| /* |
| * ***************************************************************************** |
| * |
| * Copyright (c) 2018-2020 Gavin D. Howard and contributors. |
| * |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| * ***************************************************************************** |
| * |
| * The second bc math library. |
| * |
| */ |
| |
| define p(x,y){ |
| auto a |
| a=y$ |
| if(y==a)return (x^a)@scale |
| return e(y*l(x)) |
| } |
| define r(x,p){ |
| auto t,n |
| if(x==0)return x |
| p=abs(p)$ |
| n=(x<0) |
| x=abs(x) |
| t=x@p |
| if(p<scale(x)&&x-t>=5>>p+1)t+=1>>p |
| if(n)t=-t |
| return t |
| } |
| define ceil(x,p){ |
| auto t,n |
| if(x==0)return x |
| p=abs(p)$ |
| n=(x<0) |
| x=abs(x) |
| t=(x+(9>>p+1))@p |
| if(n)t=-t |
| return t |
| } |
| define f(n){ |
| auto r |
| n=abs(n)$ |
| for(r=1;n>1;--n)r*=n |
| return r |
| } |
| define perm(n,k){ |
| auto f,g,s |
| if(k>n)return 0 |
| n=abs(n)$ |
| k=abs(k)$ |
| f=f(n) |
| g=f(n-k) |
| s=scale |
| scale=0 |
| f/=g |
| scale=s |
| return f |
| } |
| define comb(n,r){ |
| auto s,f,g,h |
| if(r>n)return 0 |
| n=abs(n)$ |
| r=abs(r)$ |
| s=scale |
| scale=0 |
| f=f(n) |
| h=f(r) |
| g=f(n-r) |
| f/=h*g |
| scale=s |
| return f |
| } |
| define log(x,b){ |
| auto p,s |
| s=scale |
| if(scale<K)scale=K |
| if(scale(x)>scale)scale=scale(x) |
| scale*=2 |
| p=l(x)/l(b) |
| scale=s |
| return p@s |
| } |
| define l2(x){return log(x,2)} |
| define l10(x){return log(x,A)} |
| define root(x,n){ |
| auto s,m,r,q,p |
| if(n<0)sqrt(n) |
| n=n$ |
| if(n==0)x/n |
| if(n==1)return x |
| if(n==2)return sqrt(x) |
| s=scale |
| scale=0 |
| if(x<0&&n%2==0)sqrt(x) |
| scale=s+2 |
| m=(x<0) |
| x=abs(x) |
| p=n-1 |
| q=10^ceil((length(x$)/n)$,0) |
| while(r!=q){ |
| r=q |
| q=(p*r+x/r^p)/n |
| } |
| if(m)r=-r |
| scale=s |
| return r@s |
| } |
| define cbrt(x){return root(x,3)} |
| define pi(s){ |
| auto t,v |
| if(s==0)return 3 |
| s=abs(s)$ |
| t=scale |
| scale=s+1 |
| v=4*a(1) |
| scale=t |
| return v@s |
| } |
| define t(x){ |
| auto s,c,l |
| l=scale |
| scale+=2 |
| s=s(x) |
| c=c(x) |
| scale=l |
| return s/c |
| } |
| define a2(y,x){ |
| auto a,p |
| if(!x&&!y)y/x |
| if(x<=0){ |
| p=pi(scale+2) |
| if(y<0)p=-p |
| } |
| if(x==0)a=p/2 |
| else{ |
| scale+=2 |
| a=a(y/x)+p |
| scale-=2 |
| } |
| return a@scale |
| } |
| define sin(x){return s(x)} |
| define cos(x){return c(x)} |
| define atan(x){return a(x)} |
| define tan(x){return t(x)} |
| define atan2(y,x){return a2(y,x)} |
| define r2d(x){ |
| auto r,i,s |
| s=scale |
| scale+=5 |
| i=ibase |
| ibase=A |
| r=x*180/pi(scale) |
| ibase=i |
| scale=s |
| return r@s |
| } |
| define d2r(x){ |
| auto r,i,s |
| s=scale |
| scale+=5 |
| i=ibase |
| ibase=A |
| r=x*pi(scale)/180 |
| ibase=i |
| scale=s |
| return r@s |
| } |
| define void output(x,b){ |
| auto c |
| c=obase |
| obase=b |
| x |
| obase=c |
| } |
| define void hex(x){output(x,G)} |
| define void binary(x){output(x,2)} |
| define ubytes(x){ |
| auto p,b,i |
| b=ibase |
| ibase=A |
| x=abs(x)$ |
| i=2^8 |
| for(p=1;i-1<x;p*=2){i*=i} |
| ibase=b |
| return p |
| } |
| define sbytes(x){ |
| auto p,b,n,z |
| z=(x<0) |
| x=abs(x) |
| x=x$ |
| n=ubytes(x) |
| b=ibase |
| ibase=A |
| p=2^(n*8-1) |
| if(x>p||(!z&&x==p))n*=2 |
| ibase=b |
| return n |
| } |
| define void output_byte(x,i){ |
| auto j,p,y,b |
| j=ibase |
| ibase=A |
| s=scale |
| scale=0 |
| x=abs(x)$ |
| b=x/(2^(i*8)) |
| b%=2^8 |
| y=log(256,obase) |
| if(b>1)p=log(b,obase)+1 |
| else p=b |
| for(i=y-p;i>0;--i)print 0 |
| if(b)print b |
| scale=s |
| ibase=j |
| } |
| define void output_uint(x,n){ |
| auto i,b |
| b=ibase |
| ibase=A |
| for(i=n-1;i>=0;--i){ |
| output_byte(x,i) |
| if(i)print" " |
| else print"\n" |
| } |
| ibase=b |
| } |
| define void hex_uint(x,n){ |
| auto o |
| o=obase |
| obase=G |
| output_uint(x,n) |
| obase=o |
| } |
| define void binary_uint(x,n){ |
| auto o |
| o=obase |
| obase=2 |
| output_uint(x,n) |
| obase=o |
| } |
| define void uintn(x,n){ |
| if(scale(x)){ |
| print"Error: ",x," is not an integer.\n" |
| return |
| } |
| if(x<0){ |
| print"Error: ",x," is negative.\n" |
| return |
| } |
| if(x>=2^(n*8)){ |
| print"Error: ",x," cannot fit into ",n," unsigned byte(s).\n" |
| return |
| } |
| binary_uint(x,n) |
| hex_uint(x,n) |
| } |
| define void intn(x,n){ |
| auto t |
| if(scale(x)){ |
| print"Error: ",x," is not an integer.\n" |
| return |
| } |
| t=2^(n*8-1) |
| if(abs(x)>=t&&(x>0||x!=-t)){ |
| print "Error: ",x," cannot fit into ",n," signed byte(s).\n" |
| return |
| } |
| if(x<0)x=2^(n*8)-(-x) |
| binary_uint(x,n) |
| hex_uint(x,n) |
| } |
| define void uint8(x){uintn(x,1)} |
| define void int8(x){intn(x,1)} |
| define void uint16(x){uintn(x,2)} |
| define void int16(x){intn(x,2)} |
| define void uint32(x){uintn(x,4)} |
| define void int32(x){intn(x,4)} |
| define void uint64(x){uintn(x,8)} |
| define void int64(x){intn(x,8)} |
| define void uint(x){uintn(x,ubytes(x))} |
| define void int(x){intn(x,sbytes(x))} |