blob: f74af05750e1924bce0d5772359803185ffe2c71 [file] [log] [blame]
/*
* *****************************************************************************
*
* Copyright (c) 2018-2019 Gavin D. Howard and contributors.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* *****************************************************************************
*
* Code for the number type.
*
*/
#include <assert.h>
#include <ctype.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <status.h>
#include <num.h>
#include <vm.h>
static BcStatus bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static ssize_t bc_num_neg(size_t n, bool neg) {
return (((ssize_t) n) ^ -((ssize_t) neg)) + neg;
}
ssize_t bc_num_cmpZero(const BcNum *n) {
return bc_num_neg((n)->len != 0, (n)->neg);
}
static size_t bc_num_int(const BcNum *n) {
return n->len ? n->len - n->rdx : 0;
}
static bool bc_num_isOne(const BcNum *n) {
return n->len == 1 && n->rdx == 0 && n->num[0] == 1;
}
static void bc_num_expand(BcNum *restrict n, size_t req) {
assert(n);
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
if (req > n->cap) {
n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req));
n->cap = req;
}
}
static void bc_num_setToZero(BcNum *restrict n, size_t scale) {
assert(n);
n->scale = scale;
n->len = n->rdx = 0;
n->neg = false;
}
static void bc_num_zero(BcNum *restrict n) {
bc_num_setToZero(n, 0);
}
void bc_num_one(BcNum *restrict n) {
bc_num_setToZero(n, 0);
n->len = 1;
n->num[0] = 1;
}
void bc_num_ten(BcNum *restrict n) {
assert(n);
bc_num_setToZero(n, 0);
#if BC_BASE_DIG == 10
n->len = 2;
n->num[0] = 0;
n->num[1] = 1;
#else // BC_BASE_DIG == 10
n->len = 1;
n->num[0] = BC_BASE;
#endif // BC_BASE_DIG == 10
}
static size_t bc_num_log10(size_t i) {
size_t len;
for (len = 1; i; i /= BC_BASE, ++len);
return len - 1;
}
static size_t bc_num_int_digits(const BcNum *n) {
size_t digits;
digits = bc_num_int(n) * BC_BASE_POWER;
if (digits > 0)
digits -= BC_BASE_POWER - bc_num_log10((size_t) n->num[n->len - 1]);
return digits;
}
#define POW10N 9
static unsigned long pow10[POW10N] = {
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
};
static unsigned long bc_num_pow10(unsigned long i) {
if (i == 0) return 1;
i--;
if (i < POW10N) return pow10[i];
i -= POW10N;
assert(i < POW10N);
return pow10[POW10N - 1] * pow10[i];
}
static size_t bc_num_nonzeroLen(const BcNum *restrict n) {
size_t i, len = n->len;
assert(len == n->rdx);
for (i = len - 1; i < n->len && !n->num[i]; --len, --i);
assert(len > 0);
return len;
}
static unsigned long bc_num_addDigit(BcDig *restrict num, unsigned long d,
unsigned long c)
{
d += c;
*num = (BcDig) (d % BC_BASE_DIG);
assert(*num >= 0 && *num < BC_BASE_DIG);
return d / BC_BASE_DIG;
}
static BcStatus bc_num_addArrays(BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
unsigned long carry = 0;
for (i = 0; BC_NO_SIG && i < len; ++i) {
unsigned long in = ((unsigned long) a[i]) + ((unsigned long) b[i]);
carry = bc_num_addDigit(a + i, in, carry);
}
for (; BC_NO_SIG && carry; ++i)
carry = bc_num_addDigit(a + i, (unsigned long) a[i], carry);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_subArrays(BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i, j;
for (i = 0; BC_NO_SIG && i < len; ++i) {
for (a[i] -= b[i], j = 0; BC_NO_SIG && a[i + j] < 0;) {
assert(a[i + j] >= -BC_BASE_DIG);
a[i + j++] += BC_BASE_DIG;
a[i + j] -= 1;
assert(a[i + j - 1] >= 0 && a[i + j - 1] < BC_BASE_DIG);
}
}
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static ssize_t bc_num_compare(const BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
long c = 0;
for (i = len - 1; BC_NO_SIG && i < len && !(c = a[i] - b[i]); --i);
return BC_SIG ? BC_NUM_SSIZE_MIN : bc_num_neg(i + 1, c < 0);
}
ssize_t bc_num_cmp(const BcNum *a, const BcNum *b) {
size_t i, min, a_int, b_int, diff;
BcDig *max_num, *min_num;
bool a_max, neg = false;
ssize_t cmp;
assert(a && b);
if (a == b) return 0;
if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !b->neg);
if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a);
if (a->neg) {
if (b->neg) neg = true;
else return -1;
}
else if (b->neg) return 1;
a_int = bc_num_int(a);
b_int = bc_num_int(b);
a_int -= b_int;
a_max = (a->rdx > b->rdx);
if (a_int) return (ssize_t) a_int;
if (a_max) {
min = b->rdx;
diff = a->rdx - b->rdx;
max_num = a->num + diff;
min_num = b->num;
}
else {
min = a->rdx;
diff = b->rdx - a->rdx;
max_num = b->num + diff;
min_num = a->num;
}
cmp = bc_num_compare(max_num, min_num, b_int + min);
if (cmp == BC_NUM_SSIZE_MIN) return cmp;
if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg);
for (max_num -= diff, i = diff - 1; BC_NO_SIG && i < diff; --i) {
if (max_num[i]) return bc_num_neg(1, !a_max == !neg);
}
return BC_SIG ? BC_NUM_SSIZE_MIN : 0;
}
static void bc_num_clean(BcNum *restrict n) {
while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) --n->len;
if (BC_NUM_ZERO(n)) n->neg = false;
else if (n->len < n->rdx) n->len = n->rdx;
}
void bc_num_truncate(BcNum *restrict n, size_t places) {
size_t places_rdx;
if (!places) return;
places_rdx = n->rdx - BC_NUM_RDX(n->scale - places);
assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len));
n->scale -= places;
n->rdx -= places_rdx;
if (BC_NUM_NONZERO(n)) {
size_t pow;
pow = n->scale % BC_BASE_POWER;
pow = pow ? BC_BASE_POWER - pow : 0;
pow = bc_num_pow10(pow);
n->len -= places_rdx;
memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len));
// Clear the lower part of the last digit.
if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow;
bc_num_clean(n);
}
}
static void bc_num_extend(BcNum *restrict n, size_t places) {
size_t places_rdx;
if (!places) return;
places_rdx = BC_NUM_RDX(places + n->scale) - n->rdx;
if (places_rdx) {
bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
memset(n->num, 0, BC_NUM_SIZE(places_rdx));
}
n->rdx += places_rdx;
n->scale += places;
n->len += places_rdx;
assert(n->rdx == BC_NUM_RDX(n->scale));
}
static void bc_num_roundPlaces(BcNum *restrict n, size_t places) {
size_t rdx, place, i;
BcDig p10, sum;
if (places >= n->scale || places >= n->rdx * BC_BASE_POWER) {
bc_num_extend(n, places - n->scale);
return;
}
rdx = n->rdx - BC_NUM_RDX(places + 1);
place = BC_BASE_POWER - (places % BC_BASE_POWER + 1);
for (i = 0; i < rdx; i++) n->num[i] = 0;
p10 = (BcDig) bc_num_pow10(place);
sum = n->num[rdx] + (BC_BASE / 2) * p10;
sum = sum - sum % (BC_BASE * p10);
if (sum < BC_BASE_DIG) n->num[rdx] = sum;
else {
sum -= BC_BASE_DIG;
n->num[rdx] = sum;
do {
rdx += 1;
if (n->len <= rdx) {
bc_num_expand(n, bc_vm_growSize(rdx, 1));
n->num[rdx] = 0;
n->len = rdx +1;
}
sum = n->num[rdx] + 1;
n->num[rdx] = sum < BC_BASE_DIG ? sum : sum - BC_BASE_DIG;
} while (sum >= BC_BASE_DIG);
}
bc_num_truncate(n, n->scale - places);
}
static void bc_num_retireMul(BcNum *restrict n, size_t scale,
bool neg1, bool neg2)
{
if (n->scale < scale) bc_num_extend(n, scale - n->scale);
else bc_num_truncate(n, n->scale - scale);
bc_num_clean(n);
if (BC_NUM_NONZERO(n)) n->neg = (!neg1 != !neg2);
}
static void bc_num_split(const BcNum *restrict n, size_t idx,
BcNum *restrict a, BcNum *restrict b)
{
if (idx < n->len) {
b->len = n->len - idx;
a->len = idx;
a->scale = a->rdx = b->scale = b->rdx = 0;
memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len));
memcpy(a->num, n->num, BC_NUM_SIZE(idx));
bc_num_clean(b);
}
else bc_num_copy(a, n);
bc_num_clean(a);
}
static size_t bc_num_shiftZero(BcNum *restrict n) {
size_t i;
assert(!n->rdx || BC_NUM_ZERO(n));
for (i = 0; i < n->len && !n->num[i]; ++i);
n->len -= i;
n->num += i;
return i;
}
static void bc_num_unshiftZero(BcNum *restrict n, size_t places_rdx) {
n->len += places_rdx;
n->num -= places_rdx;
}
static BcStatus bc_num_shift(BcNum *restrict n, unsigned long dig) {
size_t i, len = n->len;
unsigned long carry = 0, pow;
BcDig *ptr = n->num;
assert(dig < BC_BASE_POWER);
pow = bc_num_pow10(dig);
dig = bc_num_pow10(BC_BASE_POWER - dig);
for (i = len - 1; BC_NO_SIG && i < len; --i) {
unsigned long in, temp;
in = ((unsigned long) ptr[i]);
temp = carry * dig;
carry = in % pow;
ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp;
}
assert(!carry);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_shiftLeft(BcNum *restrict n, size_t places) {
BcStatus s = BC_STATUS_SUCCESS;
unsigned long dig;
size_t places_rdx;
bool shift;
if (!places) return s;
if (places > n->scale) {
size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len);
if (size > SIZE_MAX - 1) return bc_vm_err(BC_ERROR_MATH_OVERFLOW);
}
if (BC_NUM_ZERO(n)) {
if (n->scale >= places) n->scale -= places;
else n->scale = 0;
return s;
}
dig = (unsigned long) (places % BC_BASE_POWER);
shift = (dig != 0);
places_rdx = BC_NUM_RDX(places);
if (n->scale) {
if (n->rdx >= places_rdx) {
size_t mod = n->scale % BC_BASE_POWER, revdig;
mod = mod ? mod : BC_BASE_POWER;
revdig = dig ? BC_BASE_POWER - dig : 0;
if (mod + revdig > BC_BASE_POWER) places_rdx = 1;
else places_rdx = 0;
}
else places_rdx -= n->rdx;
}
if (places_rdx) {
bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
memset(n->num, 0, BC_NUM_SIZE(places_rdx));
n->len += places_rdx;
}
if (places > n->scale) n->scale = n->rdx = 0;
else {
n->scale -= places;
n->rdx = BC_NUM_RDX(n->scale);
}
if (shift) s = bc_num_shift(n, BC_BASE_POWER - dig);
bc_num_clean(n);
return BC_SIG && !s ? BC_STATUS_SIGNAL : s;
}
static BcStatus bc_num_shiftRight(BcNum *restrict n, size_t places) {
BcStatus s = BC_STATUS_SUCCESS;
unsigned long dig;
size_t places_rdx, scale, scale_mod, int_len, expand;
bool shift;
if (!places) return s;
if (BC_NUM_ZERO(n)) {
n->scale += places;
bc_num_expand(n, BC_NUM_RDX(n->scale));
return s;
}
dig = (unsigned long) (places % BC_BASE_POWER);
shift = (dig != 0);
scale = n->scale;
scale_mod = scale % BC_BASE_POWER;
scale_mod = scale_mod ? scale_mod : BC_BASE_POWER;
int_len = bc_num_int(n);
places_rdx = BC_NUM_RDX(places);
if (scale_mod + dig > BC_BASE_POWER) {
expand = places_rdx - 1;
places_rdx = 1;
}
else {
expand = places_rdx;
places_rdx = 0;
}
if (expand > int_len) expand -= int_len;
else expand = 0;
bc_num_extend(n, places_rdx * BC_BASE_POWER);
bc_num_expand(n, bc_vm_growSize(expand, n->len));
memset(n->num + n->len, 0, BC_NUM_SIZE(expand));
n->len += expand;
n->scale = n->rdx = 0;
if (shift) s = bc_num_shift(n, dig);
n->scale = scale + places;
n->rdx = BC_NUM_RDX(n->scale);
bc_num_clean(n);
assert(n->rdx <= n->len && n->len <= n->cap);
assert(n->rdx == BC_NUM_RDX(n->scale));
return BC_SIG && !s ? BC_STATUS_SIGNAL : s;
}
static BcStatus bc_num_inv(BcNum *a, BcNum *b, size_t scale) {
BcNum one;
BcDig num[2];
assert(BC_NUM_NONZERO(a));
one.cap = 2;
one.num = num;
bc_num_one(&one);
return bc_num_div(&one, a, b, scale);
}
#if BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_intop(const BcNum *a, const BcNum *b, BcNum *restrict c,
unsigned long *v)
{
if (BC_ERR(b->rdx)) return bc_vm_err(BC_ERROR_MATH_NON_INTEGER);
bc_num_copy(c, a);
return bc_num_ulong(b, v);
}
#endif // BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) {
BcDig *ptr, *ptr_a, *ptr_b, *ptr_c;
size_t i, max, min_rdx, min_int, diff, a_int, b_int;
unsigned long carry;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (BC_NUM_ZERO(a)) {
bc_num_copy(c, b);
if (sub && BC_NUM_NONZERO(c)) c->neg = !c->neg;
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ZERO(b)) {
bc_num_copy(c, a);
return BC_STATUS_SUCCESS;
}
c->neg = a->neg;
c->rdx = BC_MAX(a->rdx, b->rdx);
c->scale = BC_MAX(a->scale, b->scale);
min_rdx = BC_MIN(a->rdx, b->rdx);
if (a->rdx > b->rdx) {
diff = a->rdx - b->rdx;
ptr = a->num;
ptr_a = a->num + diff;
ptr_b = b->num;
}
else {
diff = b->rdx - a->rdx;
ptr = b->num;
ptr_a = a->num;
ptr_b = b->num + diff;
}
for (ptr_c = c->num, i = 0; i < diff; ++i) ptr_c[i] = ptr[i];
c->len = diff;
ptr_c += diff;
a_int = bc_num_int(a);
b_int = bc_num_int(b);
if (a_int > b_int) {
min_int = b_int;
max = a_int;
ptr = ptr_a;
}
else {
min_int = a_int;
max = b_int;
ptr = ptr_b;
}
for (carry = 0, i = 0; BC_NO_SIG && i < min_rdx + min_int; ++i) {
unsigned long in;
in = ((unsigned long) ptr_a[i]) + ((unsigned long) ptr_b[i]);
carry = bc_num_addDigit(ptr_c + i, in, carry);
}
for (; BC_NO_SIG && i < max + min_rdx; ++i)
carry = bc_num_addDigit(ptr_c + i, (unsigned long) ptr[i], carry);
c->len += i;
if (carry) c->num[c->len++] = (BcDig) carry;
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) {
BcStatus s;
ssize_t cmp;
BcNum *minuend, *subtrahend;
size_t start;
bool aneg, bneg, neg;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (BC_NUM_ZERO(a)) {
bc_num_copy(c, b);
if (sub && BC_NUM_NONZERO(c)) c->neg = !c->neg;
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ZERO(b)) {
bc_num_copy(c, a);
return BC_STATUS_SUCCESS;
}
aneg = a->neg;
bneg = b->neg;
a->neg = b->neg = false;
cmp = bc_num_cmp(a, b);
if (cmp == BC_NUM_SSIZE_MIN) return BC_STATUS_SIGNAL;
a->neg = aneg;
b->neg = bneg;
if (!cmp) {
bc_num_setToZero(c, BC_MAX(a->rdx, b->rdx));
return BC_STATUS_SUCCESS;
}
if (cmp > 0) {
neg = a->neg;
minuend = a;
subtrahend = b;
}
else {
neg = b->neg;
if (sub) neg = !neg;
minuend = b;
subtrahend = a;
}
bc_num_copy(c, minuend);
c->neg = neg;
if (c->scale < subtrahend->scale) {
bc_num_extend(c, subtrahend->scale - c->scale);
start = 0;
}
else start = c->rdx - subtrahend->rdx;
s = bc_num_subArrays(c->num + start, subtrahend->num, subtrahend->len);
bc_num_clean(c);
return s;
}
static BcStatus bc_num_m_simp(const BcNum *a, const BcNum *b, BcNum *restrict c)
{
size_t i, alen = a->len, blen = b->len, clen;
BcDig *ptr_a = a->num, *ptr_b = b->num, *ptr_c;
unsigned long sum = 0, carry = 0;
assert(sizeof(sum) >= sizeof(BcDig) * 2);
assert(!a->rdx && !b->rdx);
clen = bc_vm_growSize(alen, blen);
bc_num_expand(c, bc_vm_growSize(clen, 1));
ptr_c = c->num;
memset(ptr_c, 0, BC_NUM_SIZE(c->cap));
for (i = 0; BC_NO_SIG && i < clen; ++i) {
ssize_t sidx = (ssize_t) (i - blen + 1);
size_t j = (size_t) BC_MAX(0, sidx), k = BC_MIN(i, blen - 1);
for (; BC_NO_SIG && j < alen && k < blen; ++j, --k) {
sum += ((unsigned long) ptr_a[j]) * ((unsigned long) ptr_b[k]);
if (sum >= BC_BASE_DIG) {
carry += sum / BC_BASE_DIG;
sum %= BC_BASE_DIG;
}
}
ptr_c[i] = (BcDig) sum;
assert(ptr_c[i] < BC_BASE_DIG);
sum = carry;
carry = 0;
}
if (sum) {
assert(sum < BC_BASE_DIG);
ptr_c[clen] = (BcDig) sum;
clen += 1;
}
c->len = clen;
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
static BcStatus bc_num_shiftAddSub(BcNum *restrict n, const BcNum *restrict a,
size_t shift, BcNumShiftAddOp op)
{
assert(n->len >= shift + a->len);
assert(!n->rdx && !a->rdx);
return op(n->num + shift, a->num, a->len);
}
static BcStatus bc_num_k(BcNum *a, BcNum *b, BcNum *restrict c) {
BcStatus s;
size_t max, max2, total;
BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp;
BcDig *digs, *dig_ptr;
BcNumShiftAddOp op;
bool aone = bc_num_isOne(a);
assert(BC_NUM_ZERO(c));
// This is here because the function is recursive.
if (BC_SIG) return BC_STATUS_SIGNAL;
if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) {
bc_num_zero(c);
return BC_STATUS_SUCCESS;
}
if (aone || bc_num_isOne(b)) {
bc_num_copy(c, aone ? b : a);
return BC_STATUS_SUCCESS;
}
if (a->len + b->len < BC_NUM_KARATSUBA_LEN ||
a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN)
{
return bc_num_m_simp(a, b, c);
}
max = BC_MAX(a->len, b->len);
max = BC_MAX(max, BC_NUM_DEF_SIZE);
max2 = (max + 1) / 2;
total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max);
digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total));
bc_num_setup(&l1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&h1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&l2, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&h2, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&m1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&m2, dig_ptr, max);
max = bc_vm_growSize(max, 1);
bc_num_init(&z0, max);
bc_num_init(&z1, max);
bc_num_init(&z2, max);
max = bc_vm_growSize(max, max) + 1;
bc_num_init(&temp, max);
bc_num_split(a, max2, &l1, &h1);
bc_num_clean(&l1);
bc_num_clean(&h1);
bc_num_split(b, max2, &l2, &h2);
bc_num_clean(&l2);
bc_num_clean(&h2);
bc_num_expand(c, max);
c->len = max;
memset(c->num, 0, BC_NUM_SIZE(c->len));
s = bc_num_sub(&h1, &l1, &m1, 0);
if (BC_ERR(s)) goto err;
s = bc_num_sub(&l2, &h2, &m2, 0);
if (BC_ERR(s)) goto err;
if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) {
s = bc_num_m(&h1, &h2, &z2, 0);
if (BC_ERR(s)) goto err;
bc_num_clean(&z2);
s = bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays);
if (BC_ERR(s)) goto err;
s = bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays);
if (BC_ERR(s)) goto err;
}
if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) {
s = bc_num_m(&l1, &l2, &z0, 0);
if (BC_ERR(s)) goto err;
bc_num_clean(&z0);
s = bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays);
if (BC_ERR(s)) goto err;
s = bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays);
if (BC_ERR(s)) goto err;
}
if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) {
s = bc_num_m(&m1, &m2, &z1, 0);
if (BC_ERR(s)) goto err;
bc_num_clean(&z1);
op = (m1.neg != m2.neg) ? bc_num_subArrays : bc_num_addArrays;
s = bc_num_shiftAddSub(c, &z1, max2, op);
if (BC_ERR(s)) goto err;
}
err:
free(digs);
bc_num_free(&temp);
bc_num_free(&z2);
bc_num_free(&z1);
bc_num_free(&z0);
return s;
}
static BcStatus bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcStatus s;
BcNum cpa, cpb;
size_t ascale, bscale, ardx, brdx, azero = 0, bzero = 0, zero, len, rscale;
bc_num_setToZero(c, 0);
ascale = a->scale;
bscale = b->scale;
scale = BC_MAX(scale, ascale);
scale = BC_MAX(scale, bscale);
rscale = ascale + bscale;
scale = BC_MIN(rscale, scale);
bc_num_createCopy(&cpa, a);
bc_num_createCopy(&cpb, b);
cpa.neg = cpb.neg = false;
ardx = cpa.rdx * BC_BASE_POWER;
s = bc_num_shiftLeft(&cpa, ardx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_clean(&cpa);
azero = bc_num_shiftZero(&cpa);
brdx = cpb.rdx * BC_BASE_POWER;
s = bc_num_shiftLeft(&cpb, brdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bzero = bc_num_shiftZero(&cpb);
bc_num_clean(&cpb);
s = bc_num_k(&cpa, &cpb, c);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
zero = bc_vm_growSize(azero, bzero);
len = bc_vm_growSize(c->len, zero);
bc_num_expand(c, len);
s = bc_num_shiftLeft(c, (len - c->len) * BC_BASE_POWER);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_shiftRight(c, ardx + brdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_retireMul(c, scale, a->neg, b->neg);
err:
bc_num_unshiftZero(&cpb, bzero);
bc_num_free(&cpb);
bc_num_unshiftZero(&cpa, azero);
bc_num_free(&cpa);
return s;
}
#ifdef USE_GOLDSCHMIDT
// find reciprocal value for paramezter in range 0.5 < val <= 1.0
static BcStatus bc_num_invert(BcNum *val, size_t scale) { // --> num.h <se>
BcNum one, x, temp, sum;
bool done = false;
BcStatus s = BC_STATUS_SUCCESS;
// we need one constant value 1 to start ...
bc_num_createFromUlong(&one, 1);
// create temporary variable used in each iteration step
bc_num_init(&temp, scale / BC_BASE_POWER + 1);
// create variable to be squared per iteration
bc_num_init(&x, scale / BC_BASE_POWER + 1);
// create variable for the sum the series elements
bc_num_init(&sum, scale / BC_BASE_POWER + 1);
s = bc_num_sub(&one, val, &x, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// initialize series sum to 1.0 + error
s = bc_num_add(&one, &x, &sum, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
for (;;) {
// calculate square of delta for next iteration
s = bc_num_mul(&x, &x, &x, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// nothing left to do, if the squared delta truncated to "scale" decimals is 0.0
if BC_NUM_ZERO(&x) break;
// multiply current series sum with the squared delta
s = bc_num_mul(&sum, &x, &temp, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// add series element to sum
s = bc_num_add(&sum, &temp, &sum, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
// apply correction for finite number of series elements considered
// could be further optimized ...
bc_num_mul(val, &sum, &temp, scale);
// the correction is derived from 1.0 - sum * (1/sum)
bc_num_sub(&one, &temp, &temp, scale);
// add delta twice, we could also use Newton-Raphson for the correction
bc_num_add(&sum, &temp, &sum, scale);
bc_num_add(&sum, &temp, val, scale);
err:
bc_num_free(&sum);
bc_num_free(&one);
bc_num_free(&x);
bc_num_free(&temp);
return s;
}
// normalize number to have rdx == len and return the number of BcDigs the value has been shifted to the right (negative for left)
static int bc_num_normalize(BcNum *n) {
int i, shift = 0;
ssize_t len, rdx;
if (BC_NUM_ZERO(n)) return 0;
len = n->len;
rdx = n->rdx;
while (len > 0 && n->num[len - 1] == 0)
len--;
n->len = len;
n->rdx = len;
n->scale += (len - rdx) * BC_BASE_POWER;
return len - rdx;
}
static BcStatus bc_num_d(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
BcStatus s = BC_STATUS_SUCCESS;
size_t rdx, rscale, req;
ssize_t cmp;
BcNum b1, f;
size_t factor, dividend, divisor;
size_t i, j, mindivisor, temp_scale;
int shift;
if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, scale);
return BC_STATUS_SUCCESS;
}
if (bc_num_isOne(b)) {
bc_num_copy(c, a);
goto exit;
}
// scale that allows to represent all possible multiplication results
temp_scale = BC_MAX(scale, BC_BASE_POWER * (a->len + b->len + 1));
// create normalized copy of first argument in result variable "c"
bc_num_copy(c, a);
// the shift value records be how many BcDigs the decimal has been shifted to the left
shift = bc_num_normalize(c);
// create normalized copy of first argument as temporary variable b1
bc_num_createCopy(&b1, b);
// the shift value now records by how many BcDigs the result will need to be shifted
shift -= bc_num_normalize(&b1);
// set sign of (copies of the) operands to positive
c->neg = false;
b1.neg = false;
// compare normalized operands to determine whether the result of dividing them will be < or > 1
cmp = bc_num_cmp(&b1, c);
if (cmp == 0) {
// if the normalized values are identical the result will be a power of (10^BC_BASE_POWER)
bc_num_ulong2num(c, 1);
}
else {
if (cmp > 0) //==> b > a, result will be one exp higher
shift--;
dividend = 1;
divisor = 0;
// calculate the maximum power of BC_BASE_DIG that will fit into a size_t
for (i = 0; i < 19 / BC_BASE_POWER; i++) {
dividend *= BC_BASE_DIG;
}
// determine the minimum number acceptable for the initial divide operation
mindivisor = bc_num_pow10((19 - BC_BASE_POWER)/2);
if (BC_BASE_POWER % 2 != 0)
mindivisor *= 3;
j = 0;
for (i = 0; i < b1.len; i++) {
if (divisor < mindivisor) {
// accumulate BcDigs until the minimum desired divisor has been formed
divisor *= BC_BASE_DIG;
divisor += b1.num[b1.len - 1 - i];
}
else {
if (b1.num[b1.len - 1 - i] != 0)
// there were further non-zero digits not included in the divisor
// account for them by incrementing the divisor just to be sure
j = 1;
}
}
divisor += j;
// the quotient is used as the initial estimate of the (scaled) reciprocal value of the divisor
factor = dividend / divisor;
// Multiply the estimate of 1/B ("factor") with the actual value of B giving a result <= 1.0
bc_num_createFromUlong(&f, factor);
bc_num_mul(&b1, &f, &b1, temp_scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (b1.num[b1.len - 1] != 1) {
// a correction is required, we multiply with the inverse of the error since we cannot divide ...
b1.rdx = b1.len;
// calculate the inverse of the error to twice the number of decimals
b1.scale = b1.rdx * BC_BASE_POWER;
s = bc_num_invert(&b1, temp_scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// multiply with the correction factor (== the reciprocal value of the error factor)
bc_num_mul(&b1, c, c, temp_scale + BC_BASE_POWER);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
// multiply the corrected reciprocal value of B with A to get A/B
bc_num_mul(&f, c, c, temp_scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// adjust the decimal point in such a way that the result is 1 <= C <= BC_BASE_DIG -1
c->rdx = c->len - 1;
c->scale = c->rdx * BC_BASE_POWER;
bc_num_free(&f);
}
// adjust the decimal point to account for the normalization of the arguments A and B
if (shift > 0)
bc_num_shiftLeft(c, shift * BC_BASE_POWER);
else
bc_num_shiftRight(c, -shift * BC_BASE_POWER);
err:
bc_num_free(&b1);
exit:
if (BC_SIG) s = BC_STATUS_SIGNAL;
// adjust sign of the result from the preserved input parameters
if (BC_NO_ERR(!s)) bc_num_retireMul(c, scale, a->neg, b->neg);
return s;
}
#else // USE_GOLDSCHMIDT
static BcStatus bc_num_d(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
BcStatus s = BC_STATUS_SUCCESS;
size_t rdx, rdx2, rscale, scale2, req;
ssize_t cmp;
BcNum cpa, cpb, two, factor, factor2, *fi, *fnext, *temp;
BcDig two_digs[2];
bool aneg, bneg;
aneg = a->neg;
bneg = b->neg;
if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, scale);
return BC_STATUS_SUCCESS;
}
if (bc_num_isOne(b)) {
bc_num_copy(c, a);
goto exit;
}
a->neg = b->neg = false;
cmp = bc_num_cmp(a, b);
if (cmp == BC_NUM_SSIZE_MIN) return BC_STATUS_SIGNAL;
if (!cmp) {
bc_num_one(c);
goto exit;
}
bc_num_createCopy(&cpa, a);
bc_num_createCopy(&cpb, b);
// This is to calculate enough digits to make rounding only happen when
// necessary. It rounds the scale up to the next BcDig boundary, then adds
// on enough to create a whole extra BcDig which will then be tested to see
// if it's equal to BC_BASE_DIG - 1. If it is, then, and only then, should
// rounding be needed.
scale2 = BC_NUM_RDX(scale + 1) * BC_BASE_POWER + BC_BASE_POWER + 1;
rdx2 = BC_NUM_RDX(scale2);
req = bc_num_int(a) + rdx2 + 1;
scale2 = rdx2 * BC_BASE_POWER;
bc_num_init(&factor, req);
bc_num_init(&factor2, req);
bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig));
bc_num_one(&two);
two.num[0] = 2;
if (b->rdx == b->len) {
rdx = cpb.len - bc_num_nonzeroLen(&cpb);
rscale = rdx * BC_BASE_POWER;
s = bc_num_shiftLeft(&cpa, rscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_shiftLeft(&cpb, rscale);
}
else {
rdx = b->len - b->rdx;
rscale = rdx * BC_BASE_POWER;
s = bc_num_shiftRight(&cpa, rscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_shiftRight(&cpb, rscale);
}
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
req = bc_num_int(&cpa);
if (!req) req = cpa.len - bc_num_nonzeroLen(&cpa);
req = BC_BASE_POWER * (req + 1);
req += b->scale % BC_BASE_POWER == 0 ? BC_BASE_POWER : 0;
req += scale2;
rscale += req;
bc_num_extend(&cpa, req);
bc_num_extend(&cpb, req);
fi = &factor;
fnext = &factor2;
cmp = 1;
while (!bc_num_isOne(fi) && cmp) {
s = bc_num_sub(&two, &cpb, fi, rscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_mul(&cpa, fi, &cpa, rscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_mul(&cpb, fi, &cpb, rscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
temp = fi;
fi = fnext;
fnext = temp;
cmp = bc_num_cmp(fi, fnext);
if (cmp == BC_NUM_SSIZE_MIN) goto err;
}
// We only round here if an entire BcDig is equal to BC_BASE_DIG - 1. We
// have to round because without rounding, the Goldschmidt algorithm can
// produce numbers that are 1 digit off in the last place, because of the
// nature of the algorithm. That throws off things like negative powers
// (like 10 ^ -1, which Goldschmidt calculates as 0.099999999...). The bc
// spec requires truncation, but without this rounding, *more* calculations
// will be off. To fix this, I have the algorithm calculate the result to
// the scale plus 1 place plus a whole extra BcDig (at least). Then, when
// rounding, I only round if the extra BcDig is only 1 less than the max,
// and then I only add 1 to the right place (see bc_num_roundPlaces() for
// more info). What this means is that if there is a chain of 9's from the
// *actual* scale position to the rounded position, then rounding will
// happen, but if not, the actual scale will not be affected (i.e., it will
// appear truncated). By extending the calculation by 1 extra digit, then a
// whole extra BcDig, I create a separation between the two that only is
// closed when Goldschmidt has failed to calculate the exact truncated
// number (or at least, I hope it does).
assert(cpa.rdx >= rdx2);
if (cpa.num[cpa.rdx - rdx2] == BC_BASE_DIG - 1)
bc_num_roundPlaces(&cpa, scale2 - 1);
bc_num_copy(c, &cpa);
err:
bc_num_free(&factor2);
bc_num_free(&factor);
bc_num_free(&cpb);
bc_num_free(&cpa);
exit:
a->neg = aneg;
b->neg = bneg;
if (BC_SIG) s = BC_STATUS_SIGNAL;
if (BC_NO_ERR(!s)) bc_num_retireMul(c, scale, a->neg, b->neg);
return s;
}
#endif // USE_GOLDSCHMIDT
static BcStatus bc_num_r(BcNum *a, BcNum *b, BcNum *restrict c,
BcNum *restrict d, size_t scale, size_t ts)
{
BcStatus s;
BcNum temp;
bool neg;
if (BC_NUM_ZERO(b)) return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, ts);
bc_num_setToZero(d, ts);
return BC_STATUS_SUCCESS;
}
bc_num_init(&temp, d->cap);
s = bc_num_d(a, b, c, scale);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (scale) scale = ts + 1;
s = bc_num_m(c, b, &temp, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_sub(a, &temp, d, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale);
neg = d->neg;
bc_num_retireMul(d, ts, a->neg, b->neg);
d->neg = BC_NUM_NONZERO(d) ? neg : false;
err:
bc_num_free(&temp);
return s;
}
static BcStatus bc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s;
BcNum c1;
size_t ts;
ts = bc_vm_growSize(scale, b->scale);
ts = BC_MAX(ts, a->scale);
bc_num_init(&c1, bc_num_mulReq(a, b, ts));
s = bc_num_r(a, b, &c1, c, scale, ts);
bc_num_free(&c1);
return s;
}
static BcStatus bc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcStatus s = BC_STATUS_SUCCESS;
BcNum copy;
unsigned long pow = 0;
size_t i, powrdx, resrdx;
bool neg, zero;
if (BC_ERR(b->rdx)) return bc_vm_err(BC_ERROR_MATH_NON_INTEGER);
if (BC_NUM_ZERO(b)) {
bc_num_one(c);
return BC_STATUS_SUCCESS;
}
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, scale);
return BC_STATUS_SUCCESS;
}
if (bc_num_isOne(b)) {
if (!b->neg) bc_num_copy(c, a);
else s = bc_num_inv(a, c, scale);
return s;
}
neg = b->neg;
b->neg = false;
s = bc_num_ulong(b, &pow);
b->neg = neg;
if (s) return s;
bc_num_createCopy(&copy, a);
if (!neg) scale = BC_MIN(a->scale * pow, BC_MAX(scale, a->scale));
for (powrdx = a->scale; BC_NO_SIG && !(pow & 1); pow >>= 1) {
powrdx <<= 1;
s = bc_num_mul(&copy, &copy, &copy, powrdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
if (BC_SIG) goto sig_err;
bc_num_copy(c, &copy);
resrdx = powrdx;
while (BC_NO_SIG && (pow >>= 1)) {
powrdx <<= 1;
s = bc_num_mul(&copy, &copy, &copy, powrdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (pow & 1) {
resrdx += powrdx;
s = bc_num_mul(c, &copy, c, resrdx);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
}
if (BC_SIG) goto sig_err;
if (neg) {
s = bc_num_inv(c, c, scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
if (c->scale > scale) bc_num_truncate(c, c->scale - scale);
// We can't use bc_num_clean() here.
for (zero = true, i = 0; zero && i < c->len; ++i) zero = !c->num[i];
if (zero) bc_num_setToZero(c, scale);
sig_err:
if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL;
err:
bc_num_free(&copy);
return s;
}
#if BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_place(BcNum *a, BcNum *b, BcNum *restrict c,
size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
unsigned long val = 0;
BC_UNUSED(scale);
s = bc_num_intop(a, b, c, &val);
if (BC_ERR(s)) return s;
if (val < c->scale) bc_num_truncate(c, c->scale - val);
else if (val > c->scale) bc_num_extend(c, val - c->scale);
return s;
}
static BcStatus bc_num_left(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
unsigned long val = 0;
BC_UNUSED(scale);
s = bc_num_intop(a, b, c, &val);
if (BC_ERR(s)) return s;
return bc_num_shiftLeft(c, (size_t) val);
}
static BcStatus bc_num_right(BcNum *a, BcNum *b, BcNum *restrict c,
size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
unsigned long val = 0;
BC_UNUSED(scale);
s = bc_num_intop(a, b, c, &val);
if (BC_ERR(s)) return s;
if (BC_NUM_ZERO(c)) return s;
return bc_num_shiftRight(c, (size_t) val);
}
#endif // BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale,
BcNumBinaryOp op, size_t req)
{
BcStatus s;
BcNum num2, *ptr_a, *ptr_b;
bool init = false;
assert(a && b && c && op);
if (c == a) {
ptr_a = &num2;
memcpy(ptr_a, c, sizeof(BcNum));
init = true;
}
else ptr_a = a;
if (c == b) {
ptr_b = &num2;
if (c != a) {
memcpy(ptr_b, c, sizeof(BcNum));
init = true;
}
}
else ptr_b = b;
if (init) bc_num_init(c, req);
else bc_num_expand(c, req);
s = op(ptr_a, ptr_b, c, scale);
assert(!c->neg || BC_NUM_NONZERO(c));
assert(c->rdx <= c->len || !c->len || s);
if (init) bc_num_free(&num2);
return s;
}
#ifndef NDEBUG
static bool bc_num_strValid(const char *val) {
bool radix = false;
size_t i, len = strlen(val);
if (!len) return true;
for (i = 0; i < len; ++i) {
BcDig c = val[i];
if (c == '.') {
if (radix) return false;
radix = true;
continue;
}
if (!(isdigit(c) || isupper(c))) return false;
}
return true;
}
#endif // NDEBUG
static unsigned long bc_num_parseChar(char c, size_t base_t) {
if (isupper(c)) {
c = BC_NUM_NUM_LETTER(c);
c = ((size_t) c) >= base_t ? (char) base_t - 1 : c;
}
else c -= '0';
return (unsigned long) (uchar) c;
}
static void bc_num_parseDecimal(BcNum *restrict n, const char *restrict val) {
size_t len, i, temp, mod;
const char *ptr;
bool zero = true, rdx;
for (i = 0; val[i] == '0'; ++i);
val += i;
assert(!val[0] || isalnum(val[0]) || val[0] == '.');
// All 0's. We can just return, since this
// procedure expects a virgin (already 0) BcNum.
if (!val[0]) return;
len = strlen(val);
ptr = strchr(val, '.');
rdx = (ptr != NULL);
for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i);
n->scale = (size_t) (rdx * ((val + len) - (ptr + 1)));
n->rdx = BC_NUM_RDX(n->scale);
i = len - (ptr == val ? 0 : i) - rdx;
temp = BC_NUM_ROUND_POW(i);
mod = n->scale % BC_BASE_POWER;
i = mod ? BC_BASE_POWER - mod : 0;
n->len = ((temp + i) / BC_BASE_POWER);
bc_num_expand(n, n->len);
memset(n->num, 0, BC_NUM_SIZE(n->len));
if (zero) n->len = n->rdx = 0;
else {
unsigned long exp, pow;
exp = i;
pow = bc_num_pow10(exp);
for (i = len - 1; i < len; --i, ++exp) {
char c = val[i];
if (c == '.') exp -= 1;
else {
size_t idx = exp / BC_BASE_POWER;
if (isupper(c)) c = '9';
n->num[idx] += (((unsigned long) c) - '0') * pow;
if ((exp + 1) % BC_BASE_POWER == 0) pow = 1;
else pow *= BC_BASE;
}
}
}
}
static BcStatus bc_num_parseBase(BcNum *restrict n, const char *restrict val,
BcNum *restrict base, size_t base_t)
{
BcStatus s = BC_STATUS_SUCCESS;
BcNum temp, mult, result;
char c = 0;
bool zero = true;
unsigned long v;
size_t i, digs, len = strlen(val);
for (i = 0; zero && i < len; ++i) zero = (val[i] == '.' || val[i] == '0');
if (zero) return BC_STATUS_SUCCESS;
bc_num_init(&temp, BC_NUM_LONG_LOG10);
bc_num_init(&mult, BC_NUM_LONG_LOG10);
for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) {
v = bc_num_parseChar(c, base_t);
s = bc_num_mul(n, base, &mult, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto int_err;
bc_num_ulong2num(&temp, v);
s = bc_num_add(&mult, &temp, n, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto int_err;
}
if (i == len && !(c = val[i])) goto int_err;
assert(c == '.');
bc_num_init(&result, base->len);
bc_num_one(&mult);
for (i += 1, digs = 0; BC_NO_SIG && i < len && (c = val[i]); ++i, ++digs)
{
v = bc_num_parseChar(c, base_t);
s = bc_num_mul(&result, base, &result, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_ulong2num(&temp, v);
s = bc_num_add(&result, &temp, &result, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_mul(&mult, base, &mult, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
if (BC_SIG) {
s = BC_STATUS_SIGNAL;
goto err;
}
// This one cannot be a divide by 0 because mult starts out at 1, then is
// multiplied by base, and base cannot be 0, so mult cannot be 0.
s = bc_num_div(&result, &mult, &result, digs * 2);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_truncate(&result, digs);
//bc_num_truncate(&result, result.scale - digs); // <se> is this a fixed version of the line above?
s = bc_num_add(n, &result, n, digs);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (BC_NUM_NONZERO(n)) {
if (n->scale < digs) bc_num_extend(n, digs - n->scale);
}
else bc_num_zero(n);
err:
bc_num_free(&result);
int_err:
bc_num_free(&mult);
bc_num_free(&temp);
return s;
}
static void bc_num_printNewline() {
if (vm->nchars >= (size_t) (vm->line_len - 1)) {
bc_vm_putchar('\\');
bc_vm_putchar('\n');
vm->nchars = 0;
}
}
#if DC_ENABLED
static void bc_num_printChar(size_t n, size_t len, bool rdx) {
BC_UNUSED(rdx);
bc_vm_putchar((uchar) n);
vm->nchars += len;
}
#endif // DC_ENABLED
static void bc_num_printDigits(size_t n, size_t len, bool rdx) {
size_t exp, pow;
bc_num_printNewline();
bc_vm_putchar(rdx ? '.' : ' ');
++vm->nchars;
bc_num_printNewline();
for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE);
for (exp = 0; exp < len; pow /= BC_BASE, ++vm->nchars, ++exp) {
size_t dig;
bc_num_printNewline();
dig = n / pow;
n -= dig * pow;
bc_vm_putchar(((uchar) dig) + '0');
}
}
static void bc_num_printHex(size_t n, size_t len, bool rdx) {
assert(len == 1);
if (rdx) {
bc_num_printNewline();
bc_vm_putchar('.');
vm->nchars += 1;
}
bc_num_printNewline();
bc_vm_putchar(bc_num_hex_digits[n]);
vm->nchars += len;
}
static void bc_num_printDecimal(const BcNum *restrict n) {
size_t i, j, rdx = n->rdx;
bool zero = true;
size_t buffer[BC_BASE_POWER];
if (n->neg) bc_vm_putchar('-');
vm->nchars += n->neg;
for (i = n->len - 1; i < n->len; --i) {
BcDig n9 = n->num[i];
size_t temp;
bool irdx = (i == rdx - 1);
zero = (zero & !irdx);
temp = n->scale % BC_BASE_POWER;
temp = i || !temp ? 0 : BC_BASE_POWER - temp;
memset(buffer, 0, BC_BASE_POWER * sizeof(size_t));
for (j = 0; n9 && j < BC_BASE_POWER; ++j) {
buffer[j] = n9 % BC_BASE;
n9 /= BC_BASE;
}
for (j = BC_BASE_POWER - 1; j < BC_BASE_POWER && j >= temp; --j) {
bool print_rdx = (irdx & (j == BC_BASE_POWER - 1));
zero = (zero && buffer[j] == 0);
if (!zero) bc_num_printHex(buffer[j], 1, print_rdx);
}
}
}
#if BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_printExponent(const BcNum *restrict n, bool eng) {
BcStatus s = BC_STATUS_SUCCESS;
bool neg = (n->len <= n->rdx);
BcNum temp, exp;
size_t places, mod;
BcDig digs[BC_NUM_LONG_LOG10];
bc_num_createCopy(&temp, n);
if (neg) {
size_t i, idx = bc_num_nonzeroLen(n) - 1;
places = 1;
for (i = BC_BASE_POWER - 1; i < BC_BASE_POWER; --i) {
if (bc_num_pow10(i) > (unsigned long) n->num[idx])
places += 1;
else break;
}
places += (n->rdx - (idx + 1)) * BC_BASE_POWER;
mod = places % 3;
if (eng && mod != 0) places += 3 - mod;
s = bc_num_shiftLeft(&temp, places);
if (BC_ERROR_SIGNAL_ONLY(s)) goto exit;
}
else {
places = bc_num_int_digits(n) - 1;
mod = places % 3;
if (eng && mod != 0) places -= 3 - (3 - mod);
s = bc_num_shiftRight(&temp, places);
if (BC_ERROR_SIGNAL_ONLY(s)) goto exit;
}
bc_num_printDecimal(&temp);
bc_num_printNewline();
bc_vm_putchar('e');
if (!places) {
bc_num_printHex(0, 1, false);
goto exit;
}
if (neg) {
bc_num_printNewline();
bc_vm_putchar('-');
}
bc_num_setup(&exp, digs, BC_NUM_LONG_LOG10);
bc_num_ulong2num(&exp, (unsigned long) places);
bc_num_printDecimal(&exp);
exit:
bc_num_free(&temp);
return BC_SIG ? BC_STATUS_SIGNAL : BC_STATUS_SUCCESS;
}
#endif // BC_ENABLE_EXTRA_MATH
static BcStatus bc_num_printNum(BcNum *restrict n, BcNum *restrict base,
size_t len, BcNumDigitOp print)
{
BcStatus s;
BcVec stack;
BcNum intp, fracp, digit, frac_len;
unsigned long dig, *ptr;
size_t i;
bool radix;
assert(BC_NUM_NONZERO(base));
if (BC_NUM_ZERO(n)) {
print(0, len, false);
return BC_STATUS_SUCCESS;
}
bc_vec_init(&stack, sizeof(unsigned long), NULL);
bc_num_init(&fracp, n->rdx);
bc_num_init(&digit, len);
bc_num_init(&frac_len, bc_num_int(n));
bc_num_one(&frac_len);
bc_num_createCopy(&intp, n);
bc_num_truncate(&intp, intp.scale);
s = bc_num_sub(n, &intp, &fracp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
while (BC_NO_SIG && BC_NUM_NONZERO(&intp)) {
// Dividing by base cannot be divide by 0 because base cannot be 0.
s = bc_num_divmod(&intp, base, &intp, &digit, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// Will never fail (except for signals) because digit is
// guaranteed to be non-negative and small enough.
s = bc_num_ulong(&digit, &dig);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_vec_push(&stack, &dig);
}
if (BC_SIG) goto sig_err;
for (i = 0; BC_NO_SIG && i < stack.len; ++i) {
ptr = bc_vec_item_rev(&stack, i);
assert(ptr);
print(*ptr, len, false);
}
if (BC_SIG) goto sig_err;
if (!n->scale) goto err;
for (radix = true; BC_NO_SIG && bc_num_int_digits(&frac_len) < n->scale + 1; radix = false) {
s = bc_num_mul(&fracp, base, &fracp, n->scale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// Will never fail (except for signals) because fracp is
// guaranteed to be non-negative and small enough.
s = bc_num_ulong(&fracp, &dig);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
bc_num_ulong2num(&intp, dig);
s = bc_num_sub(&fracp, &intp, &fracp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
print(dig, len, radix);
s = bc_num_mul(&frac_len, base, &frac_len, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
sig_err:
if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL;
err:
bc_num_free(&frac_len);
bc_num_free(&digit);
bc_num_free(&fracp);
bc_num_free(&intp);
bc_vec_free(&stack);
return s;
}
static BcStatus bc_num_printBase(BcNum *restrict n, BcNum *restrict base,
size_t base_t)
{
BcStatus s;
size_t width;
BcNumDigitOp print;
bool neg = n->neg;
if (neg) bc_vm_putchar('-');
vm->nchars += neg;
n->neg = false;
if (base_t <= BC_NUM_MAX_POSIX_IBASE) {
width = 1;
print = bc_num_printHex;
}
else {
width = bc_num_log10(base_t - 1);
print = bc_num_printDigits;
}
s = bc_num_printNum(n, base, width, print);
n->neg = neg;
return s;
}
#if DC_ENABLED
BcStatus bc_num_stream(BcNum *restrict n, BcNum *restrict base) {
return bc_num_printNum(n, base, 1, bc_num_printChar);
}
#endif // DC_ENABLED
void bc_num_setup(BcNum *restrict n, BcDig *restrict num, size_t cap) {
assert(n);
n->num = num;
n->cap = cap;
n->rdx = n->scale = n->len = 0;
n->neg = false;
}
void bc_num_init(BcNum *restrict n, size_t req) {
assert(n);
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
bc_num_setup(n, bc_vm_malloc(BC_NUM_SIZE(req)), req);
}
void bc_num_free(void *num) {
assert(num);
free(((BcNum*) num)->num);
}
void bc_num_copy(BcNum *d, const BcNum *s) {
assert(d && s);
if (d == s) return;
bc_num_expand(d, s->len);
d->len = s->len;
d->neg = s->neg;
d->rdx = s->rdx;
d->scale = s->scale;
memcpy(d->num, s->num, BC_NUM_SIZE(d->len));
}
void bc_num_createCopy(BcNum *d, const BcNum *s) {
bc_num_init(d, s->len);
bc_num_copy(d, s);
}
void bc_num_createFromUlong(BcNum *n, unsigned long val) {
bc_num_init(n, (BC_NUM_LONG_LOG10 - 1) / BC_BASE_POWER + 1);
bc_num_ulong2num(n, val);
}
size_t bc_num_scale(const BcNum *restrict n) {
return n->scale;
}
size_t bc_num_len(const BcNum *restrict n) {
size_t i, pow, scale, len = n->len;
BcDig dig;
if (BC_NUM_ZERO(n)) return 0;
if (n->rdx == len) len = bc_num_nonzeroLen(n);
dig = n->num[len - 1];
pow = BC_BASE_DIG;
i = BC_BASE_POWER + 1;
while (pow && (dig % (BcDig) pow == dig)) {
i -= 1;
pow /= BC_BASE;
}
scale = n->scale % BC_BASE_POWER;
scale = scale ? scale : BC_BASE_POWER;
return (len - 1) * BC_BASE_POWER + i - (BC_BASE_POWER - scale);
}
BcStatus bc_num_parse(BcNum *restrict n, const char *restrict val,
BcNum *restrict base, size_t base_t, bool letter)
{
BcStatus s = BC_STATUS_SUCCESS;
assert(n && val && base);
assert(BC_ENABLE_EXTRA_MATH ||
(base_t >= BC_NUM_MIN_BASE && base_t <= vm->max_ibase));
assert(bc_num_strValid(val));
if (letter) bc_num_ulong2num(n, bc_num_parseChar(val[0], BC_NUM_MAX_LBASE));
else if (base_t == BC_BASE) bc_num_parseDecimal(n, val);
else s = bc_num_parseBase(n, val, base, base_t);
return s;
}
BcStatus bc_num_print(BcNum *restrict n, BcNum *restrict base,
size_t base_t, bool newline)
{
BcStatus s = BC_STATUS_SUCCESS;
assert(n && base);
assert(BC_ENABLE_EXTRA_MATH || base_t >= BC_NUM_MIN_BASE);
bc_num_printNewline();
if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false);
else if (base_t == BC_BASE) bc_num_printDecimal(n);
#if BC_ENABLE_EXTRA_MATH
else if (base_t == 0 || base_t == 1)
s = bc_num_printExponent(n, base_t != 0);
#endif // BC_ENABLE_EXTRA_MATH
else s = bc_num_printBase(n, base, base_t);
if (BC_NO_ERR(!s) && newline) {
bc_vm_putchar('\n');
vm->nchars = 0;
}
return s;
}
BcStatus bc_num_ulong(const BcNum *restrict n, unsigned long *result) {
size_t i;
unsigned long r;
assert(n && result);
*result = 0;
if (BC_ERR(n->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE);
for (r = 0, i = n->len; i > n->rdx;) {
unsigned long prev = r * BC_BASE_DIG;
if (BC_ERR(prev == SIZE_MAX || prev / BC_BASE_DIG != r))
return bc_vm_err(BC_ERROR_MATH_OVERFLOW);
r = prev + (unsigned long) n->num[--i];
if (BC_ERR(r == SIZE_MAX || r < prev))
return bc_vm_err(BC_ERROR_MATH_OVERFLOW);
}
*result = r;
return BC_STATUS_SUCCESS;
}
void bc_num_ulong2num(BcNum *restrict n, unsigned long val) {
BcDig *ptr;
unsigned long i;
assert(n);
bc_num_zero(n);
if (!val) return;
bc_num_expand(n, bc_num_log10(ULONG_MAX));
for (ptr = n->num, i = 0; val; ++i, ++n->len, val /= BC_BASE_DIG)
ptr[i] = val % BC_BASE_DIG;
}
size_t bc_num_addReq(BcNum *a, BcNum *b, size_t scale) {
size_t aint, bint, ardx, brdx;
BC_UNUSED(scale);
ardx = a->rdx;
brdx = b->rdx;
aint = bc_num_int(a);
bint = bc_num_int(b);
ardx = BC_MAX(ardx, brdx);
aint = BC_MAX(aint, bint);
return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1);
}
size_t bc_num_mulReq(BcNum *a, BcNum *b, size_t scale) {
size_t max, rdx;
rdx = bc_vm_growSize(a->rdx, b->rdx);
max = bc_vm_growSize(BC_MAX(BC_NUM_RDX(scale), rdx), 1);
rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max);
return rdx;
}
size_t bc_num_powReq(BcNum *a, BcNum *b, size_t scale) {
BC_UNUSED(scale);
return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1);
}
#if BC_ENABLE_EXTRA_MATH
size_t bc_num_placesReq(BcNum *a, BcNum *b, size_t scale) {
BcStatus s;
unsigned long places;
size_t rdx;
BC_UNUSED(s);
BC_UNUSED(scale);
// This error will be taken care of later. Ignore.
s = bc_num_ulong(b, &places);
if (a->scale <= places) rdx = BC_NUM_RDX(places);
else rdx = BC_NUM_RDX(a->scale - places);
return BC_NUM_RDX(bc_num_int_digits(a)) + rdx;
}
size_t bc_num_shiftLeftReq(BcNum *a, BcNum *b, size_t scale) {
BcStatus s;
unsigned long places, rdx;
BC_UNUSED(s);
BC_UNUSED(scale);
// This error will be taken care of later. Ignore.
s = bc_num_ulong(b, &places);
if (a->scale <= places) rdx = BC_NUM_RDX(places) - a->rdx + 1;
else rdx = 0;
return a->len + rdx;
}
size_t bc_num_shiftRightReq(BcNum *a, BcNum *b, size_t scale) {
BcStatus s;
unsigned long places, int_digs, rdx;
BC_UNUSED(s);
BC_UNUSED(scale);
// This error will be taken care of later. Ignore.
s = bc_num_ulong(b, &places);
int_digs = BC_NUM_RDX(bc_num_int_digits(a));
rdx = BC_NUM_RDX(places);
if (int_digs <= rdx) rdx -= int_digs;
else rdx = 0;
return a->len + rdx;
}
#endif // BC_ENABLE_EXTRA_MATH
BcStatus bc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
BcNumBinaryOp op = (!a->neg == !b->neg) ? bc_num_a : bc_num_s;
BC_UNUSED(scale);
return bc_num_binary(a, b, c, false, op, bc_num_addReq(a, b, scale));
}
BcStatus bc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
BcNumBinaryOp op = (!a->neg == !b->neg) ? bc_num_s : bc_num_a;
BC_UNUSED(scale);
return bc_num_binary(a, b, c, true, op, bc_num_addReq(a, b, scale));
}
BcStatus bc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
return bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale));
}
BcStatus bc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
return bc_num_binary(a, b, c, scale, bc_num_d, bc_num_mulReq(a, b, scale));
}
BcStatus bc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_mulReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_rem, req);
}
BcStatus bc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
return bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale));
}
#if BC_ENABLE_EXTRA_MATH
BcStatus bc_num_places(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_placesReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_place, req);
}
BcStatus bc_num_lshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_shiftLeftReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_left, req);
}
BcStatus bc_num_rshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
size_t req = bc_num_shiftRightReq(a, b, scale);
return bc_num_binary(a, b, c, scale, bc_num_right, req);
}
#endif // BC_ENABLE_EXTRA_MATH
BcStatus bc_num_sqrt(BcNum *restrict a, BcNum *restrict b, size_t scale) {
BcStatus s = BC_STATUS_SUCCESS;
BcNum num1, num2, half, f, fprime, *x0, *x1, *temp;
size_t pow, len, rdx, req, digs, digs1, digs2, resscale, times = 0;
ssize_t cmp = 1, cmp1 = SSIZE_MAX, cmp2 = SSIZE_MAX;
BcDig half_digs[1];
assert(a && b && a != b);
if (BC_ERR(a->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE);
if (a->scale > scale) scale = a->scale;
len = bc_vm_growSize(bc_num_int_digits(a), 1);
req = bc_vm_growSize(BC_MAX(BC_NUM_RDX(scale), a->rdx), len >> 1);
bc_num_init(b, bc_vm_growSize(req, 1));
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(b, scale);
return BC_STATUS_SUCCESS;
}
if (bc_num_isOne(a)) {
bc_num_one(b);
bc_num_extend(b, scale);
return BC_STATUS_SUCCESS;
}
rdx = BC_MAX(BC_NUM_RDX(scale), a->rdx);
len = bc_vm_growSize(a->len, rdx);
bc_num_init(&num1, len);
bc_num_init(&num2, len);
bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig));
bc_num_one(&half);
half.num[0] = BC_BASE_DIG / 2;
half.len = 1;
half.rdx = 1;
half.scale = 1;
bc_num_init(&f, len);
bc_num_init(&fprime, len);
x0 = &num1;
x1 = &num2;
bc_num_one(x0);
pow = bc_num_int_digits(a);
if (pow) {
if (pow & 1) x0->num[0] = 2;
else x0->num[0] = 6;
pow -= 2 - (pow & 1);
bc_num_shiftLeft(x0, pow / 2);
// Make sure to move the radix back.
if (x0->scale >= pow) x0->scale -= pow;
else x0->scale = 0;
x0->rdx = BC_NUM_RDX(x0->scale);
}
x0->rdx = digs = digs1 = digs2 = 0;
x0->scale = 0;
resscale = (scale + BC_BASE_POWER) * 2;
len = BC_NUM_RDX(bc_num_int_digits(x0) + resscale - 1);
while (BC_NO_SIG && (cmp || digs < len)) {
assert(BC_NUM_NONZERO(x0));
s = bc_num_div(a, x0, &f, resscale);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_add(x0, &f, &fprime, resscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
s = bc_num_mul(&fprime, &half, x1, resscale);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
cmp = bc_num_cmp(x1, x0);
if (cmp == BC_NUM_SSIZE_MIN) {
s = BC_STATUS_SIGNAL;
break;
}
digs = x1->len - (unsigned long long) llabs(cmp);
if (cmp == cmp2 && digs == digs1) times += 1;
else times = 0;
resscale += times > 2;
cmp2 = cmp1;
cmp1 = cmp;
digs1 = digs;
temp = x0;
x0 = x1;
x1 = temp;
}
if (BC_SIG) {
s = BC_STATUS_SIGNAL;
goto err;
}
bc_num_copy(b, x0);
if (b->scale > scale) bc_num_truncate(b, b->scale - scale);
err:
if (BC_ERR(s)) bc_num_free(b);
bc_num_free(&fprime);
bc_num_free(&f);
bc_num_free(&num2);
bc_num_free(&num1);
assert(!b->neg || BC_NUM_NONZERO(b));
assert(b->rdx <= b->len || !b->len);
return s;
}
BcStatus bc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) {
BcStatus s;
BcNum num2, *ptr_a;
bool init = false;
size_t ts, len;
ts = BC_MAX(scale + b->scale, a->scale);
len = bc_num_mulReq(a, b, ts);
assert(c != d && a != d && b != d && b != c);
if (c == a) {
memcpy(&num2, c, sizeof(BcNum));
ptr_a = &num2;
bc_num_init(c, len);
init = true;
}
else {
ptr_a = a;
bc_num_expand(c, len);
}
s = bc_num_r(ptr_a, b, c, d, scale, ts);
assert(!c->neg || BC_NUM_NONZERO(c));
assert(c->rdx <= c->len || !c->len);
assert(!d->neg || BC_NUM_NONZERO(d));
assert(d->rdx <= d->len || !d->len);
if (init) bc_num_free(&num2);
return s;
}
#if DC_ENABLED
BcStatus bc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) {
BcStatus s;
BcNum base, exp, two, temp;
BcDig two_digs[2];
assert(a && b && c && d && a != d && b != d && c != d);
if (BC_ERR(BC_NUM_ZERO(c)))
return bc_vm_err(BC_ERROR_MATH_DIVIDE_BY_ZERO);
if (BC_ERR(b->neg)) return bc_vm_err(BC_ERROR_MATH_NEGATIVE);
if (BC_ERR(a->rdx || b->rdx || c->rdx))
return bc_vm_err(BC_ERROR_MATH_NON_INTEGER);
bc_num_expand(d, c->len);
bc_num_init(&base, c->len);
bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig));
bc_num_init(&temp, b->len);
bc_num_one(&two);
two.num[0] = 2;
bc_num_one(d);
// We already checked for 0.
s = bc_num_rem(a, c, &base, 0);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto rem_err;
bc_num_createCopy(&exp, b);
while (BC_NO_SIG && BC_NUM_NONZERO(&exp)) {
// Num two cannot be 0, so no errors.
s = bc_num_divmod(&exp, &two, &exp, &temp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
if (bc_num_isOne(&temp)) {
s = bc_num_mul(d, &base, &temp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// We already checked for 0.
s = bc_num_rem(&temp, c, d, 0);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
s = bc_num_mul(&base, &base, &temp, 0);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
// We already checked for 0.
s = bc_num_rem(&temp, c, &base, 0);
assert(!s || s == BC_STATUS_SIGNAL);
if (BC_ERROR_SIGNAL_ONLY(s)) goto err;
}
if (BC_NO_ERR(!s) && BC_SIG) s = BC_STATUS_SIGNAL;
err:
bc_num_free(&exp);
rem_err:
bc_num_free(&temp);
bc_num_free(&base);
assert(!d->neg || d->len);
return s;
}
#endif // DC_ENABLED
#if BC_DEBUG_CODE
void bc_num_printDebug(const BcNum *n, const char *name, bool emptyline) {
printf("%s: ", name);
bc_num_printDecimal(n);
printf("\n");
if (emptyline) printf("\n");
vm->nchars = 0;
}
void bc_num_printDigs(const BcNum *n, const char *name, bool emptyline) {
size_t i;
printf("%s len: %zu, rdx: %zu, scale: %zu\n",
name, n->len, n->rdx, n->scale);
for (i = n->len - 1; i < n->len; --i)
printf(" %0*d", BC_BASE_POWER, n->num[i]);
printf("\n");
if (emptyline) printf("\n");
vm->nchars = 0;
}
void bc_num_dump(const char *varname, const BcNum *n) {
unsigned long i, scale = n->scale;
fprintf(stderr, "\n%s = %s", varname, n->len ? (n->neg ? "-" : "+") : "0 ");
for (i = n->len - 1; i < n->len; --i) {
if (i + 1 == n->rdx) fprintf(stderr, ". ");
if (scale / BC_BASE_POWER != n->rdx - i - 1)
fprintf(stderr, "%0*d ", BC_BASE_POWER, n->num[i]);
else {
int mod = scale % BC_BASE_POWER;
int d = BC_BASE_POWER - mod;
BcDig div;
if (mod != 0) {
div = n->num[i] / ((BcDig) bc_num_pow10((unsigned long) d));
fprintf(stderr, "%0*d", (int) mod, div);
}
div = n->num[i] % ((BcDig) bc_num_pow10((unsigned long) d));
fprintf(stderr, " ' %0*d ", d, div);
}
}
fprintf(stderr, "(%zu | %zu.%zu / %zu) %p\n",
n->scale, n->len, n->rdx, n->cap, (void*) n->num);
}
#endif // BC_DEBUG_CODE