(size_t n, size_t len, bool rdx) {
BC_UNUSED(len);
assert(len == 1);
if (rdx) bc_num_putchar('.');
bc_num_putchar(bc_num_hex_digits[n]);
}
static void bc_num_printDecimal(const BcNum *restrict n) {
size_t i, j, rdx = n->rdx;
bool zero = true;
size_t buffer[BC_BASE_DIGS];
if (n->neg) bc_num_putchar('-');
for (i = n->len - 1; i < n->len; --i) {
BcDig n9 = n->num[i];
size_t temp;
bool irdx = (i == rdx - 1);
zero = (zero & !irdx);
temp = n->scale % BC_BASE_DIGS;
temp = i || !temp ? 0 : BC_BASE_DIGS - temp;
memset(buffer, 0, BC_BASE_DIGS * sizeof(size_t));
for (j = 0; n9 && j < BC_BASE_DIGS; ++j) {
buffer[j] = n9 % BC_BASE;
n9 /= BC_BASE;
}
for (j = BC_BASE_DIGS - 1; j < BC_BASE_DIGS && j >= temp; --j) {
bool print_rdx = (irdx & (j == BC_BASE_DIGS - 1));
zero = (zero && buffer[j] == 0);
if (!zero) bc_num_printHex(buffer[j], 1, print_rdx);
}
}
}
#if BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_printExponent(const BcNum *restrict n, bool eng) {
BcStatus s = BC_STATUS_SUCCESS;
bool neg = (n->len <= n->rdx);
BcNum temp, exp;
size_t places, mod;
BcDig digs[BC_NUM_BIGDIG_LOG10];
bc_num_createCopy(&temp, n);
if (neg) {
size_t i, idx = bc_num_nonzeroLen(n) - 1;
places = 1;
for (i = BC_BASE_DIGS - 1; i < BC_BASE_DIGS; --i) {
if (bc_num_pow10[i] > (BcBigDig) n->num[idx]) places += 1;
else break;
}
places += (n->rdx - (idx + 1)) * BC_BASE_DIGS;
mod = places % 3;
if (eng && mod != 0) places += 3 - mod;
s = bc_num_shiftLeft(&temp, places);
if (BC_ERROR_SIGNAL_ONLY(s)) goto exit;
}
else {
places = bc_num_intDigits(n) - 1;
mod = places % 3;
if (eng && mod != 0) places -= 3 - (3 - mod);
s = bc_num_shiftRight(&temp, places);
if (BC_ERROR_SIGNAL_ONLY(s)) goto exit;
}
bc_num_printDecimal(&temp);
bc_num_putchar('e');
if (!places) {
bc_num_printHex(0, 1, false);
goto exit;
}
if (neg) bc_num_putchar('-');
bc_num_setup(&exp, digs, BC_NUM_BIGDIG_LOG10);
bc_num_bigdig2num(&exp, (BcBigDig) places);
bc_num_printDecimal(&exp);
exit:
bc_num_free(&temp);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
#endif // BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_printFixup(BcNum *restrict n, BcBigDig rem,
BcBigDig pow, size_t idx)
{
size_t i, len = n->len - idx;
BcBigDig acc;
BcDig *a = n->num + idx;
if (len < 2) return BC_STATUS_SUCCESS;
for (i = len - 1; BC_NO_SIG && i > 0; --i) {
acc = ((BcBigDig) a[i]) * rem + ((BcBigDig) a[i - 1]);
a[i - 1] = (BcDig) (acc % pow);
acc /= pow;
acc += (BcBigDig) a[i];
if (acc >= BC_BASE_POW) {
if (i == len - 1) {
len = bc_vm_growSize(len, 1);
bc_num_expand(n, bc_vm_growSize(len, idx));
a = n->num + idx;
a[len - 1] = 0;
}
a[i + 1] += acc / BC_BASE_POW;
acc %= BC_BASE_POW;
}
assert(acc < BC_BASE_POW);
a[i] = (BcDig) acc;
}
n->len = len + idx;
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_printPrepare(BcNum *restrict n, BcBigDig rem,
BcBigDig pow)
{
BcStatus s = BC_STATUS_SUCCESS;
size_t i;
for (i = 0; BC_NO_SIG && BC_NO_ERR(!s) && i < n->len; ++i)
s = bc_num_printFixup(n, rem, pow, i);
if (BC_ERR(s)) return s;
for (i = 0; BC_NO_SIG && i < n->len; ++i) {
assert(pow == ((BcBigDig) ((BcDig) pow)));
if (n->num[i] >= (BcDig) pow) {
if (i + 1 == n->len) {
n->len = bc_vm_growSize(n->len, 1);
bc_num_expand(n, n->len);
n->num[i + 1] = 0;
}
assert(pow < BC_BASE_POW);
n->num[i + 1] += n->num[i] / ((BcDig) pow);
n->num[i] %= (BcDig) pow;
}
}
return BC_NO_ERR(!s) && BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_printNum(BcNum *restrict n, BcBigDig base,
size_t len, BcNumDigitOp print)
{
BcStatus s;
BcVec stack;
BcNum intp, fracp1, fracp2, digit, flen1, flen2, *n1, *n2, *temp;
BcBigDig dig = 0, *ptr, acc, exp;
size_t i, j;
bool radix;
BcDig digit_digs[BC_NUM_BIGDIG_LOG10 + 1];
assert(base > 1);
if (BC_NUM_ZERO(n)) {
print(0, len, false);
return BC_STATUS_SUCCESS;
}
// This function uses an algorithm that Stefan Esser <se@freebsd.org> came
// up with to print the integer part of a number. What it does is convert
// intp into a number of the specified base, but it does it directly,
// instead of just doing a series of divisions and printing the remainders
// in reverse order.
//
// Let me explain in a bit more detail:
//
// The algorithm takes the current least significant digit (after intp has
// been converted to an integer) and the next to least significant digit,
// and it converts the least significant digit into one of the specified
// base, putting any overflow into the next to least significant digit. It
// iterates through the whole number, from least significant to most
// significant, doing this conversion. At the end of that iteration, the
// least significant digit is converted, but the others are not, so it
// iterates again, starting at the next to least significant digit. It keeps
// doing that conversion, skipping one more digit than the last time, until
// all digits have been converted. Then it prints them in reverse order.
//
// That is the gist of the algorithm. It leaves out several things, such as
// the fact that digits are not always converted into the specified base,
// but into something close, basically a power of the specified base. In
// Stefan's words, "You could consider BcDigs to be of base 10^BC_BASE_DIGS
// in the normal case and obase^N for the largest value of N that satisfies
// obase^N <= 10^BC_BASE_DIGS. [This means that] the result is not in base
// "obase", but in base "obase^N", which happens to be printable as a number
// of base "obase" without consideration for neighbouring BcDigs." This fact
// is what necessitates the existence of the loop later in this function.
//
// The conversion happens in bc_num_printPrepare() where the outer loop
// happens and bc_num_printFixup() where the inner loop, or actual
// conversion, happens.
bc_vec_init(&stack, sizeof(BcBigDig), NULL);
bc_num_init(&fracp1, n->rdx);
bc_num_createCopy(&intp, n);
bc_num_truncate(&intp, intp.scale);
s = bc_num_sub(n, &intp, &fracp1, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (base != vm->last_base) {
vm->last_pow = 1;
vm->last_exp = 0;
while (vm->last_pow * base <= BC_BASE_POW) {
vm->last_pow *= base;
vm->last_exp += 1;
}
vm->last_rem = BC_BASE_POW - vm->last_pow;
vm->last_base = base;
}
exp = vm->last_exp;
if (vm->last_rem != 0) {
s = bc_num_printPrepare(&intp, vm->last_rem, vm->last_pow);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
for (i = 0; BC_NO_SIG && i < intp.len; ++i) {
acc = (BcBigDig) intp.num[i];
for (j = 0; BC_NO_SIG && j < exp && (i < intp.len - 1 || acc != 0); ++j)
{
if (j != exp - 1) {
dig = acc % base;
acc /= base;
}
else {
dig = acc;
acc = 0;
}
assert(dig < base);
bc_vec_push(&stack, &dig);
}
assert(acc == 0 || BC_SIG);
}
if (BC_SIG) goto sig_err;
for (i = 0; BC_NO_SIG && i < stack.len; ++i) {
ptr = bc_vec_item_rev(&stack, i);
assert(ptr);
print(*ptr, len, false);
}
if (BC_SIG) goto sig_err;
if (!n->scale) goto err;
bc_num_init(&fracp2, n->rdx);
bc_num_setup(&digit, digit_digs, sizeof(digit_digs) / sizeof(BcDig));
bc_num_init(&flen1, BC_NUM_BIGDIG_LOG10 + 1);
bc_num_init(&flen2, BC_NUM_BIGDIG_LOG10 + 1);
bc_num_one(&flen1);
radix = true;
n1 = &flen1;
n2 = &flen2;
fracp2.scale = n->scale;
fracp2.rdx = BC_NUM_RDX(fracp2.scale);
while (BC_NO_SIG && bc_num_intDigits(n1) < n->scale + 1) {
bc_num_expand(&fracp2, fracp1.len + 1);
s = bc_num_mulArray(&fracp1, base, &fracp2);
if (BC_ERROR_SIGNAL_ONLY(s)) goto frac_err;
if (fracp2.len < fracp2.rdx) fracp2.len = fracp2.rdx;
// Will never fail (except for signals) because fracp is
// guaranteed to be non-negative and small enough.
s = bc_num_bigdig(&fracp2, &dig);
if (BC_ERROR_SIGNAL_ONLY(s)) goto frac_err;
bc_num_bigdig2num(&digit, dig);
s = bc_num_sub(&fracp2, &digit, &fracp1, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto frac_err;
print(dig, len, radix);
s = bc_num_mulArray(n1, base, n2);
if (BC_ERROR_SIGNAL_ONLY(s)) goto frac_err;
radix = false;
temp = n1;
n1 = n2;
n2 = temp;
}
frac_err:
bc_num_free(&flen2);
bc_num_free(&flen1);
bc_num_free(&fracp2);
sig_err:
if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL;
err:
bc_num_free(&fracp1);
bc_num_free(&intp);
bc_vec_free(&stack);
return s;
}
static BcStatus bc_num_printBase(BcNum *restrict n, BcBigDig base) {
BcStatus s;
size_t width;
BcNumDigitOp print;
bool neg = n->neg;
if (neg) bc_num_putchar('-');
n->neg = false;
if (base <= BC_NUM_MAX_POSIX_IBASE) {
width = 1;
print = bc_num_printHex;
}
else {
width = bc_num_log10(base - 1);
print = bc_num_printDigits;
}
s = bc_num_printNum(n, base, width, print);
n->neg = neg;
return s;
}
#if DC_ENABLED
BcStatus bc_num_stream(BcNum *restrict n, BcBigDig base) {
return bc_num_printNum(n, base, 1, bc_num_printChar);
}
#endif // DC_ENABLED
void bc_num_setup(BcNum *restrict n, BcDig *restrict num, size_t cap) {
assert(n);
n->num = num;
n->cap = cap;
n->rdx = n->scale = n->len = 0;
n->neg = false;
}
void bc_num_init(BcNum *restrict n, size_t req) {
assert(n);
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
bc_num_setup(n, bc_vm_malloc(BC_NUM_SIZE(req)), req);
}
void bc_num_free(void *num) {
assert(num);
free(((BcNum*) num)->num);
}
void bc_num_copy(BcNum *d, const BcNum *s) {
assert(d && s);
if (d == s) return;
bc_num_expand(d, s->len);
d->len = s->len;
d->neg = s->neg;
d->rdx = s->rdx;
d->scale = s->scale;
memcpy(d->num, s->num, BC_NUM_SIZE(d->len));
}
void bc_num_createCopy(BcNum *d, const BcNum *s) {
bc_num_init(d, s->len);
bc_num_copy(d, s);
}
void bc_num_createFromBigdig(BcNum *n, BcBigDig val) {
bc_num_init(n, (BC_NUM_BIGDIG_LOG10 - 1) / BC_BASE_DIGS + 1);
bc_num_bigdig2num(n, val);
}
size_t bc_num_scale(const BcNum *restrict n) {
return n->scale;
}
size_t bc_num_len(const BcNum *restrict n) {
size_t len = n->len;
if (BC_NUM_ZERO(n)) return 0;
if (n->rdx == len) {
size_t zero, scale;
len = bc_num_nonzeroLen(n);
scale = n->scale % BC_BASE_DIGS;
scale = scale ? scale : BC_BASE_DIGS;
zero = bc_num_zeroDigits(n->num + len - 1);
len = len * BC_BASE_DIGS - zero - (BC_BASE_DIGS - scale);
}
else len = bc_num_intDigits(n) + n->scale;
return len;
}
BcStatus bc_num_parse(BcNum *restrict n, const char *restrict val,
BcBigDig base, bool letter)
{
BcStatus s = BC_STATUS_SUCCESS;
assert(n && val && base);
assert(base >= BC_NUM_MIN_BASE && base <= vm->maxes[BC_PROG_GLOBALS_IBASE]);
assert(bc_num_strValid(val));
if (letter) {
BcBigDig dig = bc_num_parseChar(val[0], BC_NUM_MAX_LBASE);
bc_num_bigdig2num(n, dig);
}
else if (base == BC_BASE) bc_num_parseDecimal(n, val);
else s = bc_num_parseBase(n, val, base);
return s;
}
BcStatus bc_num_print(BcNum *restrict n, BcBigDig base, bool newline) {
BcStatus s = BC_STATUS_SUCCESS;
assert(n);
assert(BC_ENABLE_EXTRA_MATH || base >= BC_NUM_MIN_BASE);
bc_num_printNewline();
if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false);
else if (base == BC_BASE) bc_num_printDecimal(n);
#if BC_ENABLE_EXTRA_MATH
else if (base == 0 || base == 1)
s = bc_num_printExponent(n, base != 0);
#endif // BC_ENABLE_EXTRA_MATH
else s = bc_num_printBase(n, base);
if (BC_NO_ERR(!s) && newline) bc_num_putchar('\n');
return s;
}
BcStatus bc_num_bigdig(const BcNum *restrict n, BcBigDig *result) {
size_t i;
BcBigDig r;
assert(n && result);
if (BC_ERR(n->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE);
for (r = 0, i = n->len; i > n->rdx;) {
BcBigDig prev = r * BC_BASE_POW;
if (BC_ERR(prev / BC_BASE_POW != r))
return bc_vm_err(BC_ERROR_MATH_OVERFLOW);
r = prev + (BcBigDig) n->num[--i];
if (BC_ERR(r < prev)) return bc_vm_err(BC_ERROR_MATH_OVERFLOW);
}
*result = r;
return BC_STATUS_SUCCESS;
}
void bc_num_bigdig2num(BcNum *restrict n, BcBigDig val) {
BcDig *ptr;
size_t i;
assert(n);
bc_num_zero(n);
if (!val) return;
bc_num_expand(n, BC_NUM_BIGDIG_LOG10);
for (ptr = n->num, i = 0; val; ++i, val /= BC_BASE_POW)
ptr[i] = val % BC_BASE_POW;
n->len = i;
}
size_t bc_num_addReq(const BcNum *a, const BcNum *b, size_t scale) {
size_t aint, bint, ardx, brdx;
BC_UNUSED(scale);
ardx = a->rdx;
aint = bc_num_int(a);
assert(aint <= a->len && ardx <= a->len);
brdx = b->rdx;
bint = bc_num_int(b);
assert(bint <= b->len && brdx <= b->len);
ardx = BC_MAX(ardx, brdx);
aint = BC_MAX(aint, bint);
return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1);
}
size_t bc_num_mulReq(const BcNum *a, const BcNum *b, size_t scale) {
size_t max, rdx;
rdx = bc_vm_growSize(a->rdx, b->rdx);
max = BC_NUM_RDX(scale);
max = bc_vm_growSize(BC_MAX(max, rdx), 1);
rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max);
return rdx;
}
size_t bc_num_powReq(const BcNum *a, const BcNum *b, size_t scale) {
BC_UNUSED(scale);
return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1);
}
#if BC_ENABLE_EXTRA_MATH
size_t bc_num_placesReq(const BcNum *a, const BcNum *b, size_t scale) {
BC_UNUSED(scale);
return a->len + b->len - a->rdx - b->rdx;
}
#endif // BC_ENABLE_EXTRA_MATH
BcStatus bc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
BcNumBinaryOp op = (!a->neg == !b->neg) ? bc_num_a : bc_num_s;
BC_UNUSED(scale);
return bc_num_binary(a, b, c, false, op, bc_num_addReq(a, b, scale));
}
BcStatus bc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
BcNumBinaryOp op = (!a->neg == !b->neg) ? bc_num_s : bc_num_a;
BC_UNUSED(scale);
return bc_num_binary(a, b, c, true, op, bc_num_addReq(a, b, scale));
}
BcStatus bc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
return bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale));
}
BcStatus bc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
return bc_num_binary(a, b, c, scale, bc_num_d, bc_num_mulReq(a, b, scale));
}
BcStatus bc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_mulReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_rem, req);
}
BcStatus bc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
return bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale));
}
#if BC_ENABLE_EXTRA_MATH
BcStatus bc_num_places(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_placesReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_place, req);
}
BcStatus bc_num_lshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_placesReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_left, req);
}
BcStatus bc_num_rshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_placesReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_right, req);
}
#endif // BC_ENABLE_EXTRA_MATH
BcStatus bc_num_sqrt(BcNum *restrict a, BcNum *restrict b, size_t scale) {
BcStatus s = BC_STATUS_SUCCESS;
BcNum num1, num2, half, f, fprime, *x0, *x1, *temp;
size_t pow, len, rdx, req, digs, digs1, digs2, resscale, times = 0;
ssize_t cmp = 1, cmp1 = SSIZE_MAX, cmp2 = SSIZE_MAX;
BcDig half_digs[1];
assert(a && b && a != b);
if (BC_ERR(a->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE);
if (a->scale > scale) scale = a->scale;
len = bc_vm_growSize(bc_num_intDigits(a), 1);
rdx = BC_NUM_RDX(scale);
req = bc_vm_growSize(BC_MAX(rdx, a->rdx), len >> 1);
bc_num_init(b, bc_vm_growSize(req, 1));
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(b, scale);
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ONE(a)) {
bc_num_one(b);
bc_num_extend(b, scale);
return BC_STATUS_SUCCESS;
}
rdx = BC_NUM_RDX(scale);
rdx = BC_MAX(rdx, a->rdx);
len = bc_vm_growSize(a->len, rdx);
bc_num_init(&num1, len);
bc_num_init(&num2, len);
bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig));
bc_num_one(&half);
half.num[0] = BC_BASE_POW / 2;
half.len = 1;
half.rdx = 1;
half.scale = 1;
bc_num_init(&f, len);
bc_num_init(&fprime, len);
x0 = &num1;
x1 = &num2;
bc_num_one(x0);
pow = bc_num_intDigits(a);
if (pow) {
if (pow & 1) x0->num[0] = 2;
else x0->num[0] = 6;
pow -= 2 - (pow & 1);
s = bc_num_shiftLeft(x0, pow / 2);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
x0->scale = x0->rdx = digs = digs1 = digs2 = 0;
resscale = (scale + BC_BASE_DIGS) * 2;
len = BC_NUM_RDX(bc_num_intDigits(x0) + resscale - 1);
while (BC_NO_SIG && (cmp || digs < len)) {
assert(BC_NUM_NONZERO(x0));
s = bc_num_div(a, x0, &f, resscale);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_add(x0, &f, &fprime, resscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_mul(&fprime, &half, x1, resscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
cmp = bc_num_cmp(x1, x0);
#if BC_ENABLE_SIGNALS
if (BC_NUM_CMP_SIGNAL(cmp)) {
s = BC_STATUS_SIGNAL;
break;
}
#endif // BC_ENABLE_SIGNALS
digs = x1->len - (size_t) labs(cmp);
if (cmp == cmp2 && digs == digs1) times += 1;
else times = 0;
resscale += (times > 2);
cmp2 = cmp1;
cmp1 = cmp;
digs1 = digs;
temp = x0;
x0 = x1;
x1 = temp;
}
if (BC_SIG) {
s = BC_STATUS_SIGNAL;
goto err;
}
bc_num_copy(b, x0);
if (b->scale > scale) bc_num_truncate(b, b->scale - scale);
err:
if (BC_ERR(s)) bc_num_free(b);
bc_num_free(&fprime);
bc_num_free(&f);
bc_num_free(&num2);
bc_num_free(&num1);
assert(!b->neg || BC_NUM_NONZERO(b));
assert(b->rdx <= b->len || !b->len);
assert(!b->len || b->num[b->len - 1] || b->rdx == b->len);
return s;
}
BcStatus bc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) {
BcStatus s;
BcNum num2, *ptr_a;
bool init = false;
size_t ts, len;
ts = BC_MAX(scale + b->scale, a->scale);
len = bc_num_mulReq(a, b, ts);
assert(c != d && a != d && b != d && b != c);
if (c == a) {
memcpy(&num2, c, sizeof(BcNum));
ptr_a = &num2;
bc_num_init(c, len);
init = true;
}
else {
ptr_a = a;
bc_num_expand(c, len);
}
if (BC_NUM_NONZERO(a) && !a->rdx && !b->rdx && b->len == 1 && !scale) {
BcBigDig rem;
s = bc_num_divArray(ptr_a, (BcBigDig) b->num[0], c, &rem);
assert(rem < BC_BASE_POW);
d->num[0] = (BcDig) rem;
d->len = (rem != 0);
}
else s = bc_num_r(ptr_a, b, c, d, scale, ts);
assert(!c->neg || BC_NUM_NONZERO(c));
assert(c->rdx <= c->len || !c->len);
assert(!c->len || c->num[c->len - 1] || c->rdx == c->len);
assert(!d->neg || BC_NUM_NONZERO(d));
assert(d->rdx <= d->len || !d->len);
assert(!d->len || d->num[d->len - 1] || d->rdx == d->len);
if (init) bc_num_free(&num2);
return s;
}
#if DC_ENABLED
BcStatus bc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) {
BcStatus s;
BcNum base, exp, two, temp;
BcDig two_digs[2];
assert(a && b && c && d && a != d && b != d && c != d);
if (BC_ERR(BC_NUM_ZERO(c)))
return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
if (BC_ERR(b->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE);
if (BC_ERR(a->rdx || b->rdx || c->rdx))
return bc_vm_err(BC_ERROR_MATH_NON_INTEGER);
bc_num_expand(d, c->len);
bc_num_init(&base, c->len);
bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig));
bc_num_init(&temp, b->len + 1);
bc_num_one(&two);
two.num[0] = 2;
bc_num_one(d);
// We already checked for 0.
s = bc_num_rem(a, c, &base, 0);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto rem_err;
bc_num_createCopy(&exp, b);
while (BC_NO_SIG && BC_NUM_NONZERO(&exp)) {
// Num two cannot be 0, so no errors.
s = bc_num_divmod(&exp, &two, &exp, &temp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (BC_NUM_ONE(&temp) && !temp.neg) {
s = bc_num_mul(d, &base, &temp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// We already checked for 0.
s = bc_num_rem(&temp, c, d, 0);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
s = bc_num_mul(&base, &base, &temp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// We already checked for 0.
s = bc_num_rem(&temp, c, &base, 0);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL;
err:
bc_num_free(&exp);
rem_err:
bc_num_free(&temp);
bc_num_free(&base);
assert(!d->neg || d->len);
assert(!d->len || d->num[d->len - 1] || d->rdx == d->len);
return s;
}
#endif // DC_ENABLED
#if BC_DEBUG_CODE
void bc_num_printDebug(const BcNum *n, const char *name, bool emptyline) {
printf("%s: ", name);
bc_num_printDecimal(n);
printf("\n");
if (emptyline) printf("\n");
vm->nchars = 0;
}
void bc_num_printDigs(const BcDig *n, size_t len, bool emptyline) {
size_t i;
for (i = len - 1; i < len; --i) printf(" %0*d", BC_BASE_DIGS, n[i]);
printf("\n");
if (emptyline) printf("\n");
vm->nchars = 0;
}
void bc_num_printWithDigs(const BcNum *n, const char *name, bool emptyline) {
printf("%s len: %zu, rdx: %zu, scale: %zu\n",
name, n->len, n->rdx, n->scale);
bc_num_printDigs(n->num, n->len, emptyline);
}
void bc_num_dump(const char *varname, const BcNum *n) {
ulong i, scale = n->scale;
fprintf(stderr, "\n%s = %s", varname, n->len ? (n->neg ? "-" : "+") : "0 ");
for (i = n->len - 1; i < n->len; --i) {
if (i + 1 == n->rdx) fprintf(stderr, ". ");
if (scale / BC_BASE_DIGS != n->rdx - i - 1)
fprintf(stderr, "%0*d ", BC_BASE_DIGS, n->num[i]);
else {
int mod = scale % BC_BASE_DIGS;
int d = BC_BASE_DIGS - mod;
BcDig div;
if (mod != 0) {
div = n->num[i] / ((BcDig) bc_num_pow10[(ulong) d]);
fprintf(stderr, "%0*d", (int) mod, div);
}
div = n->num[i] % ((BcDig) bc_num_pow10[(ulong) d]);
fprintf(stderr, " ' %0*d ", d, div);
}
}
fprintf(stderr, "(%zu | %zu.%zu / %zu) %p\n",
n->scale, n->len, n->rdx, n->cap, (void*) n->num);
}
#endif // BC_DEBUG_CODE