| /* |
| * ***************************************************************************** |
| * |
| * Copyright (c) 2018-2019 Gavin D. Howard and contributors. |
| * |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| * ***************************************************************************** |
| * |
| * Code for the number type. |
| * |
| */ |
| |
| #include <assert.h> |
| #include <ctype.h> |
| #include <stdbool.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <limits.h> |
| |
| #include <status.h> |
| #include <num.h> |
| #include <vm.h> |
| |
| static BcStatus bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); |
| |
| static ssize_t bc_num_neg(size_t n, bool neg) { |
| return (((ssize_t) n) ^ -((ssize_t) neg)) + neg; |
| } |
| |
| ssize_t bc_num_cmpZero(const BcNum *n) { |
| return bc_num_neg((n)->len != 0, (n)->neg); |
| } |
| |
| static size_t bc_num_int(const BcNum *n) { |
| return n->len ? n->len - n->rdx : 0; |
| } |
| |
| static bool bc_num_isOne(const BcNum *n) { |
| return n->len == 1 && n->rdx == 0 && n->num[0] == 1; |
| } |
| |
| static void bc_num_expand(BcNum *restrict n, size_t req) { |
| assert(n); |
| req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; |
| if (req > n->cap) { |
| n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req)); |
| n->cap = req; |
| } |
| } |
| |
| static void bc_num_setToZero(BcNum *restrict n, size_t scale) { |
| assert(n); |
| n->scale = scale; |
| n->len = n->rdx = 0; |
| n->neg = false; |
| } |
| |
| static void bc_num_zero(BcNum *restrict n) { |
| bc_num_setToZero(n, 0); |
| } |
| |
| void bc_num_one(BcNum *restrict n) { |
| bc_num_setToZero(n, 0); |
| n->len = 1; |
| n->num[0] = 1; |
| } |
| |
| void bc_num_ten(BcNum *restrict n) { |
| assert(n); |
| bc_num_setToZero(n, 0); |
| #if BC_BASE_DIG == 10 |
| n->len = 2; |
| n->num[0] = 0; |
| n->num[1] = 1; |
| #else // BC_BASE_DIG == 10 |
| n->len = 1; |
| n->num[0] = BC_BASE; |
| #endif // BC_BASE_DIG == 10 |
| } |
| |
| static size_t bc_num_log10(size_t i) { |
| size_t len; |
| for (len = 1; i; i /= BC_BASE, ++len); |
| return len - 1; |
| } |
| |
| static size_t bc_num_int_digits(const BcNum *n) { |
| |
| size_t digits; |
| |
| digits = bc_num_int(n) * BC_BASE_POWER; |
| |
| if (digits > 0) |
| digits -= BC_BASE_POWER - bc_num_log10((size_t) n->num[n->len - 1]); |
| |
| return digits; |
| } |
| |
| #define POW10N 9 |
| |
| static unsigned long pow10[POW10N] = { |
| 10, |
| 100, |
| 1000, |
| 10000, |
| 100000, |
| 1000000, |
| 10000000, |
| 100000000, |
| 1000000000, |
| }; |
| |
| static unsigned long bc_num_pow10(unsigned long i) { |
| if (i == 0) return 1; |
| i--; |
| if (i < POW10N) return pow10[i]; |
| i -= POW10N; |
| assert(i < POW10N); |
| return pow10[POW10N - 1] * pow10[i]; |
| } |
| |
| static size_t bc_num_nonzeroLen(const BcNum *restrict n) { |
| size_t i, len = n->len; |
| assert(len == n->rdx); |
| for (i = len - 1; i < n->len && !n->num[i]; --len, --i); |
| assert(len > 0); |
| return len; |
| } |
| |
| static unsigned long bc_num_addDigit(BcDig *restrict num, unsigned long d, |
| unsigned long c) |
| { |
| d += c; |
| *num = (BcDig) (d % BC_BASE_DIG); |
| assert(*num >= 0 && *num < BC_BASE_DIG); |
| return d / BC_BASE_DIG; |
| } |
| |
| static BcStatus bc_num_addArrays(BcDig *restrict a, const BcDig *restrict b, |
| size_t len) |
| { |
| size_t i; |
| unsigned long carry = 0; |
| |
| for (i = 0; BC_NO_SIG && i < len; ++i) { |
| unsigned long in = ((unsigned long) a[i]) + ((unsigned long) b[i]); |
| carry = bc_num_addDigit(a + i, in, carry); |
| } |
| |
| for (; BC_NO_SIG && carry; ++i) |
| carry = bc_num_addDigit(a + i, (unsigned long) a[i], carry); |
| |
| return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS; |
| } |
| |
| static BcStatus bc_num_subArrays(BcDig *restrict a, const BcDig *restrict b, |
| size_t len) |
| { |
| size_t i, j; |
| |
| for (i = 0; BC_NO_SIG && i < len; ++i) { |
| |
| for (a[i] -= b[i], j = 0; BC_NO_SIG && a[i + j] < 0;) { |
| assert(a[i + j] >= -BC_BASE_DIG); |
| a[i + j++] += BC_BASE_DIG; |
| a[i + j] -= 1; |
| assert(a[i + j - 1] >= 0 && a[i + j - 1] < BC_BASE_DIG); |
| } |
| } |
| |
| return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS; |
| } |
| |
| static ssize_t bc_num_compare(const BcDig *restrict a, const BcDig *restrict b, |
| size_t len) |
| { |
| size_t i; |
| long c = 0; |
| for (i = len - 1; BC_NO_SIG && i < len && !(c = a[i] - b[i]); --i); |
| return BC_SIG ? BC_NUM_SSIZE_MIN : bc_num_neg(i + 1, c < 0); |
| } |
| |
| ssize_t bc_num_cmp(const BcNum *a, const BcNum *b) { |
| |
| size_t i, min, a_int, b_int, diff; |
| BcDig *max_num, *min_num; |
| bool a_max, neg = false; |
| ssize_t cmp; |
| |
| assert(a && b); |
| |
| if (a == b) return 0; |
| if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !b->neg); |
| if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a); |
| if (a->neg) { |
| if (b->neg) neg = true; |
| else return -1; |
| } |
| else if (b->neg) return 1; |
| |
| a_int = bc_num_int(a); |
| b_int = bc_num_int(b); |
| a_int -= b_int; |
| a_max = (a->rdx > b->rdx); |
| |
| if (a_int) return (ssize_t) a_int; |
| |
| if (a_max) { |
| min = b->rdx; |
| diff = a->rdx - b->rdx; |
| max_num = a->num + diff; |
| min_num = b->num; |
| } |
| else { |
| min = a->rdx; |
| diff = b->rdx - a->rdx; |
| max_num = b->num + diff; |
| min_num = a->num; |
| } |
| |
| cmp = bc_num_compare(max_num, min_num, b_int + min); |
| if (cmp == BC_NUM_SSIZE_MIN) return cmp; |
| if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg); |
| |
| for (max_num -= diff, i = diff - 1; BC_NO_SIG && i < diff; --i) { |
| if (max_num[i]) return bc_num_neg(1, !a_max == !neg); |
| } |
| |
| return BC_SIG ? BC_NUM_SSIZE_MIN : 0; |
| } |
| |
| static void bc_num_clean(BcNum *restrict n) { |
| while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) --n->len; |
| if (BC_NUM_ZERO(n)) n->neg = false; |
| else if (n->len < n->rdx) n->len = n->rdx; |
| } |
| |
| void bc_num_truncate(BcNum *restrict n, size_t places) { |
| |
| size_t places_rdx; |
| |
| if (!places) return; |
| |
| places_rdx = n->rdx - BC_NUM_RDX(n->scale - places); |
| assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len)); |
| |
| n->scale -= places; |
| n->rdx -= places_rdx; |
| |
| if (BC_NUM_NONZERO(n)) { |
| |
| size_t pow; |
| |
| pow = n->scale % BC_BASE_POWER; |
| pow = pow ? BC_BASE_POWER - pow : 0; |
| pow = bc_num_pow10(pow); |
| |
| n->len -= places_rdx; |
| memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len)); |
| |
| // Clear the lower part of the last digit. |
| if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow; |
| |
| bc_num_clean(n); |
| } |
| } |
| |
| static void bc_num_extend(BcNum *restrict n, size_t places) { |
| |
| size_t places_rdx; |
| |
| if (!places) return; |
| |
| places_rdx = BC_NUM_RDX(places + n->scale) - n->rdx; |
| |
| if (places_rdx) { |
| bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); |
| memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); |
| memset(n->num, 0, BC_NUM_SIZE(places_rdx)); |
| } |
| |
| n->rdx += places_rdx; |
| n->scale += places; |
| n->len += places_rdx; |
| |
| assert(n->rdx == BC_NUM_RDX(n->scale)); |
| } |
| |
| static void bc_num_roundPlaces(BcNum *restrict n, size_t places) { |
| |
| size_t rdx, place, i; |
| BcDig p10, sum; |
| |
| if (places >= n->scale || places >= n->rdx * BC_BASE_POWER) { |
| bc_num_extend(n, places - n->scale); |
| return; |
| } |
| |
| rdx = n->rdx - BC_NUM_RDX(places + 1); |
| place = BC_BASE_POWER - (places % BC_BASE_POWER + 1); |
| |
| for (i = 0; i < rdx; i++) n->num[i] = 0; |
| |
| p10 = (BcDig) bc_num_pow10(place); |
| sum = n->num[rdx] + (BC_BASE / 2) * p10; |
| sum = sum - sum % (BC_BASE * p10); |
| |
| if (sum < BC_BASE_DIG) n->num[rdx] = sum; |
| else { |
| |
| sum -= BC_BASE_DIG; |
| n->num[rdx] = sum; |
| |
| do { |
| rdx += 1; |
| |
| if (n->len <= rdx) { |
| bc_num_expand(n, bc_vm_growSize(rdx, 1)); |
| n->num[rdx] = 0; |
| n->len = rdx +1; |
| } |
| |
| sum = n->num[rdx] + 1; |
| n->num[rdx] = sum < BC_BASE_DIG ? sum : sum - BC_BASE_DIG; |
| } while (sum >= BC_BASE_DIG); |
| } |
| |
| bc_num_truncate(n, n->scale - places); |
| } |
| |
| static void bc_num_retireMul(BcNum *restrict n, size_t scale, |
| bool neg1, bool neg2) |
| { |
| if (n->scale < scale) bc_num_extend(n, scale - n->scale); |
| else bc_num_truncate(n, n->scale - scale); |
| |
| bc_num_clean(n); |
| if (BC_NUM_NONZERO(n)) n->neg = (!neg1 != !neg2); |
| } |
| |
| static void bc_num_split(const BcNum *restrict n, size_t idx, |
| BcNum *restrict a, BcNum *restrict b) |
| { |
| if (idx < n->len) { |
| |
| b->len = n->len - idx; |
| a->len = idx; |
| a->scale = a->rdx = b->scale = b->rdx = 0; |
| |
| memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len)); |
| memcpy(a->num, n->num, BC_NUM_SIZE(idx)); |
| |
| bc_num_clean(b); |
| } |
| else bc_num_copy(a, n); |
| |
| bc_num_clean(a); |
| } |
| |
| static size_t bc_num_shiftZero(BcNum *restrict n) { |
| |
| size_t i; |
| |
| assert(!n->rdx || BC_NUM_ZERO(n)); |
| |
| for (i = 0; i < n->len && !n->num[i]; ++i); |
| |
| n->len -= i; |
| n->num += i; |
| |
| return i; |
| } |
| |
| static void bc_num_unshiftZero(BcNum *restrict n, size_t places_rdx) { |
| n->len += places_rdx; |
| n->num -= places_rdx; |
| } |
| |
| static BcStatus bc_num_shift(BcNum *restrict n, unsigned long dig) { |
| |
| size_t i, len = n->len; |
| unsigned long carry = 0, pow; |
| BcDig *ptr = n->num; |
| |
| assert(dig < BC_BASE_POWER); |
| |
| pow = bc_num_pow10(dig); |
| dig = bc_num_pow10(BC_BASE_POWER - dig); |
| |
| for (i = len - 1; BC_NO_SIG && i < len; --i) { |
| unsigned long in, temp; |
| in = ((unsigned long) ptr[i]); |
| temp = carry * dig; |
| carry = in % pow; |
| ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp; |
| } |
| |
| assert(!carry); |
| |
| return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS; |
| } |
| |
| static BcStatus bc_num_shiftLeft(BcNum *restrict n, size_t places) { |
| |
| BcStatus s = BC_STATUS_SUCCESS; |
| unsigned long dig; |
| size_t places_rdx; |
| bool shift; |
| |
| if (!places) return s; |
| if (places > n->scale) { |
| size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len); |
| if (size > SIZE_MAX - 1) return bc_vm_err(BC_ERROR_MATH_OVERFLOW); |
| } |
| if (BC_NUM_ZERO(n)) { |
| if (n->scale >= places) n->scale -= places; |
| else n->scale = 0; |
| return s; |
| } |
| |
| dig = (unsigned long) (places % BC_BASE_POWER); |
| shift = (dig != 0); |
| places_rdx = BC_NUM_RDX(places); |
| |
| if (n->scale) { |
| |
| if (n->rdx >= places_rdx) { |
| |
| size_t mod = n->scale % BC_BASE_POWER, revdig; |
| |
| mod = mod ? mod : BC_BASE_POWER; |
| revdig = dig ? BC_BASE_POWER - dig : 0; |
| |
| if (mod + revdig > BC_BASE_POWER) places_rdx = 1; |
| else places_rdx = 0; |
| } |
| else places_rdx -= n->rdx; |
| } |
| |
| if (places_rdx) { |
| bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); |
| memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); |
| memset(n->num, 0, BC_NUM_SIZE(places_rdx)); |
| n->len += places_rdx; |
| } |
| |
| if (places > n->scale) n->scale = n->rdx = 0; |
| else { |
| n->scale -= places; |
| n->rdx = BC_NUM_RDX(n->scale); |
| } |
| |
| if (shift) s = bc_num_shift(n, BC_BASE_POWER - dig); |
| |
| bc_num_clean(n); |
| |
| return BC_SIG && !s ? BC_STATUS_SIGNAL : s; |
| } |
| |
| static BcStatus bc_num_shiftRight(BcNum *restrict n, size_t places) { |
| |
| BcStatus s = BC_STATUS_SUCCESS; |
| unsigned long dig; |
| size_t places_rdx, scale, scale_mod, int_len, expand; |
| bool shift; |
| |
| if (!places) return s; |
| if (BC_NUM_ZERO(n)) { |
| n->scale += places; |
| bc_num_expand(n, BC_NUM_RDX(n->scale)); |
| return s; |
| } |
| |
| dig = (unsigned long) (places % BC_BASE_POWER); |
| shift = (dig != 0); |
| scale = n->scale; |
| scale_mod = scale % BC_BASE_POWER; |
| scale_mod = scale_mod ? scale_mod : BC_BASE_POWER; |
| int_len = bc_num_int(n); |
| places_rdx = BC_NUM_RDX(places); |
| |
| if (scale_mod + dig > BC_BASE_POWER) { |
| expand = places_rdx - 1; |
| places_rdx = 1; |
| } |
| else { |
| expand = places_rdx; |
| places_rdx = 0; |
| } |
| |
| if (expand > int_len) expand -= int_len; |
| else expand = 0; |
| |
| bc_num_extend(n, places_rdx * BC_BASE_POWER); |
| bc_num_expand(n, bc_vm_growSize(expand, n->len)); |
| memset(n->num + n->len, 0, BC_NUM_SIZE(expand)); |
| n->len += expand; |
| n->scale = n->rdx = 0; |
| |
| if (shift) s = bc_num_shift(n, dig); |
| |
| n->scale = scale + places; |
| n->rdx = BC_NUM_RDX(n->scale); |
| |
| bc_num_clean(n); |
| |
| assert(n->rdx <= n->len && n->len <= n->cap); |
| assert(n->rdx == BC_NUM_RDX(n->scale)); |
| |
| return BC_SIG && !s ? BC_STATUS_SIGNAL : s; |
| } |
| |
| static BcStatus bc_num_inv(BcNum *a, BcNum *b, size_t scale) { |
| |
| BcNum one; |
| BcDig num[2]; |
| |
| assert(BC_NUM_NONZERO(a)); |
| |
| one.cap = 2; |
| one.num = num; |
| bc_num_one(&one); |
| |
| return bc_num_div(&one, a, b, scale); |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| static BcStatus bc_num_intop(const BcNum *a, const BcNum *b, BcNum *restrict c, |
| unsigned long *v) |
| { |
| if (BC_ERR(b->rdx)) return bc_vm_err(BC_ERROR_MATH_NON_INTEGER); |
| bc_num_copy(c, a); |
| return bc_num_ulong(b, v); |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| static BcStatus bc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) { |
| |
| BcDig *ptr, *ptr_a, *ptr_b, *ptr_c; |
| size_t i, max, min_rdx, min_int, diff, a_int, b_int; |
| unsigned long carry; |
| |
| // Because this function doesn't need to use scale (per the bc spec), |
| // I am hijacking it to say whether it's doing an add or a subtract. |
| |
| if (BC_NUM_ZERO(a)) { |
| bc_num_copy(c, b); |
| if (sub && BC_NUM_NONZERO(c)) c->neg = !c->neg; |
| return BC_STATUS_SUCCESS; |
| } |
| if (BC_NUM_ZERO(b)) { |
| bc_num_copy(c, a); |
| return BC_STATUS_SUCCESS; |
| } |
| |
| c->neg = a->neg; |
| c->rdx = BC_MAX(a->rdx, b->rdx); |
| c->scale = BC_MAX(a->scale, b->scale); |
| min_rdx = BC_MIN(a->rdx, b->rdx); |
| |
| if (a->rdx > b->rdx) { |
| diff = a->rdx - b->rdx; |
| ptr = a->num; |
| ptr_a = a->num + diff; |
| ptr_b = b->num; |
| } |
| else { |
| diff = b->rdx - a->rdx; |
| ptr = b->num; |
| ptr_a = a->num; |
| ptr_b = b->num + diff; |
| } |
| |
| for (ptr_c = c->num, i = 0; i < diff; ++i) ptr_c[i] = ptr[i]; |
| |
| c->len = diff; |
| ptr_c += diff; |
| a_int = bc_num_int(a); |
| b_int = bc_num_int(b); |
| |
| if (a_int > b_int) { |
| min_int = b_int; |
| max = a_int; |
| ptr = ptr_a; |
| } |
| else { |
| min_int = a_int; |
| max = b_int; |
| ptr = ptr_b; |
| } |
| |
| for (carry = 0, i = 0; BC_NO_SIG && i < min_rdx + min_int; ++i) { |
| unsigned long in; |
| in = ((unsigned long) ptr_a[i]) + ((unsigned long) ptr_b[i]); |
| carry = bc_num_addDigit(ptr_c + i, in, carry); |
| } |
| |
| for (; BC_NO_SIG && i < max + min_rdx; ++i) |
| carry = bc_num_addDigit(ptr_c + i, (unsigned long) ptr[i], carry); |
| |
| c->len += i; |
| |
| if (carry) c->num[c->len++] = (BcDig) carry; |
| |
| return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS; |
| } |
| |
| static BcStatus bc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) { |
| |
| BcStatus s; |
| ssize_t cmp; |
| BcNum *minuend, *subtrahend; |
| size_t start; |
| bool aneg, bneg, neg; |
| |
| // Because this function doesn't need to use scale (per the bc spec), |
| // I am hijacking it to say whether it's doing an add or a subtract. |
| |
| if (BC_NUM_ZERO(a)) { |
| bc_num_copy(c, b); |
| if (sub && BC_NUM_NONZERO(c)) c->neg = !c->neg; |
| return BC_STATUS_SUCCESS; |
| } |
| if (BC_NUM_ZERO(b)) { |
| bc_num_copy(c, a); |
| return BC_STATUS_SUCCESS; |
| } |
| |
| aneg = a->neg; |
| bneg = b->neg; |
| a->neg = b->neg = false; |
| |
| cmp = bc_num_cmp(a, b); |
| if (cmp == BC_NUM_SSIZE_MIN) return BC_STATUS_SIGNAL; |
| |
| a->neg = aneg; |
| b->neg = bneg; |
| |
| if (!cmp) { |
| bc_num_setToZero(c, BC_MAX(a->rdx, b->rdx)); |
| return BC_STATUS_SUCCESS; |
| } |
| |
| if (cmp > 0) { |
| neg = a->neg; |
| minuend = a; |
| subtrahend = b; |
| } |
| else { |
| neg = b->neg; |
| if (sub) neg = !neg; |
| minuend = b; |
| subtrahend = a; |
| } |
| |
| bc_num_copy(c, minuend); |
| c->neg = neg; |
| |
| if (c->scale < subtrahend->scale) { |
| bc_num_extend(c, subtrahend->scale - c->scale); |
| start = 0; |
| } |
| else start = c->rdx - subtrahend->rdx; |
| |
| s = bc_num_subArrays(c->num + start, subtrahend->num, subtrahend->len); |
| |
| bc_num_clean(c); |
| |
| return s; |
| } |
| |
| static BcStatus bc_num_m_simp(const BcNum *a, const BcNum *b, BcNum *restrict c) |
| { |
| size_t i, alen = a->len, blen = b->len, clen; |
| BcDig *ptr_a = a->num, *ptr_b = b->num, *ptr_c; |
| unsigned long sum = 0, carry = 0; |
| |
| assert(sizeof(sum) >= sizeof(BcDig) * 2); |
| assert(!a->rdx && !b->rdx); |
| |
| clen = bc_vm_growSize(alen, blen); |
| bc_num_expand(c, bc_vm_growSize(clen, 1)); |
| |
| ptr_c = c->num; |
| memset(ptr_c, 0, BC_NUM_SIZE(c->cap)); |
| |
| for (i = 0; BC_NO_SIG && i < clen; ++i) { |
| |
| ssize_t sidx = (ssize_t) (i - blen + 1); |
| size_t j = (size_t) BC_MAX(0, sidx), k = BC_MIN(i, blen - 1); |
| |
| for (; BC_NO_SIG && j < alen && k < blen; ++j, --k) { |
| |
| sum += ((unsigned long) ptr_a[j]) * ((unsigned long) ptr_b[k]); |
| |
| if (sum >= BC_BASE_DIG) { |
| carry += sum / BC_BASE_DIG; |
| sum %= BC_BASE_DIG; |
| } |
| } |
| |
| ptr_c[i] = (BcDig) sum; |
| assert(ptr_c[i] < BC_BASE_DIG); |
| sum = carry; |
| carry = 0; |
| } |
| |
| if (sum) { |
| assert(sum < BC_BASE_DIG); |
| ptr_c[clen] = (BcDig) sum; |
| clen += 1; |
| } |
| |
| c->len = clen; |
| return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS; |
| } |
| |
| static BcStatus bc_num_shiftAddSub(BcNum *restrict n, const BcNum *restrict a, |
| size_t shift, BcNumShiftAddOp op) |
| { |
| assert(n->len >= shift + a->len); |
| assert(!n->rdx && !a->rdx); |
| return op(n->num + shift, a->num, a->len); |
| } |
| |
| static BcStatus bc_num_k(BcNum *a, BcNum *b, BcNum *restrict c) { |
| |
| BcStatus s; |
| size_t max, max2, total; |
| BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp; |
| BcDig *digs, *dig_ptr; |
| BcNumShiftAddOp op; |
| bool aone = bc_num_isOne(a); |
| |
| assert(BC_NUM_ZERO(c)); |
| |
| // This is here because the function is recursive. |
| if (BC_SIG) return BC_STATUS_SIGNAL; |
| if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) { |
| bc_num_zero(c); |
| return BC_STATUS_SUCCESS; |
| } |
| if (aone || bc_num_isOne(b)) { |
| bc_num_copy(c, aone ? b : a); |
| return BC_STATUS_SUCCESS; |
| } |
| if (a->len + b->len < BC_NUM_KARATSUBA_LEN || |
| a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN) |
| { |
| return bc_num_m_simp(a, b, c); |
| } |
| |
| max = BC_MAX(a->len, b->len); |
| max = BC_MAX(max, BC_NUM_DEF_SIZE); |
| max2 = (max + 1) / 2; |
| |
| total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max); |
| digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total)); |
| |
| bc_num_setup(&l1, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&h1, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&l2, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&h2, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&m1, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&m2, dig_ptr, max); |
| max = bc_vm_growSize(max, 1); |
| bc_num_init(&z0, max); |
| bc_num_init(&z1, max); |
| bc_num_init(&z2, max); |
| max = bc_vm_growSize(max, max) + 1; |
| bc_num_init(&temp, max); |
| |
| bc_num_split(a, max2, &l1, &h1); |
| bc_num_clean(&l1); |
| bc_num_clean(&h1); |
| bc_num_split(b, max2, &l2, &h2); |
| bc_num_clean(&l2); |
| bc_num_clean(&h2); |
| |
| bc_num_expand(c, max); |
| c->len = max; |
| memset(c->num, 0, BC_NUM_SIZE(c->len)); |
| |
| s = bc_num_sub(&h1, &l1, &m1, 0); |
| if (BC_ERR(s)) goto err; |
| s = bc_num_sub(&l2, &h2, &m2, 0); |
| if (BC_ERR(s)) goto err; |
| |
| if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) { |
| |
| s = bc_num_m(&h1, &h2, &z2, 0); |
| if (BC_ERR(s)) goto err; |
| bc_num_clean(&z2); |
| |
| s = bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays); |
| if (BC_ERR(s)) goto err; |
| s = bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays); |
| if (BC_ERR(s)) goto err; |
| } |
| |
| if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) { |
| |
| s = bc_num_m(&l1, &l2, &z0, 0); |
| if (BC_ERR(s)) goto err; |
| bc_num_clean(&z0); |
| |
| s = bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays); |
| if (BC_ERR(s)) goto err; |
| s = bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays); |
| if (BC_ERR(s)) goto err; |
| } |
| |
| if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) { |
| |
| s = bc_num_m(&m1, &m2, &z1, 0); |
| if (BC_ERR(s)) goto err; |
| bc_num_clean(&z1); |
| |
| op = (m1.neg != m2.neg) ? bc_num_subArrays : bc_num_addArrays; |
| s = bc_num_shiftAddSub(c, &z1, max2, op); |
| if (BC_ERR(s)) goto err; |
| } |
| |
| err: |
| free(digs); |
| bc_num_free(&temp); |
| bc_num_free(&z2); |
| bc_num_free(&z1); |
| bc_num_free(&z0); |
| return s; |
| } |
| |
| static BcStatus bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcStatus s; |
| BcNum cpa, cpb; |
| size_t ascale, bscale, ardx, brdx, azero = 0, bzero = 0, zero, len, rscale; |
| |
| bc_num_setToZero(c, 0); |
| ascale = a->scale; |
| bscale = b->scale; |
| scale = BC_MAX(scale, ascale); |
| scale = BC_MAX(scale, bscale); |
| |
| rscale = ascale + bscale; |
| scale = BC_MIN(rscale, scale); |
| bc_num_createCopy(&cpa, a); |
| bc_num_createCopy(&cpb, b); |
| |
| cpa.neg = cpb.neg = false; |
| ardx = cpa.rdx * BC_BASE_POWER; |
| s = bc_num_shiftLeft(&cpa, ardx); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| bc_num_clean(&cpa); |
| azero = bc_num_shiftZero(&cpa); |
| |
| brdx = cpb.rdx * BC_BASE_POWER; |
| s = bc_num_shiftLeft(&cpb, brdx); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| bzero = bc_num_shiftZero(&cpb); |
| bc_num_clean(&cpb); |
| |
| s = bc_num_k(&cpa, &cpb, c); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| zero = bc_vm_growSize(azero, bzero); |
| len = bc_vm_growSize(c->len, zero); |
| |
| bc_num_expand(c, len); |
| s = bc_num_shiftLeft(c, (len - c->len) * BC_BASE_POWER); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_shiftRight(c, ardx + brdx); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| bc_num_retireMul(c, scale, a->neg, b->neg); |
| |
| err: |
| bc_num_unshiftZero(&cpb, bzero); |
| bc_num_free(&cpb); |
| bc_num_unshiftZero(&cpa, azero); |
| bc_num_free(&cpa); |
| return s; |
| } |
| |
| #ifdef USE_GOLDSCHMIDT |
| // find reciprocal value for paramezter in range 0.5 < val <= 1.0 |
| static BcStatus bc_num_invert(BcNum *val, size_t scale) { // --> num.h <se> |
| |
| BcNum one, x, temp, sum; |
| bool done = false; |
| BcStatus s = BC_STATUS_SUCCESS; |
| |
| // we need one constant value 1 to start ... |
| bc_num_createFromUlong(&one, 1); |
| // create temporary variable used in each iteration step |
| bc_num_init(&temp, scale / BC_BASE_POWER + 1); |
| // create variable to be squared per iteration |
| bc_num_init(&x, scale / BC_BASE_POWER + 1); |
| // create variable for the sum the series elements |
| bc_num_init(&sum, scale / BC_BASE_POWER + 1); |
| s = bc_num_sub(&one, val, &x, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| // initialize series sum to 1.0 + error |
| s = bc_num_add(&one, &x, &sum, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| for (;;) { |
| // calculate square of delta for next iteration |
| s = bc_num_mul(&x, &x, &x, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| // nothing left to do, if the squared delta truncated to "scale" decimals is 0.0 |
| if BC_NUM_ZERO(&x) break; |
| |
| // multiply current series sum with the squared delta |
| s = bc_num_mul(&sum, &x, &temp, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| // add series element to sum |
| s = bc_num_add(&sum, &temp, &sum, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| // apply correction for finite number of series elements considered |
| // could be further optimized ... |
| bc_num_mul(val, &sum, &temp, scale); |
| // the correction is derived from 1.0 - sum * (1/sum) |
| bc_num_sub(&one, &temp, &temp, scale); |
| // add delta twice, we could also use Newton-Raphson for the correction |
| bc_num_add(&sum, &temp, &sum, scale); |
| bc_num_add(&sum, &temp, val, scale); |
| err: |
| bc_num_free(&sum); |
| bc_num_free(&one); |
| bc_num_free(&x); |
| bc_num_free(&temp); |
| |
| return s; |
| } |
| |
| // normalize number to have rdx == len and return the number of BcDigs the value has been shifted to the right (negative for left) |
| static int bc_num_normalize(BcNum *n) { |
| |
| int i, shift = 0; |
| ssize_t len, rdx; |
| |
| if (BC_NUM_ZERO(n)) return 0; |
| |
| len = n->len; |
| rdx = n->rdx; |
| |
| while (len > 0 && n->num[len - 1] == 0) |
| len--; |
| |
| n->len = len; |
| n->rdx = len; |
| n->scale += (len - rdx) * BC_BASE_POWER; |
| |
| return len - rdx; |
| } |
| |
| static BcStatus bc_num_d(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| |
| BcStatus s = BC_STATUS_SUCCESS; |
| size_t rdx, rscale, req; |
| ssize_t cmp; |
| BcNum b1, f; |
| size_t factor, dividend, divisor; |
| size_t i, j, mindivisor, temp_scale; |
| int shift; |
| |
| if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO); |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(c, scale); |
| return BC_STATUS_SUCCESS; |
| } |
| if (bc_num_isOne(b)) { |
| bc_num_copy(c, a); |
| goto exit; |
| } |
| |
| // scale that allows to represent all possible multiplication results |
| temp_scale = BC_MAX(scale, BC_BASE_POWER * (a->len + b->len + 1)); |
| |
| // create normalized copy of first argument in result variable "c" |
| bc_num_copy(c, a); |
| // the shift value records be how many BcDigs the decimal has been shifted to the left |
| shift = bc_num_normalize(c); |
| |
| // create normalized copy of first argument as temporary variable b1 |
| bc_num_createCopy(&b1, b); |
| // the shift value now records by how many BcDigs the result will need to be shifted |
| shift -= bc_num_normalize(&b1); |
| |
| // set sign of (copies of the) operands to positive |
| c->neg = false; |
| b1.neg = false; |
| |
| // compare normalized operands to determine whether the result of dividing them will be < or > 1 |
| cmp = bc_num_cmp(&b1, c); |
| if (cmp == 0) { |
| // if the normalized values are identical the result will be a power of (10^BC_BASE_POWER) |
| bc_num_ulong2num(c, 1); |
| } |
| else { |
| if (cmp > 0) //==> b > a, result will be one exp higher |
| shift--; |
| |
| dividend = 1; |
| divisor = 0; |
| |
| // calculate the maximum power of BC_BASE_DIG that will fit into a size_t |
| for (i = 0; i < 19 / BC_BASE_POWER; i++) { |
| dividend *= BC_BASE_DIG; |
| } |
| |
| // determine the minimum number acceptable for the initial divide operation |
| mindivisor = bc_num_pow10((19 - BC_BASE_POWER)/2); |
| if (BC_BASE_POWER % 2 != 0) |
| mindivisor *= 3; |
| |
| j = 0; |
| for (i = 0; i < b1.len; i++) { |
| if (divisor < mindivisor) { |
| // accumulate BcDigs until the minimum desired divisor has been formed |
| divisor *= BC_BASE_DIG; |
| divisor += b1.num[b1.len - 1 - i]; |
| } |
| else { |
| if (b1.num[b1.len - 1 - i] != 0) |
| // there were further non-zero digits not included in the divisor |
| // account for them by incrementing the divisor just to be sure |
| j = 1; |
| } |
| } |
| divisor += j; |
| |
| // the quotient is used as the initial estimate of the (scaled) reciprocal value of the divisor |
| factor = dividend / divisor; |
| |
| // Multiply the estimate of 1/B ("factor") with the actual value of B giving a result <= 1.0 |
| bc_num_createFromUlong(&f, factor); |
| bc_num_mul(&b1, &f, &b1, temp_scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| if (b1.num[b1.len - 1] != 1) { |
| // a correction is required, we multiply with the inverse of the error since we cannot divide ... |
| b1.rdx = b1.len; |
| // calculate the inverse of the error to twice the number of decimals |
| b1.scale = b1.rdx * BC_BASE_POWER; |
| s = bc_num_invert(&b1, temp_scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| // multiply with the correction factor (== the reciprocal value of the error factor) |
| bc_num_mul(&b1, c, c, temp_scale + BC_BASE_POWER); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| // multiply the corrected reciprocal value of B with A to get A/B |
| bc_num_mul(&f, c, c, temp_scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| // adjust the decimal point in such a way that the result is 1 <= C <= BC_BASE_DIG -1 |
| c->rdx = c->len - 1; |
| c->scale = c->rdx * BC_BASE_POWER; |
| bc_num_free(&f); |
| } |
| |
| // adjust the decimal point to account for the normalization of the arguments A and B |
| if (shift > 0) |
| bc_num_shiftLeft(c, shift * BC_BASE_POWER); |
| else |
| bc_num_shiftRight(c, -shift * BC_BASE_POWER); |
| err: |
| bc_num_free(&b1); |
| exit: |
| if (BC_SIG) s = BC_STATUS_SIGNAL; |
| // adjust sign of the result from the preserved input parameters |
| if (BC_NO_ERR(!s)) bc_num_retireMul(c, scale, a->neg, b->neg); |
| return s; |
| } |
| |
| #else // USE_GOLDSCHMIDT |
| |
| static BcStatus bc_num_d(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| |
| BcStatus s = BC_STATUS_SUCCESS; |
| size_t rdx, rdx2, rscale, scale2, req; |
| ssize_t cmp; |
| BcNum cpa, cpb, two, factor, factor2, *fi, *fnext, *temp; |
| BcDig two_digs[2]; |
| bool aneg, bneg; |
| |
| aneg = a->neg; |
| bneg = b->neg; |
| |
| if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO); |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(c, scale); |
| return BC_STATUS_SUCCESS; |
| } |
| if (bc_num_isOne(b)) { |
| bc_num_copy(c, a); |
| goto exit; |
| } |
| |
| a->neg = b->neg = false; |
| cmp = bc_num_cmp(a, b); |
| |
| if (cmp == BC_NUM_SSIZE_MIN) return BC_STATUS_SIGNAL; |
| if (!cmp) { |
| bc_num_one(c); |
| goto exit; |
| } |
| |
| bc_num_createCopy(&cpa, a); |
| bc_num_createCopy(&cpb, b); |
| |
| // This is to calculate enough digits to make rounding only happen when |
| // necessary. It rounds the scale up to the next BcDig boundary, then adds |
| // on enough to create a whole extra BcDig which will then be tested to see |
| // if it's equal to BC_BASE_DIG - 1. If it is, then, and only then, should |
| // rounding be needed. |
| scale2 = BC_NUM_RDX(scale + 1) * BC_BASE_POWER + BC_BASE_POWER + 1; |
| rdx2 = BC_NUM_RDX(scale2); |
| req = bc_num_int(a) + rdx2 + 1; |
| scale2 = rdx2 * BC_BASE_POWER; |
| bc_num_init(&factor, req); |
| bc_num_init(&factor2, req); |
| |
| bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig)); |
| bc_num_one(&two); |
| two.num[0] = 2; |
| |
| if (b->rdx == b->len) { |
| rdx = cpb.len - bc_num_nonzeroLen(&cpb); |
| rscale = rdx * BC_BASE_POWER; |
| s = bc_num_shiftLeft(&cpa, rscale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_shiftLeft(&cpb, rscale); |
| } |
| else { |
| rdx = b->len - b->rdx; |
| rscale = rdx * BC_BASE_POWER; |
| s = bc_num_shiftRight(&cpa, rscale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_shiftRight(&cpb, rscale); |
| } |
| |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| req = bc_num_int(&cpa); |
| if (!req) req = cpa.len - bc_num_nonzeroLen(&cpa); |
| req = BC_BASE_POWER * (req + 1); |
| req += b->scale % BC_BASE_POWER == 0 ? BC_BASE_POWER : 0; |
| req += scale2; |
| |
| rscale += req; |
| bc_num_extend(&cpa, req); |
| bc_num_extend(&cpb, req); |
| |
| fi = &factor; |
| fnext = &factor2; |
| cmp = 1; |
| |
| while (!bc_num_isOne(fi) && cmp) { |
| |
| s = bc_num_sub(&two, &cpb, fi, rscale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_mul(&cpa, fi, &cpa, rscale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_mul(&cpb, fi, &cpb, rscale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| temp = fi; |
| fi = fnext; |
| fnext = temp; |
| |
| cmp = bc_num_cmp(fi, fnext); |
| if (cmp == BC_NUM_SSIZE_MIN) goto err; |
| } |
| |
| // We only round here if an entire BcDig is equal to BC_BASE_DIG - 1. We |
| // have to round because without rounding, the Goldschmidt algorithm can |
| // produce numbers that are 1 digit off in the last place, because of the |
| // nature of the algorithm. That throws off things like negative powers |
| // (like 10 ^ -1, which Goldschmidt calculates as 0.099999999...). The bc |
| // spec requires truncation, but without this rounding, *more* calculations |
| // will be off. To fix this, I have the algorithm calculate the result to |
| // the scale plus 1 place plus a whole extra BcDig (at least). Then, when |
| // rounding, I only round if the extra BcDig is only 1 less than the max, |
| // and then I only add 1 to the right place (see bc_num_roundPlaces() for |
| // more info). What this means is that if there is a chain of 9's from the |
| // *actual* scale position to the rounded position, then rounding will |
| // happen, but if not, the actual scale will not be affected (i.e., it will |
| // appear truncated). By extending the calculation by 1 extra digit, then a |
| // whole extra BcDig, I create a separation between the two that only is |
| // closed when Goldschmidt has failed to calculate the exact truncated |
| // number (or at least, I hope it does). |
| assert(cpa.rdx >= rdx2); |
| if (cpa.num[cpa.rdx - rdx2] == BC_BASE_DIG - 1) |
| bc_num_roundPlaces(&cpa, scale2 - 1); |
| bc_num_copy(c, &cpa); |
| |
| err: |
| bc_num_free(&factor2); |
| bc_num_free(&factor); |
| bc_num_free(&cpb); |
| bc_num_free(&cpa); |
| exit: |
| a->neg = aneg; |
| b->neg = bneg; |
| if (BC_SIG) s = BC_STATUS_SIGNAL; |
| if (BC_NO_ERR(!s)) bc_num_retireMul(c, scale, a->neg, b->neg); |
| return s; |
| } |
| #endif // USE_GOLDSCHMIDT |
| |
| static BcStatus bc_num_r(BcNum *a, BcNum *b, BcNum *restrict c, |
| BcNum *restrict d, size_t scale, size_t ts) |
| { |
| BcStatus s; |
| BcNum temp; |
| bool neg; |
| |
| if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO); |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(c, ts); |
| bc_num_setToZero(d, ts); |
| return BC_STATUS_SUCCESS; |
| } |
| |
| bc_num_init(&temp, d->cap); |
| s = bc_num_d(a, b, c, scale); |
| assert(!s || s == BC_STATUS_SIGNAL); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| if (scale) scale = ts + 1; |
| |
| s = bc_num_m(c, b, &temp, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_sub(a, &temp, d, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale); |
| |
| neg = d->neg; |
| bc_num_retireMul(d, ts, a->neg, b->neg); |
| d->neg = BC_NUM_NONZERO(d) ? neg : false; |
| |
| err: |
| bc_num_free(&temp); |
| return s; |
| } |
| |
| static BcStatus bc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) |
| { |
| BcStatus s; |
| BcNum c1; |
| size_t ts; |
| |
| ts = bc_vm_growSize(scale, b->scale); |
| ts = BC_MAX(ts, a->scale); |
| |
| bc_num_init(&c1, bc_num_mulReq(a, b, ts)); |
| s = bc_num_r(a, b, &c1, c, scale, ts); |
| bc_num_free(&c1); |
| |
| return s; |
| } |
| |
| static BcStatus bc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcStatus s = BC_STATUS_SUCCESS; |
| BcNum copy; |
| unsigned long pow = 0; |
| size_t i, powrdx, resrdx; |
| bool neg, zero; |
| |
| if (BC_ERR(b->rdx)) return bc_vm_err(BC_ERROR_MATH_NON_INTEGER); |
| |
| if (BC_NUM_ZERO(b)) { |
| bc_num_one(c); |
| return BC_STATUS_SUCCESS; |
| } |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(c, scale); |
| return BC_STATUS_SUCCESS; |
| } |
| if (bc_num_isOne(b)) { |
| if (!b->neg) bc_num_copy(c, a); |
| else s = bc_num_inv(a, c, scale); |
| return s; |
| } |
| |
| neg = b->neg; |
| b->neg = false; |
| s = bc_num_ulong(b, &pow); |
| b->neg = neg; |
| if (s) return s; |
| |
| bc_num_createCopy(©, a); |
| |
| if (!neg) scale = BC_MIN(a->scale * pow, BC_MAX(scale, a->scale)); |
| |
| for (powrdx = a->scale; BC_NO_SIG && !(pow & 1); pow >>= 1) { |
| powrdx <<= 1; |
| s = bc_num_mul(©, ©, ©, powrdx); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| |
| if (BC_SIG) goto sig_err; |
| |
| bc_num_copy(c, ©); |
| resrdx = powrdx; |
| |
| while (BC_NO_SIG && (pow >>= 1)) { |
| |
| powrdx <<= 1; |
| s = bc_num_mul(©, ©, ©, powrdx); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| if (pow & 1) { |
| resrdx += powrdx; |
| s = bc_num_mul(c, ©, c, resrdx); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| } |
| |
| if (BC_SIG) goto sig_err; |
| if (neg) { |
| s = bc_num_inv(c, c, scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| |
| if (c->scale > scale) bc_num_truncate(c, c->scale - scale); |
| |
| // We can't use bc_num_clean() here. |
| for (zero = true, i = 0; zero && i < c->len; ++i) zero = !c->num[i]; |
| if (zero) bc_num_setToZero(c, scale); |
| |
| sig_err: |
| if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL; |
| err: |
| bc_num_free(©); |
| return s; |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| static BcStatus bc_num_place(BcNum *a, BcNum *b, BcNum *restrict c, |
| size_t scale) |
| { |
| BcStatus s = BC_STATUS_SUCCESS; |
| unsigned long val = 0; |
| |
| BC_UNUSED(scale); |
| |
| s = bc_num_intop(a, b, c, &val); |
| if (BC_ERR(s)) return s; |
| |
| if (val < c->scale) bc_num_truncate(c, c->scale - val); |
| else if (val > c->scale) bc_num_extend(c, val - c->scale); |
| |
| return s; |
| } |
| |
| static BcStatus bc_num_left(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) |
| { |
| BcStatus s = BC_STATUS_SUCCESS; |
| unsigned long val = 0; |
| |
| BC_UNUSED(scale); |
| |
| s = bc_num_intop(a, b, c, &val); |
| if (BC_ERR(s)) return s; |
| |
| return bc_num_shiftLeft(c, (size_t) val); |
| } |
| |
| static BcStatus bc_num_right(BcNum *a, BcNum *b, BcNum *restrict c, |
| size_t scale) |
| { |
| BcStatus s = BC_STATUS_SUCCESS; |
| unsigned long val = 0; |
| |
| BC_UNUSED(scale); |
| |
| s = bc_num_intop(a, b, c, &val); |
| if (BC_ERR(s)) return s; |
| |
| if (BC_NUM_ZERO(c)) return s; |
| |
| return bc_num_shiftRight(c, (size_t) val); |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| static BcStatus bc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale, |
| BcNumBinaryOp op, size_t req) |
| { |
| BcStatus s; |
| BcNum num2, *ptr_a, *ptr_b; |
| bool init = false; |
| |
| assert(a && b && c && op); |
| |
| if (c == a) { |
| ptr_a = &num2; |
| memcpy(ptr_a, c, sizeof(BcNum)); |
| init = true; |
| } |
| else ptr_a = a; |
| |
| if (c == b) { |
| ptr_b = &num2; |
| if (c != a) { |
| memcpy(ptr_b, c, sizeof(BcNum)); |
| init = true; |
| } |
| } |
| else ptr_b = b; |
| |
| if (init) bc_num_init(c, req); |
| else bc_num_expand(c, req); |
| |
| s = op(ptr_a, ptr_b, c, scale); |
| |
| assert(!c->neg || BC_NUM_NONZERO(c)); |
| assert(c->rdx <= c->len || !c->len || s); |
| |
| if (init) bc_num_free(&num2); |
| |
| return s; |
| } |
| |
| #ifndef NDEBUG |
| static bool bc_num_strValid(const char *val) { |
| |
| bool radix = false; |
| size_t i, len = strlen(val); |
| |
| if (!len) return true; |
| |
| for (i = 0; i < len; ++i) { |
| |
| BcDig c = val[i]; |
| |
| if (c == '.') { |
| |
| if (radix) return false; |
| |
| radix = true; |
| continue; |
| } |
| |
| if (!(isdigit(c) || isupper(c))) return false; |
| } |
| |
| return true; |
| } |
| #endif // NDEBUG |
| |
| static unsigned long bc_num_parseChar(char c, size_t base_t) { |
| |
| if (isupper(c)) { |
| c = BC_NUM_NUM_LETTER(c); |
| c = ((size_t) c) >= base_t ? (char) base_t - 1 : c; |
| } |
| else c -= '0'; |
| |
| return (unsigned long) (uchar) c; |
| } |
| |
| static void bc_num_parseDecimal(BcNum *restrict n, const char *restrict val) { |
| |
| size_t len, i, temp, mod; |
| const char *ptr; |
| bool zero = true, rdx; |
| |
| for (i = 0; val[i] == '0'; ++i); |
| |
| val += i; |
| assert(!val[0] || isalnum(val[0]) || val[0] == '.'); |
| |
| // All 0's. We can just return, since this |
| // procedure expects a virgin (already 0) BcNum. |
| if (!val[0]) return; |
| |
| len = strlen(val); |
| |
| ptr = strchr(val, '.'); |
| rdx = (ptr != NULL); |
| |
| for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i); |
| |
| n->scale = (size_t) (rdx * ((val + len) - (ptr + 1))); |
| n->rdx = BC_NUM_RDX(n->scale); |
| |
| i = len - (ptr == val ? 0 : i) - rdx; |
| temp = BC_NUM_ROUND_POW(i); |
| mod = n->scale % BC_BASE_POWER; |
| i = mod ? BC_BASE_POWER - mod : 0; |
| n->len = ((temp + i) / BC_BASE_POWER); |
| |
| bc_num_expand(n, n->len); |
| memset(n->num, 0, BC_NUM_SIZE(n->len)); |
| |
| if (zero) n->len = n->rdx = 0; |
| else { |
| |
| unsigned long exp, pow; |
| |
| exp = i; |
| pow = bc_num_pow10(exp); |
| |
| for (i = len - 1; i < len; --i, ++exp) { |
| |
| char c = val[i]; |
| |
| if (c == '.') exp -= 1; |
| else { |
| |
| size_t idx = exp / BC_BASE_POWER; |
| |
| if (isupper(c)) c = '9'; |
| n->num[idx] += (((unsigned long) c) - '0') * pow; |
| |
| if ((exp + 1) % BC_BASE_POWER == 0) pow = 1; |
| else pow *= BC_BASE; |
| } |
| } |
| } |
| } |
| |
| static BcStatus bc_num_parseBase(BcNum *restrict n, const char *restrict val, |
| BcNum *restrict base, size_t base_t) |
| { |
| BcStatus s = BC_STATUS_SUCCESS; |
| BcNum temp, mult, result; |
| char c = 0; |
| bool zero = true; |
| unsigned long v; |
| size_t i, digs, len = strlen(val); |
| |
| for (i = 0; zero && i < len; ++i) zero = (val[i] == '.' || val[i] == '0'); |
| if (zero) return BC_STATUS_SUCCESS; |
| |
| bc_num_init(&temp, BC_NUM_LONG_LOG10); |
| bc_num_init(&mult, BC_NUM_LONG_LOG10); |
| |
| for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) { |
| |
| v = bc_num_parseChar(c, base_t); |
| |
| s = bc_num_mul(n, base, &mult, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto int_err; |
| bc_num_ulong2num(&temp, v); |
| s = bc_num_add(&mult, &temp, n, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto int_err; |
| } |
| |
| if (i == len && !(c = val[i])) goto int_err; |
| |
| assert(c == '.'); |
| bc_num_init(&result, base->len); |
| bc_num_one(&mult); |
| |
| for (i += 1, digs = 0; BC_NO_SIG && i < len && (c = val[i]); ++i, ++digs) |
| { |
| v = bc_num_parseChar(c, base_t); |
| |
| s = bc_num_mul(&result, base, &result, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| bc_num_ulong2num(&temp, v); |
| s = bc_num_add(&result, &temp, &result, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_mul(&mult, base, &mult, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| |
| if (BC_SIG) { |
| s = BC_STATUS_SIGNAL; |
| goto err; |
| } |
| |
| // This one cannot be a divide by 0 because mult starts out at 1, then is |
| // multiplied by base, and base cannot be 0, so mult cannot be 0. |
| s = bc_num_div(&result, &mult, &result, digs * 2); |
| assert(!s || s == BC_STATUS_SIGNAL); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| bc_num_truncate(&result, digs); |
| //bc_num_truncate(&result, result.scale - digs); // <se> is this a fixed version of the line above? |
| s = bc_num_add(n, &result, n, digs); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| if (BC_NUM_NONZERO(n)) { |
| if (n->scale < digs) bc_num_extend(n, digs - n->scale); |
| } |
| else bc_num_zero(n); |
| |
| err: |
| bc_num_free(&result); |
| int_err: |
| bc_num_free(&mult); |
| bc_num_free(&temp); |
| return s; |
| } |
| |
| static void bc_num_printNewline() { |
| if (vm->nchars >= (size_t) (vm->line_len - 1)) { |
| bc_vm_putchar('\\'); |
| bc_vm_putchar('\n'); |
| vm->nchars = 0; |
| } |
| } |
| |
| #if DC_ENABLED |
| static void bc_num_printChar(size_t n, size_t len, bool rdx) { |
| BC_UNUSED(rdx); |
| bc_vm_putchar((uchar) n); |
| vm->nchars += len; |
| } |
| #endif // DC_ENABLED |
| |
| static void bc_num_printDigits(size_t n, size_t len, bool rdx) { |
| |
| size_t exp, pow; |
| |
| bc_num_printNewline(); |
| bc_vm_putchar(rdx ? '.' : ' '); |
| ++vm->nchars; |
| |
| bc_num_printNewline(); |
| for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE); |
| |
| for (exp = 0; exp < len; pow /= BC_BASE, ++vm->nchars, ++exp) { |
| size_t dig; |
| bc_num_printNewline(); |
| dig = n / pow; |
| n -= dig * pow; |
| bc_vm_putchar(((uchar) dig) + '0'); |
| } |
| } |
| |
| static void bc_num_printHex(size_t n, size_t len, bool rdx) { |
| |
| assert(len == 1); |
| |
| if (rdx) { |
| bc_num_printNewline(); |
| bc_vm_putchar('.'); |
| vm->nchars += 1; |
| } |
| |
| bc_num_printNewline(); |
| bc_vm_putchar(bc_num_hex_digits[n]); |
| vm->nchars += len; |
| } |
| |
| static void bc_num_printDecimal(const BcNum *restrict n) { |
| |
| size_t i, j, rdx = n->rdx; |
| bool zero = true; |
| size_t buffer[BC_BASE_POWER]; |
| |
| if (n->neg) bc_vm_putchar('-'); |
| vm->nchars += n->neg; |
| |
| for (i = n->len - 1; i < n->len; --i) { |
| |
| BcDig n9 = n->num[i]; |
| size_t temp; |
| bool irdx = (i == rdx - 1); |
| |
| zero = (zero & !irdx); |
| temp = n->scale % BC_BASE_POWER; |
| temp = i || !temp ? 0 : BC_BASE_POWER - temp; |
| |
| memset(buffer, 0, BC_BASE_POWER * sizeof(size_t)); |
| |
| for (j = 0; n9 && j < BC_BASE_POWER; ++j) { |
| buffer[j] = n9 % BC_BASE; |
| n9 /= BC_BASE; |
| } |
| |
| for (j = BC_BASE_POWER - 1; j < BC_BASE_POWER && j >= temp; --j) { |
| bool print_rdx = (irdx & (j == BC_BASE_POWER - 1)); |
| zero = (zero && buffer[j] == 0); |
| if (!zero) bc_num_printHex(buffer[j], 1, print_rdx); |
| } |
| } |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| static BcStatus bc_num_printExponent(const BcNum *restrict n, bool eng) { |
| |
| BcStatus s = BC_STATUS_SUCCESS; |
| bool neg = (n->len <= n->rdx); |
| BcNum temp, exp; |
| size_t places, mod; |
| BcDig digs[BC_NUM_LONG_LOG10]; |
| |
| bc_num_createCopy(&temp, n); |
| |
| if (neg) { |
| |
| size_t i, idx = bc_num_nonzeroLen(n) - 1; |
| |
| places = 1; |
| |
| for (i = BC_BASE_POWER - 1; i < BC_BASE_POWER; --i) { |
| if (bc_num_pow10(i) > (unsigned long) n->num[idx]) |
| places += 1; |
| else break; |
| } |
| |
| places += (n->rdx - (idx + 1)) * BC_BASE_POWER; |
| |
| mod = places % 3; |
| |
| if (eng && mod != 0) places += 3 - mod; |
| s = bc_num_shiftLeft(&temp, places); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto exit; |
| } |
| else { |
| places = bc_num_int_digits(n) - 1; |
| mod = places % 3; |
| if (eng && mod != 0) places -= 3 - (3 - mod); |
| s = bc_num_shiftRight(&temp, places); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto exit; |
| } |
| |
| bc_num_printDecimal(&temp); |
| |
| bc_num_printNewline(); |
| bc_vm_putchar('e'); |
| |
| if (!places) { |
| bc_num_printHex(0, 1, false); |
| goto exit; |
| } |
| |
| if (neg) { |
| bc_num_printNewline(); |
| bc_vm_putchar('-'); |
| } |
| |
| bc_num_setup(&exp, digs, BC_NUM_LONG_LOG10); |
| bc_num_ulong2num(&exp, (unsigned long) places); |
| |
| bc_num_printDecimal(&exp); |
| |
| exit: |
| bc_num_free(&temp); |
| return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS; |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| static BcStatus bc_num_printNum(BcNum *restrict n, BcNum *restrict base, |
| size_t len, BcNumDigitOp print) |
| { |
| BcStatus s; |
| BcVec stack; |
| BcNum intp, fracp, digit, frac_len; |
| unsigned long dig, *ptr; |
| size_t i; |
| bool radix; |
| |
| assert(BC_NUM_NONZERO(base)); |
| |
| if (BC_NUM_ZERO(n)) { |
| print(0, len, false); |
| return BC_STATUS_SUCCESS; |
| } |
| |
| bc_vec_init(&stack, sizeof(unsigned long), NULL); |
| bc_num_init(&fracp, n->rdx); |
| bc_num_init(&digit, len); |
| bc_num_init(&frac_len, bc_num_int(n)); |
| bc_num_one(&frac_len); |
| bc_num_createCopy(&intp, n); |
| |
| bc_num_truncate(&intp, intp.scale); |
| s = bc_num_sub(n, &intp, &fracp, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| while (BC_NO_SIG && BC_NUM_NONZERO(&intp)) { |
| |
| // Dividing by base cannot be divide by 0 because base cannot be 0. |
| s = bc_num_divmod(&intp, base, &intp, &digit, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| // Will never fail (except for signals) because digit is |
| // guaranteed to be non-negative and small enough. |
| s = bc_num_ulong(&digit, &dig); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| bc_vec_push(&stack, &dig); |
| } |
| |
| if (BC_SIG) goto sig_err; |
| |
| for (i = 0; BC_NO_SIG && i < stack.len; ++i) { |
| ptr = bc_vec_item_rev(&stack, i); |
| assert(ptr); |
| print(*ptr, len, false); |
| } |
| |
| if (BC_SIG) goto sig_err; |
| if (!n->scale) goto err; |
| |
| for (radix = true; BC_NO_SIG && bc_num_int_digits(&frac_len) < n->scale + 1; radix = false) { |
| |
| s = bc_num_mul(&fracp, base, &fracp, n->scale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| // Will never fail (except for signals) because fracp is |
| // guaranteed to be non-negative and small enough. |
| s = bc_num_ulong(&fracp, &dig); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| bc_num_ulong2num(&intp, dig); |
| s = bc_num_sub(&fracp, &intp, &fracp, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| print(dig, len, radix); |
| s = bc_num_mul(&frac_len, base, &frac_len, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| |
| sig_err: |
| if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL; |
| err: |
| bc_num_free(&frac_len); |
| bc_num_free(&digit); |
| bc_num_free(&fracp); |
| bc_num_free(&intp); |
| bc_vec_free(&stack); |
| return s; |
| } |
| |
| static BcStatus bc_num_printBase(BcNum *restrict n, BcNum *restrict base, |
| size_t base_t) |
| { |
| BcStatus s; |
| size_t width; |
| BcNumDigitOp print; |
| bool neg = n->neg; |
| |
| if (neg) bc_vm_putchar('-'); |
| vm->nchars += neg; |
| |
| n->neg = false; |
| |
| if (base_t <= BC_NUM_MAX_POSIX_IBASE) { |
| width = 1; |
| print = bc_num_printHex; |
| } |
| else { |
| width = bc_num_log10(base_t - 1); |
| print = bc_num_printDigits; |
| } |
| |
| s = bc_num_printNum(n, base, width, print); |
| n->neg = neg; |
| |
| return s; |
| } |
| |
| #if DC_ENABLED |
| BcStatus bc_num_stream(BcNum *restrict n, BcNum *restrict base) { |
| return bc_num_printNum(n, base, 1, bc_num_printChar); |
| } |
| #endif // DC_ENABLED |
| |
| void bc_num_setup(BcNum *restrict n, BcDig *restrict num, size_t cap) { |
| assert(n); |
| n->num = num; |
| n->cap = cap; |
| n->rdx = n->scale = n->len = 0; |
| n->neg = false; |
| } |
| |
| void bc_num_init(BcNum *restrict n, size_t req) { |
| assert(n); |
| req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; |
| bc_num_setup(n, bc_vm_malloc(BC_NUM_SIZE(req)), req); |
| } |
| |
| void bc_num_free(void *num) { |
| assert(num); |
| free(((BcNum*) num)->num); |
| } |
| |
| void bc_num_copy(BcNum *d, const BcNum *s) { |
| assert(d && s); |
| if (d == s) return; |
| bc_num_expand(d, s->len); |
| d->len = s->len; |
| d->neg = s->neg; |
| d->rdx = s->rdx; |
| d->scale = s->scale; |
| memcpy(d->num, s->num, BC_NUM_SIZE(d->len)); |
| } |
| |
| void bc_num_createCopy(BcNum *d, const BcNum *s) { |
| bc_num_init(d, s->len); |
| bc_num_copy(d, s); |
| } |
| |
| void bc_num_createFromUlong(BcNum *n, unsigned long val) { |
| bc_num_init(n, (BC_NUM_LONG_LOG10 - 1) / BC_BASE_POWER + 1); |
| bc_num_ulong2num(n, val); |
| } |
| |
| size_t bc_num_scale(const BcNum *restrict n) { |
| return n->scale; |
| } |
| |
| size_t bc_num_len(const BcNum *restrict n) { |
| |
| size_t i, pow, scale, len = n->len; |
| BcDig dig; |
| |
| if (BC_NUM_ZERO(n)) return 0; |
| if (n->rdx == len) len = bc_num_nonzeroLen(n); |
| |
| dig = n->num[len - 1]; |
| pow = BC_BASE_DIG; |
| i = BC_BASE_POWER + 1; |
| |
| while (pow && (dig % (BcDig) pow == dig)) { |
| i -= 1; |
| pow /= BC_BASE; |
| } |
| |
| scale = n->scale % BC_BASE_POWER; |
| scale = scale ? scale : BC_BASE_POWER; |
| |
| return (len - 1) * BC_BASE_POWER + i - (BC_BASE_POWER - scale); |
| } |
| |
| BcStatus bc_num_parse(BcNum *restrict n, const char *restrict val, |
| BcNum *restrict base, size_t base_t, bool letter) |
| { |
| BcStatus s = BC_STATUS_SUCCESS; |
| |
| assert(n && val && base); |
| assert(BC_ENABLE_EXTRA_MATH || |
| (base_t >= BC_NUM_MIN_BASE && base_t <= vm->max_ibase)); |
| assert(bc_num_strValid(val)); |
| |
| if (letter) bc_num_ulong2num(n, bc_num_parseChar(val[0], BC_NUM_MAX_LBASE)); |
| else if (base_t == BC_BASE) bc_num_parseDecimal(n, val); |
| else s = bc_num_parseBase(n, val, base, base_t); |
| |
| return s; |
| } |
| |
| BcStatus bc_num_print(BcNum *restrict n, BcNum *restrict base, |
| size_t base_t, bool newline) |
| { |
| BcStatus s = BC_STATUS_SUCCESS; |
| |
| assert(n && base); |
| assert(BC_ENABLE_EXTRA_MATH || base_t >= BC_NUM_MIN_BASE); |
| |
| bc_num_printNewline(); |
| |
| if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false); |
| else if (base_t == BC_BASE) bc_num_printDecimal(n); |
| #if BC_ENABLE_EXTRA_MATH |
| else if (base_t == 0 || base_t == 1) |
| s = bc_num_printExponent(n, base_t != 0); |
| #endif // BC_ENABLE_EXTRA_MATH |
| else s = bc_num_printBase(n, base, base_t); |
| |
| if (BC_NO_ERR(!s) && newline) { |
| bc_vm_putchar('\n'); |
| vm->nchars = 0; |
| } |
| |
| return s; |
| } |
| |
| BcStatus bc_num_ulong(const BcNum *restrict n, unsigned long *result) { |
| |
| size_t i; |
| unsigned long r; |
| |
| assert(n && result); |
| |
| *result = 0; |
| |
| if (BC_ERR(n->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE); |
| |
| for (r = 0, i = n->len; i > n->rdx;) { |
| |
| unsigned long prev = r * BC_BASE_DIG; |
| |
| if (BC_ERR(prev == SIZE_MAX || prev / BC_BASE_DIG != r)) |
| return bc_vm_err(BC_ERROR_MATH_OVERFLOW); |
| |
| r = prev + (unsigned long) n->num[--i]; |
| |
| if (BC_ERR(r == SIZE_MAX || r < prev)) |
| return bc_vm_err(BC_ERROR_MATH_OVERFLOW); |
| } |
| |
| *result = r; |
| |
| return BC_STATUS_SUCCESS; |
| } |
| |
| void bc_num_ulong2num(BcNum *restrict n, unsigned long val) { |
| |
| BcDig *ptr; |
| unsigned long i; |
| |
| assert(n); |
| |
| bc_num_zero(n); |
| |
| if (!val) return; |
| |
| bc_num_expand(n, bc_num_log10(ULONG_MAX)); |
| |
| for (ptr = n->num, i = 0; val; ++i, ++n->len, val /= BC_BASE_DIG) |
| ptr[i] = val % BC_BASE_DIG; |
| } |
| |
| size_t bc_num_addReq(BcNum *a, BcNum *b, size_t scale) { |
| |
| size_t aint, bint, ardx, brdx; |
| |
| BC_UNUSED(scale); |
| |
| ardx = a->rdx; |
| brdx = b->rdx; |
| aint = bc_num_int(a); |
| bint = bc_num_int(b); |
| ardx = BC_MAX(ardx, brdx); |
| aint = BC_MAX(aint, bint); |
| |
| return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1); |
| } |
| |
| size_t bc_num_mulReq(BcNum *a, BcNum *b, size_t scale) { |
| size_t max, rdx; |
| rdx = bc_vm_growSize(a->rdx, b->rdx); |
| max = bc_vm_growSize(BC_MAX(BC_NUM_RDX(scale), rdx), 1); |
| rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max); |
| return rdx; |
| } |
| |
| size_t bc_num_powReq(BcNum *a, BcNum *b, size_t scale) { |
| BC_UNUSED(scale); |
| return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1); |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| size_t bc_num_placesReq(BcNum *a, BcNum *b, size_t scale) { |
| |
| BcStatus s; |
| unsigned long places; |
| size_t rdx; |
| |
| BC_UNUSED(s); |
| BC_UNUSED(scale); |
| |
| // This error will be taken care of later. Ignore. |
| s = bc_num_ulong(b, &places); |
| |
| if (a->scale <= places) rdx = BC_NUM_RDX(places); |
| else rdx = BC_NUM_RDX(a->scale - places); |
| |
| return BC_NUM_RDX(bc_num_int_digits(a)) + rdx; |
| } |
| |
| size_t bc_num_shiftLeftReq(BcNum *a, BcNum *b, size_t scale) { |
| |
| BcStatus s; |
| unsigned long places, rdx; |
| |
| BC_UNUSED(s); |
| BC_UNUSED(scale); |
| |
| // This error will be taken care of later. Ignore. |
| s = bc_num_ulong(b, &places); |
| |
| if (a->scale <= places) rdx = BC_NUM_RDX(places) - a->rdx + 1; |
| else rdx = 0; |
| |
| return a->len + rdx; |
| } |
| |
| size_t bc_num_shiftRightReq(BcNum *a, BcNum *b, size_t scale) { |
| |
| BcStatus s; |
| unsigned long places, int_digs, rdx; |
| |
| BC_UNUSED(s); |
| BC_UNUSED(scale); |
| |
| // This error will be taken care of later. Ignore. |
| s = bc_num_ulong(b, &places); |
| |
| int_digs = BC_NUM_RDX(bc_num_int_digits(a)); |
| rdx = BC_NUM_RDX(places); |
| |
| if (int_digs <= rdx) rdx -= int_digs; |
| else rdx = 0; |
| |
| return a->len + rdx; |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| BcStatus bc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| BcNumBinaryOp op = (!a->neg == !b->neg) ? bc_num_a : bc_num_s; |
| BC_UNUSED(scale); |
| return bc_num_binary(a, b, c, false, op, bc_num_addReq(a, b, scale)); |
| } |
| |
| BcStatus bc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| BcNumBinaryOp op = (!a->neg == !b->neg) ? bc_num_s : bc_num_a; |
| BC_UNUSED(scale); |
| return bc_num_binary(a, b, c, true, op, bc_num_addReq(a, b, scale)); |
| } |
| |
| BcStatus bc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| return bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale)); |
| } |
| |
| BcStatus bc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| return bc_num_binary(a, b, c, scale, bc_num_d, bc_num_mulReq(a, b, scale)); |
| } |
| |
| BcStatus bc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| size_t req = bc_num_mulReq(a, b, scale); |
| return bc_num_binary(a, b, c, scale, bc_num_rem, req); |
| } |
| |
| BcStatus bc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| return bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale)); |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| BcStatus bc_num_places(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| size_t req = bc_num_placesReq(a, b, scale); |
| return bc_num_binary(a, b, c, scale, bc_num_place, req); |
| } |
| |
| BcStatus bc_num_lshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| size_t req = bc_num_shiftLeftReq(a, b, scale); |
| return bc_num_binary(a, b, c, scale, bc_num_left, req); |
| } |
| |
| BcStatus bc_num_rshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| size_t req = bc_num_shiftRightReq(a, b, scale); |
| return bc_num_binary(a, b, c, scale, bc_num_right, req); |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| BcStatus bc_num_sqrt(BcNum *restrict a, BcNum *restrict b, size_t scale) { |
| |
| BcStatus s = BC_STATUS_SUCCESS; |
| BcNum num1, num2, half, f, fprime, *x0, *x1, *temp; |
| size_t pow, len, rdx, req, digs, digs1, digs2, resscale, times = 0; |
| ssize_t cmp = 1, cmp1 = SSIZE_MAX, cmp2 = SSIZE_MAX; |
| BcDig half_digs[1]; |
| |
| assert(a && b && a != b); |
| |
| if (BC_ERR(a->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE); |
| |
| if (a->scale > scale) scale = a->scale; |
| len = bc_vm_growSize(bc_num_int_digits(a), 1); |
| req = bc_vm_growSize(BC_MAX(BC_NUM_RDX(scale), a->rdx), len >> 1); |
| bc_num_init(b, bc_vm_growSize(req, 1)); |
| |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(b, scale); |
| return BC_STATUS_SUCCESS; |
| } |
| if (bc_num_isOne(a)) { |
| bc_num_one(b); |
| bc_num_extend(b, scale); |
| return BC_STATUS_SUCCESS; |
| } |
| |
| rdx = BC_MAX(BC_NUM_RDX(scale), a->rdx); |
| len = bc_vm_growSize(a->len, rdx); |
| |
| bc_num_init(&num1, len); |
| bc_num_init(&num2, len); |
| bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig)); |
| |
| bc_num_one(&half); |
| half.num[0] = BC_BASE_DIG / 2; |
| half.len = 1; |
| half.rdx = 1; |
| half.scale = 1; |
| |
| bc_num_init(&f, len); |
| bc_num_init(&fprime, len); |
| |
| x0 = &num1; |
| x1 = &num2; |
| |
| bc_num_one(x0); |
| pow = bc_num_int_digits(a); |
| |
| if (pow) { |
| |
| if (pow & 1) x0->num[0] = 2; |
| else x0->num[0] = 6; |
| |
| pow -= 2 - (pow & 1); |
| bc_num_shiftLeft(x0, pow / 2); |
| |
| // Make sure to move the radix back. |
| if (x0->scale >= pow) x0->scale -= pow; |
| else x0->scale = 0; |
| x0->rdx = BC_NUM_RDX(x0->scale); |
| } |
| |
| x0->rdx = digs = digs1 = digs2 = 0; |
| x0->scale = 0; |
| resscale = (scale + BC_BASE_POWER) * 2; |
| |
| len = BC_NUM_RDX(bc_num_int_digits(x0) + resscale - 1); |
| |
| while (BC_NO_SIG && (cmp || digs < len)) { |
| |
| assert(BC_NUM_NONZERO(x0)); |
| |
| s = bc_num_div(a, x0, &f, resscale); |
| assert(!s || s == BC_STATUS_SIGNAL); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_add(x0, &f, &fprime, resscale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| s = bc_num_mul(&fprime, &half, x1, resscale); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| cmp = bc_num_cmp(x1, x0); |
| if (cmp == BC_NUM_SSIZE_MIN) { |
| s = BC_STATUS_SIGNAL; |
| break; |
| } |
| |
| digs = x1->len - (unsigned long long) llabs(cmp); |
| |
| if (cmp == cmp2 && digs == digs1) times += 1; |
| else times = 0; |
| |
| resscale += times > 2; |
| |
| cmp2 = cmp1; |
| cmp1 = cmp; |
| digs1 = digs; |
| |
| temp = x0; |
| x0 = x1; |
| x1 = temp; |
| } |
| |
| if (BC_SIG) { |
| s = BC_STATUS_SIGNAL; |
| goto err; |
| } |
| |
| bc_num_copy(b, x0); |
| if (b->scale > scale) bc_num_truncate(b, b->scale - scale); |
| |
| err: |
| if (BC_ERR(s)) bc_num_free(b); |
| bc_num_free(&fprime); |
| bc_num_free(&f); |
| bc_num_free(&num2); |
| bc_num_free(&num1); |
| assert(!b->neg || BC_NUM_NONZERO(b)); |
| assert(b->rdx <= b->len || !b->len); |
| return s; |
| } |
| |
| BcStatus bc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) { |
| |
| BcStatus s; |
| BcNum num2, *ptr_a; |
| bool init = false; |
| size_t ts, len; |
| |
| ts = BC_MAX(scale + b->scale, a->scale); |
| len = bc_num_mulReq(a, b, ts); |
| |
| assert(c != d && a != d && b != d && b != c); |
| |
| if (c == a) { |
| memcpy(&num2, c, sizeof(BcNum)); |
| ptr_a = &num2; |
| bc_num_init(c, len); |
| init = true; |
| } |
| else { |
| ptr_a = a; |
| bc_num_expand(c, len); |
| } |
| |
| s = bc_num_r(ptr_a, b, c, d, scale, ts); |
| |
| assert(!c->neg || BC_NUM_NONZERO(c)); |
| assert(c->rdx <= c->len || !c->len); |
| assert(!d->neg || BC_NUM_NONZERO(d)); |
| assert(d->rdx <= d->len || !d->len); |
| |
| if (init) bc_num_free(&num2); |
| |
| return s; |
| } |
| |
| #if DC_ENABLED |
| BcStatus bc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) { |
| |
| BcStatus s; |
| BcNum base, exp, two, temp; |
| BcDig two_digs[2]; |
| |
| assert(a && b && c && d && a != d && b != d && c != d); |
| |
| if (BC_ERR(BC_NUM_ZERO(c))) |
| return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO); |
| if (BC_ERR(b->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE); |
| if (BC_ERR(a->rdx || b->rdx || c->rdx)) |
| return bc_vm_err(BC_ERROR_MATH_NON_INTEGER); |
| |
| bc_num_expand(d, c->len); |
| bc_num_init(&base, c->len); |
| bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig)); |
| bc_num_init(&temp, b->len); |
| |
| bc_num_one(&two); |
| two.num[0] = 2; |
| bc_num_one(d); |
| |
| // We already checked for 0. |
| s = bc_num_rem(a, c, &base, 0); |
| assert(!s || s == BC_STATUS_SIGNAL); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto rem_err; |
| bc_num_createCopy(&exp, b); |
| |
| while (BC_NO_SIG && BC_NUM_NONZERO(&exp)) { |
| |
| // Num two cannot be 0, so no errors. |
| s = bc_num_divmod(&exp, &two, &exp, &temp, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| if (bc_num_isOne(&temp)) { |
| s = bc_num_mul(d, &base, &temp, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| // We already checked for 0. |
| s = bc_num_rem(&temp, c, d, 0); |
| assert(!s || s == BC_STATUS_SIGNAL); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| |
| s = bc_num_mul(&base, &base, &temp, 0); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| |
| // We already checked for 0. |
| s = bc_num_rem(&temp, c, &base, 0); |
| assert(!s || s == BC_STATUS_SIGNAL); |
| if (BC_ERROR_SIGNAL_ONLY(s)) goto err; |
| } |
| |
| if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL; |
| |
| err: |
| bc_num_free(&exp); |
| rem_err: |
| bc_num_free(&temp); |
| bc_num_free(&base); |
| assert(!d->neg || d->len); |
| return s; |
| } |
| #endif // DC_ENABLED |
| |
| #if BC_DEBUG_CODE |
| void bc_num_printDebug(const BcNum *n, const char *name, bool emptyline) { |
| printf("%s: ", name); |
| bc_num_printDecimal(n); |
| printf("\n"); |
| if (emptyline) printf("\n"); |
| vm->nchars = 0; |
| } |
| |
| void bc_num_printDigs(const BcNum *n, const char *name, bool emptyline) { |
| |
| size_t i; |
| |
| printf("%s len: %zu, rdx: %zu, scale: %zu\n", |
| name, n->len, n->rdx, n->scale); |
| |
| for (i = n->len - 1; i < n->len; --i) |
| printf(" %0*d", BC_BASE_POWER, n->num[i]); |
| |
| printf("\n"); |
| if (emptyline) printf("\n"); |
| vm->nchars = 0; |
| } |
| |
| void bc_num_dump(const char *varname, const BcNum *n) { |
| |
| unsigned long i, scale = n->scale; |
| |
| fprintf(stderr, "\n%s = %s", varname, n->len ? (n->neg ? "-" : "+") : "0 "); |
| |
| for (i = n->len - 1; i < n->len; --i) { |
| |
| if (i + 1 == n->rdx) fprintf(stderr, ". "); |
| |
| if (scale / BC_BASE_POWER != n->rdx - i - 1) |
| fprintf(stderr, "%0*d ", BC_BASE_POWER, n->num[i]); |
| else { |
| |
| int mod = scale % BC_BASE_POWER; |
| int d = BC_BASE_POWER - mod; |
| BcDig div; |
| |
| if (mod != 0) { |
| div = n->num[i] / ((BcDig) bc_num_pow10((unsigned long) d)); |
| fprintf(stderr, "%0*d", (int) mod, div); |
| } |
| |
| div = n->num[i] % ((BcDig) bc_num_pow10((unsigned long) d)); |
| fprintf(stderr, " ' %0*d ", d, div); |
| } |
| } |
| |
| fprintf(stderr, "(%zu | %zu.%zu / %zu) %p\n", |
| n->scale, n->len, n->rdx, n->cap, (void*) n->num); |
| } |
| #endif // BC_DEBUG_CODE |