| /* |
| * ***************************************************************************** |
| * |
| * SPDX-License-Identifier: BSD-2-Clause |
| * |
| * Copyright (c) 2018-2020 Gavin D. Howard and contributors. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| * ***************************************************************************** |
| * |
| * Code for the number type. |
| * |
| */ |
| |
| #include <assert.h> |
| #include <ctype.h> |
| #include <stdbool.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <setjmp.h> |
| #include <limits.h> |
| |
| #include "num.h" |
| #include "rand.h" |
| #include "vm.h" |
| |
| static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); |
| |
| static inline ssize_t bc_num_neg(size_t n, bool neg) { |
| return (((ssize_t) n) ^ -((ssize_t) neg)) + neg; |
| } |
| |
| ssize_t bc_num_cmpZero(const BcNum *n) { |
| return bc_num_neg((n)->len != 0, (n)->neg); |
| } |
| |
| static inline size_t bc_num_int(const BcNum *n) { |
| return n->len ? n->len - n->rdx : 0; |
| } |
| |
| static void bc_num_expand(BcNum *restrict n, size_t req) { |
| |
| assert(n != NULL); |
| |
| req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; |
| |
| if (req > n->cap) { |
| |
| BC_SIG_LOCK; |
| |
| n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req)); |
| n->cap = req; |
| |
| BC_SIG_UNLOCK; |
| } |
| } |
| |
| static void bc_num_setToZero(BcNum *restrict n, size_t scale) { |
| assert(n != NULL); |
| n->scale = scale; |
| n->len = n->rdx = 0; |
| n->neg = false; |
| } |
| |
| void bc_num_zero(BcNum *restrict n) { |
| bc_num_setToZero(n, 0); |
| } |
| |
| void bc_num_one(BcNum *restrict n) { |
| bc_num_zero(n); |
| n->len = 1; |
| n->num[0] = 1; |
| } |
| |
| static void bc_num_clean(BcNum *restrict n) { |
| |
| while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) n->len -= 1; |
| |
| if (BC_NUM_ZERO(n)) { |
| n->neg = false; |
| n->rdx = 0; |
| } |
| else if (n->len < n->rdx) n->len = n->rdx; |
| } |
| |
| static size_t bc_num_log10(size_t i) { |
| size_t len; |
| for (len = 1; i; i /= BC_BASE, ++len); |
| assert(len - 1 <= BC_BASE_DIGS + 1); |
| return len - 1; |
| } |
| |
| static inline size_t bc_num_zeroDigits(const BcDig *n) { |
| assert(*n >= 0); |
| assert(((size_t) *n) < BC_BASE_POW); |
| return BC_BASE_DIGS - bc_num_log10((size_t) *n); |
| } |
| |
| static size_t bc_num_intDigits(const BcNum *n) { |
| size_t digits = bc_num_int(n) * BC_BASE_DIGS; |
| if (digits > 0) digits -= bc_num_zeroDigits(n->num + n->len - 1); |
| return digits; |
| } |
| |
| static size_t bc_num_nonzeroLen(const BcNum *restrict n) { |
| size_t i, len = n->len; |
| assert(len == n->rdx); |
| for (i = len - 1; i < len && !n->num[i]; --i); |
| assert(i + 1 > 0); |
| return i + 1; |
| } |
| |
| static BcDig bc_num_addDigits(BcDig a, BcDig b, bool *carry) { |
| |
| assert(((BcBigDig) BC_BASE_POW) * 2 == ((BcDig) BC_BASE_POW) * 2); |
| assert(a < BC_BASE_POW); |
| assert(b < BC_BASE_POW); |
| |
| a += b + *carry; |
| *carry = (a >= BC_BASE_POW); |
| if (*carry) a -= BC_BASE_POW; |
| |
| assert(a >= 0); |
| assert(a < BC_BASE_POW); |
| |
| return a; |
| } |
| |
| static BcDig bc_num_subDigits(BcDig a, BcDig b, bool *carry) { |
| |
| assert(a < BC_BASE_POW); |
| assert(b < BC_BASE_POW); |
| |
| b += *carry; |
| *carry = (a < b); |
| if (*carry) a += BC_BASE_POW; |
| |
| assert(a - b >= 0); |
| assert(a - b < BC_BASE_POW); |
| |
| return a - b; |
| } |
| |
| static void bc_num_addArrays(BcDig *restrict a, const BcDig *restrict b, |
| size_t len) |
| { |
| size_t i; |
| bool carry = false; |
| |
| for (i = 0; i < len; ++i) a[i] = bc_num_addDigits(a[i], b[i], &carry); |
| |
| for (; carry; ++i) a[i] = bc_num_addDigits(a[i], 0, &carry); |
| } |
| |
| static void bc_num_subArrays(BcDig *restrict a, const BcDig *restrict b, |
| size_t len) |
| { |
| size_t i; |
| bool carry = false; |
| |
| for (i = 0; i < len; ++i) a[i] = bc_num_subDigits(a[i], b[i], &carry); |
| |
| for (; carry; ++i) a[i] = bc_num_subDigits(a[i], 0, &carry); |
| } |
| |
| static void bc_num_mulArray(const BcNum *restrict a, BcBigDig b, |
| BcNum *restrict c) |
| { |
| size_t i; |
| BcBigDig carry = 0; |
| |
| assert(b <= BC_BASE_POW); |
| |
| if (a->len + 1 > c->cap) bc_num_expand(c, a->len + 1); |
| |
| memset(c->num, 0, BC_NUM_SIZE(c->cap)); |
| |
| for (i = 0; i < a->len; ++i) { |
| BcBigDig in = ((BcBigDig) a->num[i]) * b + carry; |
| c->num[i] = in % BC_BASE_POW; |
| carry = in / BC_BASE_POW; |
| } |
| |
| assert(carry < BC_BASE_POW); |
| c->num[i] = (BcDig) carry; |
| c->len = a->len; |
| c->len += (carry != 0); |
| |
| bc_num_clean(c); |
| |
| assert(!c->neg || BC_NUM_NONZERO(c)); |
| assert(c->rdx <= c->len || !c->len); |
| assert(!c->len || c->num[c->len - 1] || c->rdx == c->len); |
| } |
| |
| static void bc_num_divArray(const BcNum *restrict a, BcBigDig b, |
| BcNum *restrict c, BcBigDig *rem) |
| { |
| size_t i; |
| BcBigDig carry = 0; |
| |
| assert(c->cap >= a->len); |
| |
| for (i = a->len - 1; i < a->len; --i) { |
| BcBigDig in = ((BcBigDig) a->num[i]) + carry * BC_BASE_POW; |
| assert(in / b < BC_BASE_POW); |
| c->num[i] = (BcDig) (in / b); |
| carry = in % b; |
| } |
| |
| c->len = a->len; |
| bc_num_clean(c); |
| *rem = carry; |
| |
| assert(!c->neg || BC_NUM_NONZERO(c)); |
| assert(c->rdx <= c->len || !c->len); |
| assert(!c->len || c->num[c->len - 1] || c->rdx == c->len); |
| } |
| |
| static ssize_t bc_num_compare(const BcDig *restrict a, const BcDig *restrict b, |
| size_t len) |
| { |
| size_t i; |
| BcDig c = 0; |
| for (i = len - 1; i < len && !(c = a[i] - b[i]); --i); |
| return bc_num_neg(i + 1, c < 0); |
| } |
| |
| ssize_t bc_num_cmp(const BcNum *a, const BcNum *b) { |
| |
| size_t i, min, a_int, b_int, diff; |
| BcDig *max_num, *min_num; |
| bool a_max, neg = false; |
| ssize_t cmp; |
| |
| assert(a != NULL && b != NULL); |
| |
| if (a == b) return 0; |
| if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !b->neg); |
| if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a); |
| if (a->neg) { |
| if (b->neg) neg = true; |
| else return -1; |
| } |
| else if (b->neg) return 1; |
| |
| a_int = bc_num_int(a); |
| b_int = bc_num_int(b); |
| a_int -= b_int; |
| |
| if (a_int) return neg ? -((ssize_t) a_int) : (ssize_t) a_int; |
| |
| a_max = (a->rdx > b->rdx); |
| |
| if (a_max) { |
| min = b->rdx; |
| diff = a->rdx - b->rdx; |
| max_num = a->num + diff; |
| min_num = b->num; |
| } |
| else { |
| min = a->rdx; |
| diff = b->rdx - a->rdx; |
| max_num = b->num + diff; |
| min_num = a->num; |
| } |
| |
| cmp = bc_num_compare(max_num, min_num, b_int + min); |
| |
| if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg); |
| |
| for (max_num -= diff, i = diff - 1; i < diff; --i) { |
| if (max_num[i]) return bc_num_neg(1, !a_max == !neg); |
| } |
| |
| return 0; |
| } |
| |
| void bc_num_truncate(BcNum *restrict n, size_t places) { |
| |
| size_t places_rdx; |
| |
| if (!places) return; |
| |
| places_rdx = n->rdx ? n->rdx - BC_NUM_RDX(n->scale - places) : 0; |
| assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len)); |
| |
| n->scale -= places; |
| n->rdx -= places_rdx; |
| |
| if (BC_NUM_NONZERO(n)) { |
| |
| size_t pow; |
| |
| pow = n->scale % BC_BASE_DIGS; |
| pow = pow ? BC_BASE_DIGS - pow : 0; |
| pow = bc_num_pow10[pow]; |
| |
| n->len -= places_rdx; |
| memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len)); |
| |
| // Clear the lower part of the last digit. |
| if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow; |
| |
| bc_num_clean(n); |
| } |
| } |
| |
| void bc_num_extend(BcNum *restrict n, size_t places) { |
| |
| size_t places_rdx; |
| |
| if (!places) return; |
| if (BC_NUM_ZERO(n)) { |
| n->scale += places; |
| return; |
| } |
| |
| places_rdx = BC_NUM_RDX(places + n->scale) - n->rdx; |
| |
| if (places_rdx) { |
| bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); |
| memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); |
| memset(n->num, 0, BC_NUM_SIZE(places_rdx)); |
| } |
| |
| n->rdx += places_rdx; |
| n->scale += places; |
| n->len += places_rdx; |
| |
| assert(n->rdx == BC_NUM_RDX(n->scale)); |
| } |
| |
| static void bc_num_retireMul(BcNum *restrict n, size_t scale, |
| bool neg1, bool neg2) |
| { |
| if (n->scale < scale) bc_num_extend(n, scale - n->scale); |
| else bc_num_truncate(n, n->scale - scale); |
| |
| bc_num_clean(n); |
| if (BC_NUM_NONZERO(n)) n->neg = (!neg1 != !neg2); |
| } |
| |
| static void bc_num_split(const BcNum *restrict n, size_t idx, |
| BcNum *restrict a, BcNum *restrict b) |
| { |
| assert(BC_NUM_ZERO(a)); |
| assert(BC_NUM_ZERO(b)); |
| |
| if (idx < n->len) { |
| |
| b->len = n->len - idx; |
| a->len = idx; |
| a->scale = a->rdx = b->scale = b->rdx = 0; |
| |
| assert(a->cap >= a->len); |
| assert(b->cap >= b->len); |
| |
| memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len)); |
| memcpy(a->num, n->num, BC_NUM_SIZE(idx)); |
| |
| bc_num_clean(b); |
| } |
| else bc_num_copy(a, n); |
| |
| bc_num_clean(a); |
| } |
| |
| static size_t bc_num_shiftZero(BcNum *restrict n) { |
| |
| size_t i; |
| |
| assert(!n->rdx || BC_NUM_ZERO(n)); |
| |
| for (i = 0; i < n->len && !n->num[i]; ++i); |
| |
| n->len -= i; |
| n->num += i; |
| |
| return i; |
| } |
| |
| static void bc_num_unshiftZero(BcNum *restrict n, size_t places_rdx) { |
| n->len += places_rdx; |
| n->num -= places_rdx; |
| } |
| |
| static void bc_num_shift(BcNum *restrict n, BcBigDig dig) { |
| |
| size_t i, len = n->len; |
| BcBigDig carry = 0, pow; |
| BcDig *ptr = n->num; |
| |
| assert(dig < BC_BASE_DIGS); |
| |
| pow = bc_num_pow10[dig]; |
| dig = bc_num_pow10[BC_BASE_DIGS - dig]; |
| |
| for (i = len - 1; i < len; --i) { |
| BcBigDig in, temp; |
| in = ((BcBigDig) ptr[i]); |
| temp = carry * dig; |
| carry = in % pow; |
| ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp; |
| } |
| |
| assert(!carry); |
| } |
| |
| static void bc_num_shiftLeft(BcNum *restrict n, size_t places) { |
| |
| BcBigDig dig; |
| size_t places_rdx; |
| bool shift; |
| |
| if (!places) return; |
| if (places > n->scale) { |
| size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len); |
| if (size > SIZE_MAX - 1) bc_vm_err(BC_ERR_MATH_OVERFLOW); |
| } |
| if (BC_NUM_ZERO(n)) { |
| if (n->scale >= places) n->scale -= places; |
| else n->scale = 0; |
| return; |
| } |
| |
| dig = (BcBigDig) (places % BC_BASE_DIGS); |
| shift = (dig != 0); |
| places_rdx = BC_NUM_RDX(places); |
| |
| if (n->scale) { |
| |
| if (n->rdx >= places_rdx) { |
| |
| size_t mod = n->scale % BC_BASE_DIGS, revdig; |
| |
| mod = mod ? mod : BC_BASE_DIGS; |
| revdig = dig ? BC_BASE_DIGS - dig : 0; |
| |
| if (mod + revdig > BC_BASE_DIGS) places_rdx = 1; |
| else places_rdx = 0; |
| } |
| else places_rdx -= n->rdx; |
| } |
| |
| if (places_rdx) { |
| bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); |
| memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); |
| memset(n->num, 0, BC_NUM_SIZE(places_rdx)); |
| n->len += places_rdx; |
| } |
| |
| if (places > n->scale) n->scale = n->rdx = 0; |
| else { |
| n->scale -= places; |
| n->rdx = BC_NUM_RDX(n->scale); |
| } |
| |
| if (shift) bc_num_shift(n, BC_BASE_DIGS - dig); |
| |
| bc_num_clean(n); |
| } |
| |
| void bc_num_shiftRight(BcNum *restrict n, size_t places) { |
| |
| BcBigDig dig; |
| size_t places_rdx, scale, scale_mod, int_len, expand; |
| bool shift; |
| |
| if (!places) return; |
| if (BC_NUM_ZERO(n)) { |
| n->scale += places; |
| bc_num_expand(n, BC_NUM_RDX(n->scale)); |
| return; |
| } |
| |
| dig = (BcBigDig) (places % BC_BASE_DIGS); |
| shift = (dig != 0); |
| scale = n->scale; |
| scale_mod = scale % BC_BASE_DIGS; |
| scale_mod = scale_mod ? scale_mod : BC_BASE_DIGS; |
| int_len = bc_num_int(n); |
| places_rdx = BC_NUM_RDX(places); |
| |
| if (scale_mod + dig > BC_BASE_DIGS) { |
| expand = places_rdx - 1; |
| places_rdx = 1; |
| } |
| else { |
| expand = places_rdx; |
| places_rdx = 0; |
| } |
| |
| if (expand > int_len) expand -= int_len; |
| else expand = 0; |
| |
| bc_num_extend(n, places_rdx * BC_BASE_DIGS); |
| bc_num_expand(n, bc_vm_growSize(expand, n->len)); |
| memset(n->num + n->len, 0, BC_NUM_SIZE(expand)); |
| n->len += expand; |
| n->scale = n->rdx = 0; |
| |
| if (shift) bc_num_shift(n, dig); |
| |
| n->scale = scale + places; |
| n->rdx = BC_NUM_RDX(n->scale); |
| |
| bc_num_clean(n); |
| |
| assert(n->rdx <= n->len && n->len <= n->cap); |
| assert(n->rdx == BC_NUM_RDX(n->scale)); |
| } |
| |
| static void bc_num_inv(BcNum *a, BcNum *b, size_t scale) { |
| |
| BcNum one; |
| BcDig num[2]; |
| |
| assert(BC_NUM_NONZERO(a)); |
| |
| bc_num_setup(&one, num, sizeof(num) / sizeof(BcDig)); |
| bc_num_one(&one); |
| |
| bc_num_div(&one, a, b, scale); |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| static void bc_num_intop(const BcNum *a, const BcNum *b, BcNum *restrict c, |
| BcBigDig *v) |
| { |
| if (BC_ERR(b->rdx)) bc_vm_err(BC_ERR_MATH_NON_INTEGER); |
| bc_num_copy(c, a); |
| bc_num_bigdig(b, v); |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| static void bc_num_as(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) { |
| |
| BcDig *ptr_c, *ptr_l, *ptr_r; |
| size_t i, min_rdx, max_rdx, diff, a_int, b_int, min_len, max_len, max_int; |
| size_t len_l, len_r; |
| bool b_neg, do_sub, do_rev_sub, carry; |
| |
| // Because this function doesn't need to use scale (per the bc spec), |
| // I am hijacking it to say whether it's doing an add or a subtract. |
| // Convert substraction to addition of negative second operand. |
| |
| if (BC_NUM_ZERO(b)) { |
| bc_num_copy(c, a); |
| return; |
| } |
| if (BC_NUM_ZERO(a)) { |
| bc_num_copy(c, b); |
| c->neg = (b->neg != sub); |
| return; |
| } |
| |
| // Invert sign of b if it is to be subtracted. This operation must |
| // preced the tests for any of the operands being zero. |
| b_neg = (b->neg != sub); |
| |
| // Actually add the numbers if their signs are equal, else subtract. |
| do_sub = (a->neg != b_neg); |
| |
| a_int = bc_num_int(a); |
| b_int = bc_num_int(b); |
| max_int = BC_MAX(a_int, b_int); |
| |
| min_rdx = BC_MIN(a->rdx, b->rdx); |
| max_rdx = BC_MAX(a->rdx, b->rdx); |
| diff = max_rdx - min_rdx; |
| |
| max_len = max_int + max_rdx; |
| |
| if (do_sub) { |
| |
| // Check whether b has to be subtracted from a or a from b. |
| if (a_int != b_int) do_rev_sub = (a_int < b_int); |
| else if (a->rdx > b->rdx) |
| do_rev_sub = (bc_num_compare(a->num + diff, b->num, b->len) < 0); |
| else |
| do_rev_sub = (bc_num_compare(a->num, b->num + diff, a->len) <= 0); |
| } |
| else { |
| |
| // The result array of the addition might come out one element |
| // longer than the bigger of the operand arrays. |
| max_len += 1; |
| do_rev_sub = (a_int < b_int); |
| } |
| |
| assert(max_len <= c->cap); |
| |
| if (do_rev_sub) { |
| ptr_l = b->num; |
| ptr_r = a->num; |
| len_l = b->len; |
| len_r = a->len; |
| } |
| else { |
| ptr_l = a->num; |
| ptr_r = b->num; |
| len_l = a->len; |
| len_r = b->len; |
| } |
| |
| ptr_c = c->num; |
| carry = false; |
| |
| if (diff) { |
| |
| // If the rdx values of the operands do not match, the result will |
| // have low end elements that are the positive or negative trailing |
| // elements of the operand with higher rdx value. |
| if ((a->rdx > b->rdx) != do_rev_sub) { |
| |
| // !do_rev_sub && a->rdx > b->rdx || do_rev_sub && b->rdx > a->rdx |
| // The left operand has BcDig values that need to be copied, |
| // either from a or from b (in case of a reversed subtraction). |
| memcpy(ptr_c, ptr_l, BC_NUM_SIZE(diff)); |
| ptr_l += diff; |
| len_l -= diff; |
| } |
| else { |
| |
| // The right operand has BcDig values that need to be copied |
| // or subtracted from zero (in case of a subtraction). |
| if (do_sub) { |
| |
| // do_sub (do_rev_sub && a->rdx > b->rdx || |
| // !do_rev_sub && b->rdx > a->rdx) |
| for (i = 0; i < diff; i++) |
| ptr_c[i] = bc_num_subDigits(0, ptr_r[i], &carry); |
| } |
| else { |
| |
| // !do_sub && b->rdx > a->rdx |
| memcpy(ptr_c, ptr_r, BC_NUM_SIZE(diff)); |
| } |
| |
| ptr_r += diff; |
| len_r -= diff; |
| } |
| |
| ptr_c += diff; |
| } |
| |
| min_len = BC_MIN(len_l, len_r); |
| |
| // After dealing with possible low array elements that depend on only one |
| // operand, the actual add or subtract can be performed as if the rdx of |
| // both operands was the same. |
| // Inlining takes care of eliminating constant zero arguments to |
| // addDigit/subDigit (checked in disassembly of resulting bc binary |
| // compiled with gcc and clang). |
| if (do_sub) { |
| for (i = 0; i < min_len; ++i) |
| ptr_c[i] = bc_num_subDigits(ptr_l[i], ptr_r[i], &carry); |
| for (; i < len_l; ++i) ptr_c[i] = bc_num_subDigits(ptr_l[i], 0, &carry); |
| } |
| else { |
| for (i = 0; i < min_len; ++i) |
| ptr_c[i] = bc_num_addDigits(ptr_l[i], ptr_r[i], &carry); |
| for (; i < len_l; ++i) ptr_c[i] = bc_num_addDigits(ptr_l[i], 0, &carry); |
| ptr_c[i] = bc_num_addDigits(0, 0, &carry); |
| } |
| |
| assert(carry == false); |
| |
| // The result has the same sign as a, unless the operation was a |
| // reverse subtraction (b - a). |
| c->neg = (a->neg != (do_sub && do_rev_sub)); |
| c->len = max_len; |
| c->rdx = max_rdx; |
| c->scale = BC_MAX(a->scale, b->scale); |
| |
| bc_num_clean(c); |
| } |
| |
| static void bc_num_m_simp(const BcNum *a, const BcNum *b, BcNum *restrict c) |
| { |
| size_t i, alen = a->len, blen = b->len, clen; |
| BcDig *ptr_a = a->num, *ptr_b = b->num, *ptr_c; |
| BcBigDig sum = 0, carry = 0; |
| |
| assert(sizeof(sum) >= sizeof(BcDig) * 2); |
| assert(!a->rdx && !b->rdx); |
| |
| clen = bc_vm_growSize(alen, blen); |
| bc_num_expand(c, bc_vm_growSize(clen, 1)); |
| |
| ptr_c = c->num; |
| memset(ptr_c, 0, BC_NUM_SIZE(c->cap)); |
| |
| for (i = 0; i < clen; ++i) { |
| |
| ssize_t sidx = (ssize_t) (i - blen + 1); |
| size_t j = (size_t) BC_MAX(0, sidx), k = BC_MIN(i, blen - 1); |
| |
| for (; j < alen && k < blen; ++j, --k) { |
| |
| sum += ((BcBigDig) ptr_a[j]) * ((BcBigDig) ptr_b[k]); |
| |
| if (sum >= ((BcBigDig) BC_BASE_POW) * BC_BASE_POW) { |
| carry += sum / BC_BASE_POW; |
| sum %= BC_BASE_POW; |
| } |
| } |
| |
| if (sum >= BC_BASE_POW) { |
| carry += sum / BC_BASE_POW; |
| sum %= BC_BASE_POW; |
| } |
| |
| ptr_c[i] = (BcDig) sum; |
| assert(ptr_c[i] < BC_BASE_POW); |
| sum = carry; |
| carry = 0; |
| } |
| |
| // This should always be true because there should be no carry on the last |
| // digit; multiplication never goes above the sum of both lengths. |
| assert(!sum); |
| |
| c->len = clen; |
| } |
| |
| static void bc_num_shiftAddSub(BcNum *restrict n, const BcNum *restrict a, |
| size_t shift, BcNumShiftAddOp op) |
| { |
| assert(n->len >= shift + a->len); |
| assert(!n->rdx && !a->rdx); |
| op(n->num + shift, a->num, a->len); |
| } |
| |
| static void bc_num_k(BcNum *a, BcNum *b, BcNum *restrict c) { |
| |
| size_t max, max2, total; |
| BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp; |
| BcDig *digs, *dig_ptr; |
| BcNumShiftAddOp op; |
| bool aone = BC_NUM_ONE(a); |
| |
| assert(BC_NUM_ZERO(c)); |
| |
| if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) return; |
| if (aone || BC_NUM_ONE(b)) { |
| bc_num_copy(c, aone ? b : a); |
| if ((aone && a->neg) || b->neg) c->neg = !c->neg; |
| return; |
| } |
| if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN) { |
| bc_num_m_simp(a, b, c); |
| return; |
| } |
| |
| max = BC_MAX(a->len, b->len); |
| max = BC_MAX(max, BC_NUM_DEF_SIZE); |
| max2 = (max + 1) / 2; |
| |
| total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max); |
| |
| BC_SIG_LOCK; |
| |
| digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total)); |
| |
| bc_num_setup(&l1, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&h1, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&l2, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&h2, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&m1, dig_ptr, max); |
| dig_ptr += max; |
| bc_num_setup(&m2, dig_ptr, max); |
| max = bc_vm_growSize(max, 1); |
| bc_num_init(&z0, max); |
| bc_num_init(&z1, max); |
| bc_num_init(&z2, max); |
| max = bc_vm_growSize(max, max) + 1; |
| bc_num_init(&temp, max); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_split(a, max2, &l1, &h1); |
| bc_num_split(b, max2, &l2, &h2); |
| |
| bc_num_expand(c, max); |
| c->len = max; |
| memset(c->num, 0, BC_NUM_SIZE(c->len)); |
| |
| bc_num_sub(&h1, &l1, &m1, 0); |
| bc_num_sub(&l2, &h2, &m2, 0); |
| |
| if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) { |
| |
| bc_num_m(&h1, &h2, &z2, 0); |
| bc_num_clean(&z2); |
| |
| bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays); |
| bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays); |
| } |
| |
| if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) { |
| |
| bc_num_m(&l1, &l2, &z0, 0); |
| bc_num_clean(&z0); |
| |
| bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays); |
| bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays); |
| } |
| |
| if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) { |
| |
| bc_num_m(&m1, &m2, &z1, 0); |
| bc_num_clean(&z1); |
| |
| op = (m1.neg != m2.neg) ? bc_num_subArrays : bc_num_addArrays; |
| bc_num_shiftAddSub(c, &z1, max2, op); |
| } |
| |
| err: |
| BC_SIG_MAYLOCK; |
| free(digs); |
| bc_num_free(&temp); |
| bc_num_free(&z2); |
| bc_num_free(&z1); |
| bc_num_free(&z0); |
| BC_LONGJMP_CONT; |
| } |
| |
| static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcNum cpa, cpb; |
| size_t ascale, bscale, ardx, brdx, azero = 0, bzero = 0, zero, len, rscale; |
| |
| bc_num_zero(c); |
| ascale = a->scale; |
| bscale = b->scale; |
| scale = BC_MAX(scale, ascale); |
| scale = BC_MAX(scale, bscale); |
| |
| rscale = ascale + bscale; |
| scale = BC_MIN(rscale, scale); |
| |
| if ((a->len == 1 || b->len == 1) && !a->rdx && !b->rdx) { |
| |
| BcNum *operand; |
| BcBigDig dig; |
| |
| if (a->len == 1) { |
| dig = (BcBigDig) a->num[0]; |
| operand = b; |
| } |
| else { |
| dig = (BcBigDig) b->num[0]; |
| operand = a; |
| } |
| |
| bc_num_mulArray(operand, dig, c); |
| |
| if (BC_NUM_NONZERO(c)) c->neg = (a->neg != b->neg); |
| |
| return; |
| } |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&cpa, a->len + a->rdx); |
| bc_num_init(&cpb, b->len + b->rdx); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_copy(&cpa, a); |
| bc_num_copy(&cpb, b); |
| |
| cpa.neg = cpb.neg = false; |
| |
| ardx = cpa.rdx * BC_BASE_DIGS; |
| bc_num_shiftLeft(&cpa, ardx); |
| |
| brdx = cpb.rdx * BC_BASE_DIGS; |
| bc_num_shiftLeft(&cpb, brdx); |
| |
| // We need to reset the jump here because azero and bzero are used in the |
| // cleanup, and local variables are not guaranteed to be the same after a |
| // jump. |
| BC_SIG_LOCK; |
| |
| BC_UNSETJMP; |
| |
| azero = bc_num_shiftZero(&cpa); |
| bzero = bc_num_shiftZero(&cpb); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_clean(&cpa); |
| bc_num_clean(&cpb); |
| |
| bc_num_k(&cpa, &cpb, c); |
| |
| zero = bc_vm_growSize(azero, bzero); |
| len = bc_vm_growSize(c->len, zero); |
| |
| bc_num_expand(c, len); |
| bc_num_shiftLeft(c, (len - c->len) * BC_BASE_DIGS); |
| bc_num_shiftRight(c, ardx + brdx); |
| |
| bc_num_retireMul(c, scale, a->neg, b->neg); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_unshiftZero(&cpb, bzero); |
| bc_num_free(&cpb); |
| bc_num_unshiftZero(&cpa, azero); |
| bc_num_free(&cpa); |
| BC_LONGJMP_CONT; |
| } |
| |
| static bool bc_num_nonZeroDig(BcDig *restrict a, size_t len) { |
| size_t i; |
| bool nonzero = false; |
| for (i = len - 1; !nonzero && i < len; --i) nonzero = (a[i] != 0); |
| return nonzero; |
| } |
| |
| static ssize_t bc_num_divCmp(const BcDig *a, const BcNum *b, size_t len) { |
| |
| ssize_t cmp; |
| |
| if (b->len > len && a[len]) cmp = bc_num_compare(a, b->num, len + 1); |
| else if (b->len <= len) { |
| if (a[len]) cmp = 1; |
| else cmp = bc_num_compare(a, b->num, len); |
| } |
| else cmp = -1; |
| |
| return cmp; |
| } |
| |
| static void bc_num_divExtend(BcNum *restrict a, BcNum *restrict b, |
| BcBigDig divisor) |
| { |
| size_t pow; |
| |
| assert(divisor < BC_BASE_POW); |
| |
| pow = BC_BASE_DIGS - bc_num_log10((size_t) divisor); |
| |
| bc_num_shiftLeft(a, pow); |
| bc_num_shiftLeft(b, pow); |
| } |
| |
| static void bc_num_d_long(BcNum *restrict a, BcNum *restrict b, |
| BcNum *restrict c, size_t scale) |
| { |
| BcBigDig divisor; |
| size_t len, end, i, rdx; |
| BcNum cpb; |
| bool nonzero = false; |
| |
| assert(b->len < a->len); |
| len = b->len; |
| end = a->len - len; |
| assert(len >= 1); |
| |
| bc_num_expand(c, a->len); |
| memset(c->num, 0, c->cap * sizeof(BcDig)); |
| |
| c->rdx = a->rdx; |
| c->scale = a->scale; |
| c->len = a->len; |
| |
| divisor = (BcBigDig) b->num[len - 1]; |
| |
| if (len > 1 && bc_num_nonZeroDig(b->num, len - 1)) { |
| |
| nonzero = (divisor > 1 << ((10 * BC_BASE_DIGS) / 6 + 1)); |
| |
| if (!nonzero) { |
| |
| bc_num_divExtend(a, b, divisor); |
| |
| len = BC_MAX(a->len, b->len); |
| bc_num_expand(a, len + 1); |
| |
| if (len + 1 > a->len) a->len = len + 1; |
| |
| len = b->len; |
| end = a->len - len; |
| divisor = (BcBigDig) b->num[len - 1]; |
| |
| nonzero = bc_num_nonZeroDig(b->num, len - 1); |
| } |
| } |
| |
| divisor += nonzero; |
| |
| bc_num_expand(c, a->len); |
| memset(c->num, 0, BC_NUM_SIZE(c->cap)); |
| |
| assert(c->scale >= scale); |
| rdx = c->rdx - BC_NUM_RDX(scale); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&cpb, len + 1); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| i = end - 1; |
| |
| for (; i < end && i >= rdx && BC_NUM_NONZERO(a); --i) { |
| |
| ssize_t cmp; |
| BcDig *n; |
| BcBigDig result; |
| |
| n = a->num + i; |
| assert(n >= a->num); |
| result = 0; |
| |
| cmp = bc_num_divCmp(n, b, len); |
| |
| while (cmp >= 0) { |
| |
| BcBigDig n1, dividend, q; |
| |
| n1 = (BcBigDig) n[len]; |
| dividend = n1 * BC_BASE_POW + (BcBigDig) n[len - 1]; |
| q = (dividend / divisor); |
| |
| if (q <= 1) { |
| q = 1; |
| bc_num_subArrays(n, b->num, len); |
| } |
| else { |
| |
| assert(q <= BC_BASE_POW); |
| |
| bc_num_mulArray(b, (BcBigDig) q, &cpb); |
| bc_num_subArrays(n, cpb.num, cpb.len); |
| } |
| |
| result += q; |
| assert(result <= BC_BASE_POW); |
| |
| if (nonzero) cmp = bc_num_divCmp(n, b, len); |
| else cmp = -1; |
| } |
| |
| assert(result < BC_BASE_POW); |
| |
| c->num[i] = (BcDig) result; |
| } |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&cpb); |
| BC_LONGJMP_CONT; |
| } |
| |
| static void bc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| size_t len; |
| BcNum cpa, cpb; |
| |
| if (BC_NUM_ZERO(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(c, scale); |
| return; |
| } |
| if (BC_NUM_ONE(b)) { |
| bc_num_copy(c, a); |
| bc_num_retireMul(c, scale, a->neg, b->neg); |
| return; |
| } |
| if (!a->rdx && !b->rdx && b->len == 1 && !scale) { |
| BcBigDig rem; |
| bc_num_divArray(a, (BcBigDig) b->num[0], c, &rem); |
| bc_num_retireMul(c, scale, a->neg, b->neg); |
| return; |
| } |
| |
| len = bc_num_mulReq(a, b, scale); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&cpa, len); |
| bc_num_copy(&cpa, a); |
| bc_num_createCopy(&cpb, b); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| len = b->len; |
| |
| if (len > cpa.len) { |
| bc_num_expand(&cpa, bc_vm_growSize(len, 2)); |
| bc_num_extend(&cpa, (len - cpa.len) * BC_BASE_DIGS); |
| } |
| |
| cpa.scale = cpa.rdx * BC_BASE_DIGS; |
| |
| bc_num_extend(&cpa, b->scale); |
| cpa.rdx -= BC_NUM_RDX(b->scale); |
| cpa.scale = cpa.rdx * BC_BASE_DIGS; |
| |
| if (scale > cpa.scale) { |
| bc_num_extend(&cpa, scale); |
| cpa.scale = cpa.rdx * BC_BASE_DIGS; |
| } |
| |
| if (cpa.cap == cpa.len) bc_num_expand(&cpa, bc_vm_growSize(cpa.len, 1)); |
| |
| // We want an extra zero in front to make things simpler. |
| cpa.num[cpa.len++] = 0; |
| |
| if (cpa.rdx == cpa.len) cpa.len = bc_num_nonzeroLen(&cpa); |
| if (cpb.rdx == cpb.len) cpb.len = bc_num_nonzeroLen(&cpb); |
| cpb.scale = cpb.rdx = 0; |
| |
| bc_num_d_long(&cpa, &cpb, c, scale); |
| |
| bc_num_retireMul(c, scale, a->neg, b->neg); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&cpb); |
| bc_num_free(&cpa); |
| BC_LONGJMP_CONT; |
| } |
| |
| static void bc_num_r(BcNum *a, BcNum *b, BcNum *restrict c, |
| BcNum *restrict d, size_t scale, size_t ts) |
| { |
| BcNum temp; |
| bool neg; |
| |
| if (BC_NUM_ZERO(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(c, ts); |
| bc_num_setToZero(d, ts); |
| return; |
| } |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&temp, d->cap); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_d(a, b, c, scale); |
| |
| if (scale) scale = ts + 1; |
| |
| bc_num_m(c, b, &temp, scale); |
| bc_num_sub(a, &temp, d, scale); |
| |
| if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale); |
| |
| neg = d->neg; |
| bc_num_retireMul(d, ts, a->neg, b->neg); |
| d->neg = BC_NUM_NONZERO(d) ? neg : false; |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&temp); |
| BC_LONGJMP_CONT; |
| } |
| |
| static void bc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcNum c1; |
| size_t ts; |
| |
| ts = bc_vm_growSize(scale, b->scale); |
| ts = BC_MAX(ts, a->scale); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&c1, bc_num_mulReq(a, b, ts)); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_r(a, b, &c1, c, scale, ts); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&c1); |
| BC_LONGJMP_CONT; |
| } |
| |
| static void bc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcNum copy; |
| BcBigDig pow = 0; |
| size_t i, powrdx, resrdx; |
| bool neg, zero; |
| |
| if (BC_ERR(b->rdx)) bc_vm_err(BC_ERR_MATH_NON_INTEGER); |
| |
| if (BC_NUM_ZERO(b)) { |
| bc_num_one(c); |
| return; |
| } |
| if (BC_NUM_ZERO(a)) { |
| if (b->neg) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); |
| bc_num_setToZero(c, scale); |
| return; |
| } |
| if (BC_NUM_ONE(b)) { |
| if (!b->neg) bc_num_copy(c, a); |
| else bc_num_inv(a, c, scale); |
| return; |
| } |
| |
| BC_SIG_LOCK; |
| |
| neg = b->neg; |
| b->neg = false; |
| bc_num_bigdig(b, &pow); |
| b->neg = neg; |
| |
| bc_num_createCopy(©, a); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| if (!neg) { |
| size_t max = BC_MAX(scale, a->scale), scalepow = a->scale * pow; |
| scale = BC_MIN(scalepow, max); |
| } |
| |
| for (powrdx = a->scale; !(pow & 1); pow >>= 1) { |
| powrdx <<= 1; |
| bc_num_mul(©, ©, ©, powrdx); |
| } |
| |
| bc_num_copy(c, ©); |
| resrdx = powrdx; |
| |
| while (pow >>= 1) { |
| |
| powrdx <<= 1; |
| bc_num_mul(©, ©, ©, powrdx); |
| |
| if (pow & 1) { |
| resrdx += powrdx; |
| bc_num_mul(c, ©, c, resrdx); |
| } |
| } |
| |
| if (neg) bc_num_inv(c, c, scale); |
| |
| if (c->scale > scale) bc_num_truncate(c, c->scale - scale); |
| |
| // We can't use bc_num_clean() here. |
| for (zero = true, i = 0; zero && i < c->len; ++i) zero = !c->num[i]; |
| if (zero) bc_num_setToZero(c, scale); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(©); |
| BC_LONGJMP_CONT; |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| static void bc_num_place(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcBigDig val = 0; |
| |
| BC_UNUSED(scale); |
| |
| bc_num_intop(a, b, c, &val); |
| |
| if (val < c->scale) bc_num_truncate(c, c->scale - val); |
| else if (val > c->scale) bc_num_extend(c, val - c->scale); |
| } |
| |
| static void bc_num_left(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcBigDig val = 0; |
| |
| BC_UNUSED(scale); |
| |
| bc_num_intop(a, b, c, &val); |
| |
| bc_num_shiftLeft(c, (size_t) val); |
| } |
| |
| static void bc_num_right(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { |
| |
| BcBigDig val = 0; |
| |
| BC_UNUSED(scale); |
| |
| bc_num_intop(a, b, c, &val); |
| |
| if (BC_NUM_ZERO(c)) return; |
| |
| bc_num_shiftRight(c, (size_t) val); |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| static void bc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale, |
| BcNumBinaryOp op, size_t req) |
| { |
| BcNum num2, *ptr_a, *ptr_b; |
| bool init = false; |
| |
| assert(a != NULL && b != NULL && c != NULL && op != NULL); |
| |
| BC_SIG_LOCK; |
| |
| if (c == a) { |
| |
| ptr_a = &num2; |
| |
| memcpy(ptr_a, c, sizeof(BcNum)); |
| init = true; |
| } |
| else ptr_a = a; |
| |
| if (c == b) { |
| |
| ptr_b = &num2; |
| |
| if (c != a) { |
| memcpy(ptr_b, c, sizeof(BcNum)); |
| init = true; |
| } |
| } |
| else ptr_b = b; |
| |
| if (init) { |
| |
| bc_num_init(c, req); |
| |
| BC_SETJMP_LOCKED(err); |
| BC_SIG_UNLOCK; |
| } |
| else { |
| BC_SIG_UNLOCK; |
| bc_num_expand(c, req); |
| } |
| |
| op(ptr_a, ptr_b, c, scale); |
| |
| assert(!c->neg || BC_NUM_NONZERO(c)); |
| assert(c->rdx <= c->len || !c->len); |
| assert(!c->len || c->num[c->len - 1] || c->rdx == c->len); |
| |
| err: |
| if (init) { |
| BC_SIG_MAYLOCK; |
| bc_num_free(&num2); |
| BC_LONGJMP_CONT; |
| } |
| } |
| |
| #if !defined(NDEBUG) || BC_ENABLE_LIBRARY |
| bool bc_num_strValid(const char *restrict val) { |
| |
| bool radix = false; |
| size_t i, len = strlen(val); |
| |
| if (!len) return true; |
| |
| for (i = 0; i < len; ++i) { |
| |
| BcDig c = val[i]; |
| |
| if (c == '.') { |
| |
| if (radix) return false; |
| |
| radix = true; |
| continue; |
| } |
| |
| if (!(isdigit(c) || isupper(c))) return false; |
| } |
| |
| return true; |
| } |
| #endif // !defined(NDEBUG) || BC_ENABLE_LIBRARY |
| |
| static BcBigDig bc_num_parseChar(char c, size_t base_t) { |
| |
| if (isupper(c)) { |
| c = BC_NUM_NUM_LETTER(c); |
| c = ((size_t) c) >= base_t ? (char) base_t - 1 : c; |
| } |
| else c -= '0'; |
| |
| return (BcBigDig) (uchar) c; |
| } |
| |
| static void bc_num_parseDecimal(BcNum *restrict n, const char *restrict val) { |
| |
| size_t len, i, temp, mod; |
| const char *ptr; |
| bool zero = true, rdx; |
| |
| for (i = 0; val[i] == '0'; ++i); |
| |
| val += i; |
| assert(!val[0] || isalnum(val[0]) || val[0] == '.'); |
| |
| // All 0's. We can just return, since this |
| // procedure expects a virgin (already 0) BcNum. |
| if (!val[0]) return; |
| |
| len = strlen(val); |
| |
| ptr = strchr(val, '.'); |
| rdx = (ptr != NULL); |
| |
| for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i); |
| |
| n->scale = (size_t) (rdx * (((uintptr_t) (val + len)) - |
| (((uintptr_t) ptr) + 1))); |
| n->rdx = BC_NUM_RDX(n->scale); |
| |
| i = len - (ptr == val ? 0 : i) - rdx; |
| temp = BC_NUM_ROUND_POW(i); |
| mod = n->scale % BC_BASE_DIGS; |
| i = mod ? BC_BASE_DIGS - mod : 0; |
| n->len = ((temp + i) / BC_BASE_DIGS); |
| |
| bc_num_expand(n, n->len); |
| memset(n->num, 0, BC_NUM_SIZE(n->len)); |
| |
| if (zero) n->len = n->rdx = 0; |
| else { |
| |
| BcBigDig exp, pow; |
| |
| assert(i <= BC_NUM_BIGDIG_MAX); |
| |
| exp = (BcBigDig) i; |
| pow = bc_num_pow10[exp]; |
| |
| for (i = len - 1; i < len; --i, ++exp) { |
| |
| char c = val[i]; |
| |
| if (c == '.') exp -= 1; |
| else { |
| |
| size_t idx = exp / BC_BASE_DIGS; |
| |
| if (isupper(c)) c = '9'; |
| n->num[idx] += (((BcBigDig) c) - '0') * pow; |
| |
| if ((exp + 1) % BC_BASE_DIGS == 0) pow = 1; |
| else pow *= BC_BASE; |
| } |
| } |
| } |
| } |
| |
| static void bc_num_parseBase(BcNum *restrict n, const char *restrict val, |
| BcBigDig base) |
| { |
| BcNum temp, mult1, mult2, result1, result2, *m1, *m2, *ptr; |
| char c = 0; |
| bool zero = true; |
| BcBigDig v; |
| size_t i, digs, len = strlen(val); |
| |
| for (i = 0; zero && i < len; ++i) zero = (val[i] == '.' || val[i] == '0'); |
| if (zero) return; |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&temp, BC_NUM_BIGDIG_LOG10); |
| bc_num_init(&mult1, BC_NUM_BIGDIG_LOG10); |
| |
| BC_SETJMP_LOCKED(int_err); |
| |
| BC_SIG_UNLOCK; |
| |
| for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) { |
| |
| v = bc_num_parseChar(c, base); |
| |
| bc_num_mulArray(n, base, &mult1); |
| bc_num_bigdig2num(&temp, v); |
| bc_num_add(&mult1, &temp, n, 0); |
| } |
| |
| if (i == len && !(c = val[i])) goto int_err; |
| |
| assert(c == '.'); |
| |
| BC_SIG_LOCK; |
| |
| BC_UNSETJMP; |
| |
| bc_num_init(&mult2, BC_NUM_BIGDIG_LOG10); |
| bc_num_init(&result1, BC_NUM_DEF_SIZE); |
| bc_num_init(&result2, BC_NUM_DEF_SIZE); |
| bc_num_one(&mult1); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| m1 = &mult1; |
| m2 = &mult2; |
| |
| for (i += 1, digs = 0; i < len && (c = val[i]); ++i, ++digs) { |
| |
| v = bc_num_parseChar(c, base); |
| |
| bc_num_mulArray(&result1, base, &result2); |
| |
| bc_num_bigdig2num(&temp, v); |
| bc_num_add(&result2, &temp, &result1, 0); |
| bc_num_mulArray(m1, base, m2); |
| |
| if (m2->len < m2->rdx) m2->len = m2->rdx; |
| |
| ptr = m1; |
| m1 = m2; |
| m2 = ptr; |
| } |
| |
| // This one cannot be a divide by 0 because mult starts out at 1, then is |
| // multiplied by base, and base cannot be 0, so mult cannot be 0. |
| bc_num_div(&result1, m1, &result2, digs * 2); |
| bc_num_truncate(&result2, digs); |
| bc_num_add(n, &result2, n, digs); |
| |
| if (BC_NUM_NONZERO(n)) { |
| if (n->scale < digs) bc_num_extend(n, digs - n->scale); |
| } |
| else bc_num_zero(n); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&result2); |
| bc_num_free(&result1); |
| bc_num_free(&mult2); |
| int_err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&mult1); |
| bc_num_free(&temp); |
| BC_LONGJMP_CONT; |
| } |
| |
| static inline void bc_num_printNewline(void) { |
| #if !BC_ENABLE_LIBRARY |
| if (vm.nchars >= vm.line_len - 1) { |
| bc_vm_putchar('\\'); |
| bc_vm_putchar('\n'); |
| } |
| #endif // !BC_ENABLE_LIBRARY |
| } |
| |
| static void bc_num_putchar(int c) { |
| if (c != '\n') bc_num_printNewline(); |
| bc_vm_putchar(c); |
| } |
| |
| #if DC_ENABLED && !BC_ENABLE_LIBRARY |
| static void bc_num_printChar(size_t n, size_t len, bool rdx) { |
| BC_UNUSED(rdx); |
| BC_UNUSED(len); |
| assert(len == 1); |
| bc_vm_putchar((uchar) n); |
| } |
| #endif // DC_ENABLED && !BC_ENABLE_LIBRARY |
| |
| static void bc_num_printDigits(size_t n, size_t len, bool rdx) { |
| |
| size_t exp, pow; |
| |
| bc_num_putchar(rdx ? '.' : ' '); |
| |
| for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE); |
| |
| for (exp = 0; exp < len; pow /= BC_BASE, ++exp) { |
| size_t dig = n / pow; |
| n -= dig * pow; |
| bc_num_putchar(((uchar) dig) + '0'); |
| } |
| } |
| |
| static void bc_num_printHex(size_t n, size_t len, bool rdx) { |
| |
| BC_UNUSED(len); |
| |
| assert(len == 1); |
| |
| if (rdx) bc_num_putchar('.'); |
| |
| bc_num_putchar(bc_num_hex_digits[n]); |
| } |
| |
| static void bc_num_printDecimal(const BcNum *restrict n) { |
| |
| size_t i, j, rdx = n->rdx; |
| bool zero = true; |
| size_t buffer[BC_BASE_DIGS]; |
| |
| if (n->neg) bc_num_putchar('-'); |
| |
| for (i = n->len - 1; i < n->len; --i) { |
| |
| BcDig n9 = n->num[i]; |
| size_t temp; |
| bool irdx = (i == rdx - 1); |
| |
| zero = (zero & !irdx); |
| temp = n->scale % BC_BASE_DIGS; |
| temp = i || !temp ? 0 : BC_BASE_DIGS - temp; |
| |
| memset(buffer, 0, BC_BASE_DIGS * sizeof(size_t)); |
| |
| for (j = 0; n9 && j < BC_BASE_DIGS; ++j) { |
| buffer[j] = ((size_t) n9) % BC_BASE; |
| n9 /= BC_BASE; |
| } |
| |
| for (j = BC_BASE_DIGS - 1; j < BC_BASE_DIGS && j >= temp; --j) { |
| bool print_rdx = (irdx & (j == BC_BASE_DIGS - 1)); |
| zero = (zero && buffer[j] == 0); |
| if (!zero) bc_num_printHex(buffer[j], 1, print_rdx); |
| } |
| } |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| static void bc_num_printExponent(const BcNum *restrict n, bool eng) { |
| |
| bool neg = (n->len <= n->rdx); |
| BcNum temp, exp; |
| size_t places, mod; |
| BcDig digs[BC_NUM_BIGDIG_LOG10]; |
| |
| BC_SIG_LOCK; |
| |
| bc_num_createCopy(&temp, n); |
| |
| BC_SETJMP_LOCKED(exit); |
| |
| BC_SIG_UNLOCK; |
| |
| if (neg) { |
| |
| size_t i, idx = bc_num_nonzeroLen(n) - 1; |
| |
| places = 1; |
| |
| for (i = BC_BASE_DIGS - 1; i < BC_BASE_DIGS; --i) { |
| if (bc_num_pow10[i] > (BcBigDig) n->num[idx]) places += 1; |
| else break; |
| } |
| |
| places += (n->rdx - (idx + 1)) * BC_BASE_DIGS; |
| mod = places % 3; |
| |
| if (eng && mod != 0) places += 3 - mod; |
| bc_num_shiftLeft(&temp, places); |
| } |
| else { |
| places = bc_num_intDigits(n) - 1; |
| mod = places % 3; |
| if (eng && mod != 0) places -= 3 - (3 - mod); |
| bc_num_shiftRight(&temp, places); |
| } |
| |
| bc_num_printDecimal(&temp); |
| bc_num_putchar('e'); |
| |
| if (!places) { |
| bc_num_printHex(0, 1, false); |
| goto exit; |
| } |
| |
| if (neg) bc_num_putchar('-'); |
| |
| bc_num_setup(&exp, digs, BC_NUM_BIGDIG_LOG10); |
| bc_num_bigdig2num(&exp, (BcBigDig) places); |
| |
| bc_num_printDecimal(&exp); |
| |
| exit: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&temp); |
| BC_LONGJMP_CONT; |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| static void bc_num_printFixup(BcNum *restrict n, BcBigDig rem, |
| BcBigDig pow, size_t idx) |
| { |
| size_t i, len = n->len - idx; |
| BcBigDig acc; |
| BcDig *a = n->num + idx; |
| |
| if (len < 2) return; |
| |
| for (i = len - 1; i > 0; --i) { |
| |
| acc = ((BcBigDig) a[i]) * rem + ((BcBigDig) a[i - 1]); |
| a[i - 1] = (BcDig) (acc % pow); |
| acc /= pow; |
| acc += (BcBigDig) a[i]; |
| |
| if (acc >= BC_BASE_POW) { |
| |
| if (i == len - 1) { |
| len = bc_vm_growSize(len, 1); |
| bc_num_expand(n, bc_vm_growSize(len, idx)); |
| a = n->num + idx; |
| a[len - 1] = 0; |
| } |
| |
| a[i + 1] += acc / BC_BASE_POW; |
| acc %= BC_BASE_POW; |
| } |
| |
| assert(acc < BC_BASE_POW); |
| a[i] = (BcDig) acc; |
| } |
| |
| n->len = len + idx; |
| } |
| |
| static void bc_num_printPrepare(BcNum *restrict n, BcBigDig rem, |
| BcBigDig pow) |
| { |
| size_t i; |
| |
| for (i = 0; i < n->len; ++i) bc_num_printFixup(n, rem, pow, i); |
| |
| for (i = 0; i < n->len; ++i) { |
| |
| assert(pow == ((BcBigDig) ((BcDig) pow))); |
| |
| if (n->num[i] >= (BcDig) pow) { |
| |
| if (i + 1 == n->len) { |
| n->len = bc_vm_growSize(n->len, 1); |
| bc_num_expand(n, n->len); |
| n->num[i + 1] = 0; |
| } |
| |
| assert(pow < BC_BASE_POW); |
| n->num[i + 1] += n->num[i] / ((BcDig) pow); |
| n->num[i] %= (BcDig) pow; |
| } |
| } |
| } |
| |
| static void bc_num_printNum(BcNum *restrict n, BcBigDig base, |
| size_t len, BcNumDigitOp print) |
| { |
| BcVec stack; |
| BcNum intp, fracp1, fracp2, digit, flen1, flen2, *n1, *n2, *temp; |
| BcBigDig dig = 0, *ptr, acc, exp; |
| size_t i, j; |
| bool radix; |
| BcDig digit_digs[BC_NUM_BIGDIG_LOG10 + 1]; |
| |
| assert(base > 1); |
| |
| if (BC_NUM_ZERO(n)) { |
| print(0, len, false); |
| return; |
| } |
| |
| // This function uses an algorithm that Stefan Esser <se@freebsd.org> came |
| // up with to print the integer part of a number. What it does is convert |
| // intp into a number of the specified base, but it does it directly, |
| // instead of just doing a series of divisions and printing the remainders |
| // in reverse order. |
| // |
| // Let me explain in a bit more detail: |
| // |
| // The algorithm takes the current least significant digit (after intp has |
| // been converted to an integer) and the next to least significant digit, |
| // and it converts the least significant digit into one of the specified |
| // base, putting any overflow into the next to least significant digit. It |
| // iterates through the whole number, from least significant to most |
| // significant, doing this conversion. At the end of that iteration, the |
| // least significant digit is converted, but the others are not, so it |
| // iterates again, starting at the next to least significant digit. It keeps |
| // doing that conversion, skipping one more digit than the last time, until |
| // all digits have been converted. Then it prints them in reverse order. |
| // |
| // That is the gist of the algorithm. It leaves out several things, such as |
| // the fact that digits are not always converted into the specified base, |
| // but into something close, basically a power of the specified base. In |
| // Stefan's words, "You could consider BcDigs to be of base 10^BC_BASE_DIGS |
| // in the normal case and obase^N for the largest value of N that satisfies |
| // obase^N <= 10^BC_BASE_DIGS. [This means that] the result is not in base |
| // "obase", but in base "obase^N", which happens to be printable as a number |
| // of base "obase" without consideration for neighbouring BcDigs." This fact |
| // is what necessitates the existence of the loop later in this function. |
| // |
| // The conversion happens in bc_num_printPrepare() where the outer loop |
| // happens and bc_num_printFixup() where the inner loop, or actual |
| // conversion, happens. |
| |
| BC_SIG_LOCK; |
| |
| bc_vec_init(&stack, sizeof(BcBigDig), NULL); |
| bc_num_init(&fracp1, n->rdx); |
| |
| bc_num_createCopy(&intp, n); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_truncate(&intp, intp.scale); |
| |
| bc_num_sub(n, &intp, &fracp1, 0); |
| |
| if (base != vm.last_base) { |
| |
| vm.last_pow = 1; |
| vm.last_exp = 0; |
| |
| while (vm.last_pow * base <= BC_BASE_POW) { |
| vm.last_pow *= base; |
| vm.last_exp += 1; |
| } |
| |
| vm.last_rem = BC_BASE_POW - vm.last_pow; |
| vm.last_base = base; |
| } |
| |
| exp = vm.last_exp; |
| |
| if (vm.last_rem != 0) bc_num_printPrepare(&intp, vm.last_rem, vm.last_pow); |
| |
| for (i = 0; i < intp.len; ++i) { |
| |
| acc = (BcBigDig) intp.num[i]; |
| |
| for (j = 0; j < exp && (i < intp.len - 1 || acc != 0); ++j) |
| { |
| if (j != exp - 1) { |
| dig = acc % base; |
| acc /= base; |
| } |
| else { |
| dig = acc; |
| acc = 0; |
| } |
| |
| assert(dig < base); |
| |
| bc_vec_push(&stack, &dig); |
| } |
| |
| assert(acc == 0); |
| } |
| |
| for (i = 0; i < stack.len; ++i) { |
| ptr = bc_vec_item_rev(&stack, i); |
| assert(ptr != NULL); |
| print(*ptr, len, false); |
| } |
| |
| if (!n->scale) goto err; |
| |
| BC_SIG_LOCK; |
| |
| BC_UNSETJMP; |
| |
| bc_num_init(&fracp2, n->rdx); |
| bc_num_setup(&digit, digit_digs, sizeof(digit_digs) / sizeof(BcDig)); |
| bc_num_init(&flen1, BC_NUM_BIGDIG_LOG10); |
| bc_num_init(&flen2, BC_NUM_BIGDIG_LOG10); |
| |
| BC_SETJMP_LOCKED(frac_err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_one(&flen1); |
| |
| radix = true; |
| n1 = &flen1; |
| n2 = &flen2; |
| |
| fracp2.scale = n->scale; |
| fracp2.rdx = BC_NUM_RDX(fracp2.scale); |
| |
| while (bc_num_intDigits(n1) < n->scale + 1) { |
| |
| bc_num_expand(&fracp2, fracp1.len + 1); |
| bc_num_mulArray(&fracp1, base, &fracp2); |
| if (fracp2.len < fracp2.rdx) fracp2.len = fracp2.rdx; |
| |
| // fracp is guaranteed to be non-negative and small enough. |
| bc_num_bigdig2(&fracp2, &dig); |
| |
| bc_num_bigdig2num(&digit, dig); |
| bc_num_sub(&fracp2, &digit, &fracp1, 0); |
| |
| print(dig, len, radix); |
| bc_num_mulArray(n1, base, n2); |
| |
| radix = false; |
| temp = n1; |
| n1 = n2; |
| n2 = temp; |
| } |
| |
| frac_err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&flen2); |
| bc_num_free(&flen1); |
| bc_num_free(&fracp2); |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&fracp1); |
| bc_num_free(&intp); |
| bc_vec_free(&stack); |
| BC_LONGJMP_CONT; |
| } |
| |
| static void bc_num_printBase(BcNum *restrict n, BcBigDig base) { |
| |
| size_t width; |
| BcNumDigitOp print; |
| bool neg = n->neg; |
| |
| if (neg) bc_num_putchar('-'); |
| |
| n->neg = false; |
| |
| if (base <= BC_NUM_MAX_POSIX_IBASE) { |
| width = 1; |
| print = bc_num_printHex; |
| } |
| else { |
| assert(base <= BC_BASE_POW); |
| width = bc_num_log10(base - 1); |
| print = bc_num_printDigits; |
| } |
| |
| bc_num_printNum(n, base, width, print); |
| n->neg = neg; |
| } |
| |
| #if DC_ENABLED && !BC_ENABLE_LIBRARY |
| void bc_num_stream(BcNum *restrict n, BcBigDig base) { |
| bc_num_printNum(n, base, 1, bc_num_printChar); |
| } |
| #endif // DC_ENABLED && !BC_ENABLE_LIBRARY |
| |
| void bc_num_setup(BcNum *restrict n, BcDig *restrict num, size_t cap) { |
| assert(n != NULL); |
| n->num = num; |
| n->cap = cap; |
| bc_num_zero(n); |
| } |
| |
| void bc_num_init(BcNum *restrict n, size_t req) { |
| |
| BcDig *num; |
| |
| BC_SIG_ASSERT_LOCKED; |
| |
| assert(n != NULL); |
| |
| req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; |
| |
| if (req == BC_NUM_DEF_SIZE && vm.temps.len) { |
| BcNum *nptr = bc_vec_top(&vm.temps); |
| num = nptr->num; |
| bc_vec_pop(&vm.temps); |
| } |
| else num = bc_vm_malloc(BC_NUM_SIZE(req)); |
| |
| bc_num_setup(n, num, req); |
| } |
| |
| void bc_num_clear(BcNum *restrict n) { |
| n->num = NULL; |
| n->cap = 0; |
| } |
| |
| void bc_num_free(void *num) { |
| |
| BcNum *n = (BcNum*) num; |
| |
| BC_SIG_ASSERT_LOCKED; |
| |
| assert(n != NULL); |
| |
| if (n->cap == BC_NUM_DEF_SIZE) bc_vec_push(&vm.temps, n); |
| else free(n->num); |
| } |
| |
| void bc_num_copy(BcNum *d, const BcNum *s) { |
| assert(d != NULL && s != NULL); |
| if (d == s) return; |
| bc_num_expand(d, s->len); |
| d->len = s->len; |
| d->neg = s->neg; |
| d->rdx = s->rdx; |
| d->scale = s->scale; |
| memcpy(d->num, s->num, BC_NUM_SIZE(d->len)); |
| } |
| |
| void bc_num_createCopy(BcNum *d, const BcNum *s) { |
| BC_SIG_ASSERT_LOCKED; |
| bc_num_init(d, s->len); |
| bc_num_copy(d, s); |
| } |
| |
| void bc_num_createFromBigdig(BcNum *n, BcBigDig val) { |
| BC_SIG_ASSERT_LOCKED; |
| bc_num_init(n, (BC_NUM_BIGDIG_LOG10 - 1) / BC_BASE_DIGS + 1); |
| bc_num_bigdig2num(n, val); |
| } |
| |
| size_t bc_num_scale(const BcNum *restrict n) { |
| return n->scale; |
| } |
| |
| size_t bc_num_len(const BcNum *restrict n) { |
| |
| size_t len = n->len; |
| |
| if (BC_NUM_ZERO(n)) return 0; |
| |
| if (n->rdx == len) { |
| |
| size_t zero, scale; |
| |
| len = bc_num_nonzeroLen(n); |
| |
| scale = n->scale % BC_BASE_DIGS; |
| scale = scale ? scale : BC_BASE_DIGS; |
| |
| zero = bc_num_zeroDigits(n->num + len - 1); |
| |
| len = len * BC_BASE_DIGS - zero - (BC_BASE_DIGS - scale); |
| } |
| else len = bc_num_intDigits(n) + n->scale; |
| |
| return len; |
| } |
| |
| void bc_num_parse(BcNum *restrict n, const char *restrict val, BcBigDig base) { |
| |
| assert(n != NULL && val != NULL && base); |
| assert(base >= BC_NUM_MIN_BASE && base <= vm.maxes[BC_PROG_GLOBALS_IBASE]); |
| assert(bc_num_strValid(val)); |
| |
| if (!val[1]) { |
| BcBigDig dig = bc_num_parseChar(val[0], BC_NUM_MAX_LBASE); |
| bc_num_bigdig2num(n, dig); |
| } |
| else if (base == BC_BASE) bc_num_parseDecimal(n, val); |
| else bc_num_parseBase(n, val, base); |
| } |
| |
| void bc_num_print(BcNum *restrict n, BcBigDig base, bool newline) { |
| |
| assert(n != NULL); |
| assert(BC_ENABLE_EXTRA_MATH || base >= BC_NUM_MIN_BASE); |
| |
| bc_num_printNewline(); |
| |
| if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false); |
| else if (base == BC_BASE) bc_num_printDecimal(n); |
| #if BC_ENABLE_EXTRA_MATH |
| else if (base == 0 || base == 1) bc_num_printExponent(n, base != 0); |
| #endif // BC_ENABLE_EXTRA_MATH |
| else bc_num_printBase(n, base); |
| |
| if (newline) bc_num_putchar('\n'); |
| } |
| |
| void bc_num_bigdig2(const BcNum *restrict n, BcBigDig *result) { |
| |
| // This function returns no errors because it's guaranteed to succeed if |
| // its preconditions are met. Those preconditions include both parameters |
| // being non-NULL, n being non-negative, and n being less than vm.max. If |
| // all of that is true, then we can just convert without worrying about |
| // negative errors or overflow. |
| |
| BcBigDig r = 0; |
| |
| assert(n != NULL && result != NULL); |
| assert(!n->neg); |
| assert(bc_num_cmp(n, &vm.max) < 0); |
| assert(n->len - n->rdx <= 3); |
| |
| // There is a small speed win from unrolling the loop here, and since it |
| // only adds 53 bytes, I decided that it was worth it. |
| switch (n->len - n->rdx) { |
| |
| case 3: |
| { |
| r = (BcBigDig) n->num[n->rdx + 2]; |
| } |
| // Fallthrough. |
| BC_FALLTHROUGH |
| |
| case 2: |
| { |
| r = r * BC_BASE_POW + (BcBigDig) n->num[n->rdx + 1]; |
| } |
| // Fallthrough. |
| BC_FALLTHROUGH |
| |
| case 1: |
| { |
| r = r * BC_BASE_POW + (BcBigDig) n->num[n->rdx]; |
| } |
| } |
| |
| *result = r; |
| } |
| |
| void bc_num_bigdig(const BcNum *restrict n, BcBigDig *result) { |
| |
| assert(n != NULL && result != NULL); |
| |
| if (BC_ERR(n->neg)) bc_vm_err(BC_ERR_MATH_NEGATIVE); |
| if (BC_ERR(bc_num_cmp(n, &vm.max) >= 0)) |
| bc_vm_err(BC_ERR_MATH_OVERFLOW); |
| |
| bc_num_bigdig2(n, result); |
| } |
| |
| void bc_num_bigdig2num(BcNum *restrict n, BcBigDig val) { |
| |
| BcDig *ptr; |
| size_t i; |
| |
| assert(n != NULL); |
| |
| bc_num_zero(n); |
| |
| if (!val) return; |
| |
| bc_num_expand(n, BC_NUM_BIGDIG_LOG10); |
| |
| for (ptr = n->num, i = 0; val; ++i, val /= BC_BASE_POW) |
| ptr[i] = val % BC_BASE_POW; |
| |
| n->len = i; |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH && BC_ENABLE_RAND |
| void bc_num_rng(const BcNum *restrict n, BcRNG *rng) { |
| |
| BcNum pow, temp, temp2, intn, frac; |
| BcRand state1, state2, inc1, inc2; |
| BcDig pow_num[BC_RAND_NUM_SIZE]; |
| |
| bc_num_setup(&pow, pow_num, sizeof(pow_num) / sizeof(BcDig)); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&temp, n->len); |
| bc_num_init(&temp2, n->len); |
| bc_num_init(&frac, n->rdx); |
| bc_num_init(&intn, bc_num_int(n)); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_mul(&vm.max, &vm.max, &pow, 0); |
| |
| memcpy(frac.num, n->num, BC_NUM_SIZE(n->rdx)); |
| frac.len = n->rdx; |
| frac.rdx = n->rdx; |
| frac.scale = n->scale; |
| |
| bc_num_mul(&frac, &pow, &temp, 0); |
| |
| bc_num_truncate(&temp, temp.scale); |
| bc_num_copy(&frac, &temp); |
| |
| memcpy(intn.num, n->num + n->rdx, BC_NUM_SIZE(bc_num_int(n))); |
| intn.len = bc_num_int(n); |
| |
| // This assert is here because it has to be true. It is also here to justify |
| // the use of BC_ERR_SIGNAL_ONLY() on each of the divmod's and mod's below. |
| assert(BC_NUM_NONZERO(&vm.max)); |
| |
| if (BC_NUM_NONZERO(&frac)) { |
| |
| bc_num_divmod(&frac, &vm.max, &temp, &temp2, 0); |
| |
| // frac is guaranteed to be smaller than vm.max * vm.max (pow). |
| // This means that when dividing frac by vm.max, as above, the |
| // quotient and remainder are both guaranteed to be less than vm.max, |
| // which means we can use bc_num_bigdig2() here and not worry about |
| // overflow. |
| bc_num_bigdig2(&temp2, (BcBigDig*) &state1); |
| bc_num_bigdig2(&temp, (BcBigDig*) &state2); |
| } |
| else state1 = state2 = 0; |
| |
| if (BC_NUM_NONZERO(&intn)) { |
| |
| bc_num_divmod(&intn, &vm.max, &temp, &temp2, 0); |
| |
| // Because temp2 is the mod of vm.max, from above, it is guaranteed |
| // to be small enough to use bc_num_bigdig2(). |
| bc_num_bigdig2(&temp2, (BcBigDig*) &inc1); |
| |
| if (bc_num_cmp(&temp, &vm.max) >= 0) { |
| bc_num_copy(&temp2, &temp); |
| bc_num_mod(&temp2, &vm.max, &temp, 0); |
| } |
| |
| // The if statement above ensures that temp is less than vm.max, which |
| // means that we can use bc_num_bigdig2() here. |
| bc_num_bigdig2(&temp, (BcBigDig*) &inc2); |
| } |
| else inc1 = inc2 = 0; |
| |
| bc_rand_seed(rng, state1, state2, inc1, inc2); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&intn); |
| bc_num_free(&frac); |
| bc_num_free(&temp2); |
| bc_num_free(&temp); |
| BC_LONGJMP_CONT; |
| } |
| |
| void bc_num_createFromRNG(BcNum *restrict n, BcRNG *rng) { |
| |
| BcRand s1, s2, i1, i2; |
| BcNum pow, conv, temp1, temp2, temp3; |
| BcDig pow_num[BC_RAND_NUM_SIZE]; |
| BcDig temp1_num[BC_RAND_NUM_SIZE], temp2_num[BC_RAND_NUM_SIZE]; |
| BcDig conv_num[BC_NUM_BIGDIG_LOG10]; |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&temp3, 2 * BC_RAND_NUM_SIZE); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_setup(&pow, pow_num, sizeof(pow_num) / sizeof(BcDig)); |
| bc_num_setup(&temp1, temp1_num, sizeof(temp1_num) / sizeof(BcDig)); |
| bc_num_setup(&temp2, temp2_num, sizeof(temp2_num) / sizeof(BcDig)); |
| bc_num_setup(&conv, conv_num, sizeof(conv_num) / sizeof(BcDig)); |
| |
| // This assert is here because it has to be true. It is also here to justify |
| // the assumption that pow is not zero. |
| assert(BC_NUM_NONZERO(&vm.max)); |
| |
| bc_num_mul(&vm.max, &vm.max, &pow, 0); |
| |
| // Because this is true, we can just use BC_ERR_SIGNAL_ONLY() below when |
| // dividing by pow. |
| assert(BC_NUM_NONZERO(&pow)); |
| |
| bc_rand_getRands(rng, &s1, &s2, &i1, &i2); |
| |
| bc_num_bigdig2num(&conv, (BcBigDig) s2); |
| |
| bc_num_mul(&conv, &vm.max, &temp1, 0); |
| |
| bc_num_bigdig2num(&conv, (BcBigDig) s1); |
| |
| bc_num_add(&conv, &temp1, &temp2, 0); |
| |
| bc_num_div(&temp2, &pow, &temp3, BC_RAND_STATE_BITS); |
| |
| bc_num_bigdig2num(&conv, (BcBigDig) i2); |
| |
| bc_num_mul(&conv, &vm.max, &temp1, 0); |
| |
| bc_num_bigdig2num(&conv, (BcBigDig) i1); |
| |
| bc_num_add(&conv, &temp1, &temp2, 0); |
| |
| bc_num_add(&temp2, &temp3, n, 0); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&temp3); |
| BC_LONGJMP_CONT; |
| } |
| |
| void bc_num_irand(const BcNum *restrict a, BcNum *restrict b, |
| BcRNG *restrict rng) |
| { |
| BcRand r; |
| BcBigDig modl; |
| BcNum pow, pow2, cp, cp2, mod, temp1, temp2, rand; |
| BcNum *p1, *p2, *t1, *t2, *c1, *c2, *tmp; |
| BcDig rand_num[BC_NUM_BIGDIG_LOG10]; |
| bool carry; |
| ssize_t cmp; |
| |
| assert(a != b); |
| |
| if (BC_ERR(a->neg)) bc_vm_err(BC_ERR_MATH_NEGATIVE); |
| if (BC_ERR(a->rdx)) bc_vm_err(BC_ERR_MATH_NON_INTEGER); |
| if (BC_NUM_ZERO(a) || BC_NUM_ONE(a)) return; |
| |
| cmp = bc_num_cmp(a, &vm.max); |
| |
| if (cmp <= 0) { |
| |
| BcRand bits = 0; |
| |
| if (cmp < 0) bc_num_bigdig2(a, (BcBigDig*) &bits); |
| |
| // This condition means that bits is a power of 2. In that case, we |
| // can just grab a full-size int and mask out the unneeded bits. |
| // Also, this condition says that 0 is a power of 2, which works for |
| // us, since a value of 0 means a == rng->max. The bitmask will mask |
| // nothing in that case as well. |
| if (!(bits & (bits - 1))) r = bc_rand_int(rng) & (bits - 1); |
| else r = bc_rand_bounded(rng, bits); |
| |
| // We made sure that r is less than vm.max, |
| // so we can use bc_num_bigdig2() here. |
| bc_num_bigdig2num(b, r); |
| |
| return; |
| } |
| |
| // In the case where a is less than rng->max, we have to make sure we have |
| // an exclusive bound. This ensures that it happens. (See below.) |
| carry = (cmp < 0); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_createCopy(&cp, a); |
| |
| bc_num_init(&cp2, cp.len); |
| bc_num_init(&mod, BC_NUM_BIGDIG_LOG10); |
| bc_num_init(&temp1, BC_NUM_DEF_SIZE); |
| bc_num_init(&temp2, BC_NUM_DEF_SIZE); |
| bc_num_init(&pow2, BC_NUM_DEF_SIZE); |
| bc_num_init(&pow, BC_NUM_DEF_SIZE); |
| bc_num_one(&pow); |
| bc_num_setup(&rand, rand_num, sizeof(rand_num) / sizeof(BcDig)); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| p1 = &pow; |
| p2 = &pow2; |
| t1 = &temp1; |
| t2 = &temp2; |
| c1 = &cp; |
| c2 = &cp2; |
| |
| // This assert is here because it has to be true. It is also here to justify |
| // the use of BC_ERR_SIGNAL_ONLY() on each of the divmod's and mod's below. |
| assert(BC_NUM_NONZERO(&vm.max)); |
| |
| while (BC_NUM_NONZERO(c1)) { |
| |
| bc_num_divmod(c1, &vm.max, c2, &mod, 0); |
| |
| // Because mod is the mod of vm.max, it is guaranteed to be smaller, |
| // which means we can use bc_num_bigdig2() here. |
| bc_num_bigdig(&mod, &modl); |
| |
| if (bc_num_cmp(c1, &vm.max) < 0) { |
| |
| // In this case, if there is no carry, then we know we can generate |
| // an integer *equal* to modl. Thus, we add one if there is no |
| // carry. Otherwise, we add zero, and we are still bounded properly. |
| // Since the last portion is guaranteed to be greater than 1, we |
| // know modl isn't 0 unless there is no carry. |
| modl += !carry; |
| |
| if (modl == 1) r = 0; |
| else if (!modl) r = bc_rand_int(rng); |
| else r = bc_rand_bounded(rng, (BcRand) modl); |
| } |
| else { |
| if (modl) modl -= carry; |
| r = bc_rand_int(rng); |
| carry = (r >= (BcRand) modl); |
| } |
| |
| bc_num_bigdig2num(&rand, r); |
| |
| bc_num_mul(&rand, p1, p2, 0); |
| bc_num_add(p2, t1, t2, 0); |
| |
| if (BC_NUM_NONZERO(c2)) { |
| |
| bc_num_mul(&vm.max, p1, p2, 0); |
| |
| tmp = p1; |
| p1 = p2; |
| p2 = tmp; |
| |
| tmp = c1; |
| c1 = c2; |
| c2 = tmp; |
| } |
| else c1 = c2; |
| |
| tmp = t1; |
| t1 = t2; |
| t2 = tmp; |
| } |
| |
| bc_num_copy(b, t1); |
| bc_num_clean(b); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&pow); |
| bc_num_free(&pow2); |
| bc_num_free(&temp2); |
| bc_num_free(&temp1); |
| bc_num_free(&mod); |
| bc_num_free(&cp2); |
| bc_num_free(&cp); |
| BC_LONGJMP_CONT; |
| } |
| #endif // BC_ENABLE_EXTRA_MATH && BC_ENABLE_RAND |
| |
| size_t bc_num_addReq(const BcNum *a, const BcNum *b, size_t scale) { |
| |
| size_t aint, bint, ardx, brdx; |
| |
| BC_UNUSED(scale); |
| |
| ardx = a->rdx; |
| aint = bc_num_int(a); |
| assert(aint <= a->len && ardx <= a->len); |
| |
| brdx = b->rdx; |
| bint = bc_num_int(b); |
| assert(bint <= b->len && brdx <= b->len); |
| |
| ardx = BC_MAX(ardx, brdx); |
| aint = BC_MAX(aint, bint); |
| |
| return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1); |
| } |
| |
| size_t bc_num_mulReq(const BcNum *a, const BcNum *b, size_t scale) { |
| size_t max, rdx; |
| rdx = bc_vm_growSize(a->rdx, b->rdx); |
| max = BC_NUM_RDX(scale); |
| max = bc_vm_growSize(BC_MAX(max, rdx), 1); |
| rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max); |
| return rdx; |
| } |
| |
| size_t bc_num_divReq(const BcNum *a, const BcNum *b, size_t scale) { |
| size_t max, rdx; |
| rdx = bc_vm_growSize(a->rdx, b->rdx); |
| max = BC_NUM_RDX(scale); |
| max = bc_vm_growSize(BC_MAX(max, rdx), 1); |
| rdx = bc_vm_growSize(bc_num_int(a), max); |
| return rdx; |
| } |
| |
| size_t bc_num_powReq(const BcNum *a, const BcNum *b, size_t scale) { |
| BC_UNUSED(scale); |
| return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1); |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| size_t bc_num_placesReq(const BcNum *a, const BcNum *b, size_t scale) { |
| BC_UNUSED(scale); |
| return a->len + b->len - a->rdx - b->rdx; |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| void bc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, false, bc_num_as, bc_num_addReq(a, b, scale)); |
| } |
| |
| void bc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, true, bc_num_as, bc_num_addReq(a, b, scale)); |
| } |
| |
| void bc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale)); |
| } |
| |
| void bc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, scale, bc_num_d, bc_num_divReq(a, b, scale)); |
| } |
| |
| void bc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, scale, bc_num_rem, bc_num_divReq(a, b, scale)); |
| } |
| |
| void bc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale)); |
| } |
| |
| #if BC_ENABLE_EXTRA_MATH |
| void bc_num_places(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, scale, bc_num_place, bc_num_placesReq(a, b, scale)); |
| } |
| |
| void bc_num_lshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, scale, bc_num_left, bc_num_placesReq(a, b, scale)); |
| } |
| |
| void bc_num_rshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) { |
| bc_num_binary(a, b, c, scale, bc_num_right, bc_num_placesReq(a, b, scale)); |
| } |
| #endif // BC_ENABLE_EXTRA_MATH |
| |
| void bc_num_sqrt(BcNum *restrict a, BcNum *restrict b, size_t scale) { |
| |
| size_t rdx, len, req; |
| |
| assert(a != NULL && b != NULL && a != b); |
| |
| if (BC_ERR(a->neg)) bc_vm_err(BC_ERR_MATH_NEGATIVE); |
| |
| if (a->scale > scale) scale = a->scale; |
| |
| len = bc_vm_growSize(bc_num_intDigits(a), 1); |
| rdx = BC_NUM_RDX(scale); |
| req = bc_vm_growSize(BC_MAX(rdx, a->rdx), len >> 1); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(b, bc_vm_growSize(req, 1)); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_sr(a, b, scale); |
| } |
| |
| void bc_num_sr(BcNum *restrict a, BcNum *restrict b, size_t scale) { |
| |
| BcNum num1, num2, half, f, fprime, *x0, *x1, *temp; |
| size_t pow, len, rdx, digs, digs1, digs2, resscale; |
| BcDig half_digs[1]; |
| |
| assert(a != NULL && b != NULL && a != b); |
| assert(a->num != NULL && b->num != NULL); |
| |
| if (BC_NUM_ZERO(a)) { |
| bc_num_setToZero(b, scale); |
| return; |
| } |
| if (BC_NUM_ONE(a)) { |
| bc_num_one(b); |
| bc_num_extend(b, scale); |
| return; |
| } |
| |
| rdx = BC_NUM_RDX(scale); |
| rdx = BC_MAX(rdx, a->rdx); |
| len = bc_vm_growSize(a->len, rdx); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&num1, len); |
| bc_num_init(&num2, len); |
| bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig)); |
| |
| bc_num_one(&half); |
| half.num[0] = BC_BASE_POW / 2; |
| half.len = 1; |
| half.rdx = 1; |
| half.scale = 1; |
| |
| bc_num_init(&f, len); |
| bc_num_init(&fprime, len); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| x0 = &num1; |
| x1 = &num2; |
| |
| bc_num_one(x0); |
| pow = bc_num_intDigits(a); |
| |
| if (pow) { |
| |
| if (pow & 1) x0->num[0] = 2; |
| else x0->num[0] = 6; |
| |
| pow -= 2 - (pow & 1); |
| bc_num_shiftLeft(x0, pow / 2); |
| } |
| |
| x0->scale = x0->rdx = digs = digs1 = digs2 = 0; |
| resscale = (scale + BC_BASE_DIGS) + 2; |
| |
| while (bc_num_cmp(x1, x0)) { |
| |
| assert(BC_NUM_NONZERO(x0)); |
| |
| bc_num_div(a, x0, &f, resscale); |
| bc_num_add(x0, &f, &fprime, resscale); |
| bc_num_mul(&fprime, &half, x1, resscale); |
| |
| temp = x0; |
| x0 = x1; |
| x1 = temp; |
| } |
| |
| bc_num_copy(b, x0); |
| if (b->scale > scale) bc_num_truncate(b, b->scale - scale); |
| |
| assert(!b->neg || BC_NUM_NONZERO(b)); |
| assert(b->rdx <= b->len || !b->len); |
| assert(!b->len || b->num[b->len - 1] || b->rdx == b->len); |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&fprime); |
| bc_num_free(&f); |
| bc_num_free(&num2); |
| bc_num_free(&num1); |
| BC_LONGJMP_CONT; |
| } |
| |
| void bc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) { |
| |
| size_t ts, len; |
| BcNum *ptr_a; |
| #if !BC_ENABLE_LIBRARY |
| BcNum num2; |
| bool init = false; |
| #endif // BC_ENABLE_LIBRARY |
| |
| ts = BC_MAX(scale + b->scale, a->scale); |
| len = bc_num_mulReq(a, b, ts); |
| |
| assert(a != NULL && b != NULL && c != NULL && d != NULL); |
| assert(c != d && a != d && b != d && b != c); |
| #if BC_ENABLE_LIBRARY |
| assert(c != a); |
| #endif // BC_ENABLE_LIBRARY |
| |
| #if !BC_ENABLE_LIBRARY |
| if (c == a) { |
| |
| memcpy(&num2, c, sizeof(BcNum)); |
| ptr_a = &num2; |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(c, len); |
| |
| init = true; |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| } |
| else |
| #endif // BC_ENABLE_LIBRARY |
| { |
| ptr_a = a; |
| bc_num_expand(c, len); |
| } |
| |
| if (BC_NUM_NONZERO(a) && !a->rdx && !b->rdx && b->len == 1 && !scale) { |
| |
| BcBigDig rem; |
| |
| bc_num_divArray(ptr_a, (BcBigDig) b->num[0], c, &rem); |
| |
| assert(rem < BC_BASE_POW); |
| |
| d->num[0] = (BcDig) rem; |
| d->len = (rem != 0); |
| } |
| else bc_num_r(ptr_a, b, c, d, scale, ts); |
| |
| assert(!c->neg || BC_NUM_NONZERO(c)); |
| assert(c->rdx <= c->len || !c->len); |
| assert(!c->len || c->num[c->len - 1] || c->rdx == c->len); |
| assert(!d->neg || BC_NUM_NONZERO(d)); |
| assert(d->rdx <= d->len || !d->len); |
| assert(!d->len || d->num[d->len - 1] || d->rdx == d->len); |
| |
| #if !BC_ENABLE_LIBRARY |
| err: |
| if (init) { |
| BC_SIG_MAYLOCK; |
| bc_num_free(&num2); |
| BC_LONGJMP_CONT; |
| } |
| #endif // !BC_ENABLE_LIBRARY |
| } |
| |
| #if DC_ENABLED |
| void bc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) { |
| |
| BcNum base, exp, two, temp; |
| BcDig two_digs[2]; |
| |
| assert(a != NULL && b != NULL && c != NULL && d != NULL); |
| assert(a != d && b != d && c != d); |
| |
| if (BC_ERR(BC_NUM_ZERO(c))) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); |
| if (BC_ERR(b->neg)) bc_vm_err(BC_ERR_MATH_NEGATIVE); |
| if (BC_ERR(a->rdx || b->rdx || c->rdx)) |
| bc_vm_err(BC_ERR_MATH_NON_INTEGER); |
| |
| bc_num_expand(d, c->len); |
| |
| BC_SIG_LOCK; |
| |
| bc_num_init(&base, c->len); |
| bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig)); |
| bc_num_init(&temp, b->len + 1); |
| bc_num_createCopy(&exp, b); |
| |
| BC_SETJMP_LOCKED(err); |
| |
| BC_SIG_UNLOCK; |
| |
| bc_num_one(&two); |
| two.num[0] = 2; |
| bc_num_one(d); |
| |
| // We already checked for 0. |
| bc_num_rem(a, c, &base, 0); |
| |
| while (BC_NUM_NONZERO(&exp)) { |
| |
| // Num two cannot be 0, so no errors. |
| bc_num_divmod(&exp, &two, &exp, &temp, 0); |
| |
| if (BC_NUM_ONE(&temp) && !temp.neg) { |
| |
| bc_num_mul(d, &base, &temp, 0); |
| |
| // We already checked for 0. |
| bc_num_rem(&temp, c, d, 0); |
| } |
| |
| bc_num_mul(&base, &base, &temp, 0); |
| |
| // We already checked for 0. |
| bc_num_rem(&temp, c, &base, 0); |
| } |
| |
| err: |
| BC_SIG_MAYLOCK; |
| bc_num_free(&exp); |
| bc_num_free(&temp); |
| bc_num_free(&base); |
| BC_LONGJMP_CONT; |
| assert(!d->neg || d->len); |
| assert(!d->len || d->num[d->len - 1] || d->rdx == d->len); |
| } |
| #endif // DC_ENABLED |
| |
| #if BC_DEBUG_CODE |
| void bc_num_printDebug(const BcNum *n, const char *name, bool emptyline) { |
| bc_file_puts(&vm.fout, name); |
| bc_file_puts(&vm.fout, ": "); |
| bc_num_printDecimal(n); |
| bc_file_putchar(&vm.fout, '\n'); |
| if (emptyline) bc_file_putchar(&vm.fout, '\n'); |
| vm.nchars = 0; |
| } |
| |
| void bc_num_printDigs(const BcDig *n, size_t len, bool emptyline) { |
| |
| size_t i; |
| |
| for (i = len - 1; i < len; --i) |
| bc_file_printf(&vm.fout, " %lu", (unsigned long) n[i]); |
| |
| bc_file_putchar(&vm.fout, '\n'); |
| if (emptyline) bc_file_putchar(&vm.fout, '\n'); |
| vm.nchars = 0; |
| } |
| |
| void bc_num_printWithDigs(const BcNum *n, const char *name, bool emptyline) { |
| bc_file_puts(&vm.fout, name); |
| bc_file_printf(&vm.fout, " len: %zu, rdx: %zu, scale: %zu\n", |
| name, n->len, n->rdx, n->scale); |
| bc_num_printDigs(n->num, n->len, emptyline); |
| } |
| |
| void bc_num_dump(const char *varname, const BcNum *n) { |
| |
| ulong i, scale = n->scale; |
| |
| bc_file_printf(&vm.ferr, "\n%s = %s", varname, |
| n->len ? (n->neg ? "-" : "+") : "0 "); |
| |
| for (i = n->len - 1; i < n->len; --i) { |
| |
| if (i + 1 == n->rdx) bc_file_puts(&vm.ferr, ". "); |
| |
| if (scale / BC_BASE_DIGS != n->rdx - i - 1) |
| bc_file_printf(&vm.ferr, "%lu ", (unsigned long) n->num[i]); |
| else { |
| |
| int mod = scale % BC_BASE_DIGS; |
| int d = BC_BASE_DIGS - mod; |
| BcDig div; |
| |
| if (mod != 0) { |
| div = n->num[i] / ((BcDig) bc_num_pow10[(ulong) d]); |
| bc_file_printf(&vm.ferr, "%lu", (unsigned long) div); |
| } |
| |
| div = n->num[i] % ((BcDig) bc_num_pow10[(ulong) d]); |
| bc_file_printf(&vm.ferr, " ' %lu ", (unsigned long) div); |
| } |
| } |
| |
| bc_file_printf(&vm.ferr, "(%zu | %zu.%zu / %zu) %lu\n", |
| n->scale, n->len, n->rdx, n->cap, |
| (unsigned long) (void*) n->num); |
| } |
| #endif // BC_DEBUG_CODE |