blob: 5d6953888320193cb43583078128e3e6ca0f2f14 [file] [log] [blame]
#!/usr/bin/env python
#
# memleak Trace and display outstanding allocations to detect
# memory leaks in user-mode processes and the kernel.
#
# USAGE: memleak [-h] [-p PID] [-t] [-a] [-o OLDER] [-c COMMAND]
# [--combined-only] [-s SAMPLE_RATE] [-T TOP] [-z MIN_SIZE]
# [-Z MAX_SIZE] [-O OBJ]
# [interval] [count]
#
# Licensed under the Apache License, Version 2.0 (the "License")
# Copyright (C) 2016 Sasha Goldshtein.
from bcc import BPF
from time import sleep
from datetime import datetime
import resource
import argparse
import subprocess
import os
class Allocation(object):
def __init__(self, stack, size):
self.stack = stack
self.count = 1
self.size = size
def update(self, size):
self.count += 1
self.size += size
def run_command_get_output(command):
p = subprocess.Popen(command.split(),
stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
return iter(p.stdout.readline, b'')
def run_command_get_pid(command):
p = subprocess.Popen(command.split())
return p.pid
examples = """
EXAMPLES:
./memleak -p $(pidof allocs)
Trace allocations and display a summary of "leaked" (outstanding)
allocations every 5 seconds
./memleak -p $(pidof allocs) -t
Trace allocations and display each individual allocator function call
./memleak -ap $(pidof allocs) 10
Trace allocations and display allocated addresses, sizes, and stacks
every 10 seconds for outstanding allocations
./memleak -c "./allocs"
Run the specified command and trace its allocations
./memleak
Trace allocations in kernel mode and display a summary of outstanding
allocations every 5 seconds
./memleak -o 60000
Trace allocations in kernel mode and display a summary of outstanding
allocations that are at least one minute (60 seconds) old
./memleak -s 5
Trace roughly every 5th allocation, to reduce overhead
"""
description = """
Trace outstanding memory allocations that weren't freed.
Supports both user-mode allocations made with libc functions and kernel-mode
allocations made with kmalloc/kmem_cache_alloc/get_free_pages and corresponding
memory release functions.
"""
parser = argparse.ArgumentParser(description=description,
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=examples)
parser.add_argument("-p", "--pid", type=int, default=-1,
help="the PID to trace; if not specified, trace kernel allocs")
parser.add_argument("-t", "--trace", action="store_true",
help="print trace messages for each alloc/free call")
parser.add_argument("interval", nargs="?", default=5, type=int,
help="interval in seconds to print outstanding allocations")
parser.add_argument("count", nargs="?", type=int,
help="number of times to print the report before exiting")
parser.add_argument("-a", "--show-allocs", default=False, action="store_true",
help="show allocation addresses and sizes as well as call stacks")
parser.add_argument("-o", "--older", default=500, type=int,
help="prune allocations younger than this age in milliseconds")
parser.add_argument("-c", "--command",
help="execute and trace the specified command")
parser.add_argument("--combined-only", default=False, action="store_true",
help="show combined allocation statistics only")
parser.add_argument("-s", "--sample-rate", default=1, type=int,
help="sample every N-th allocation to decrease the overhead")
parser.add_argument("-T", "--top", type=int, default=10,
help="display only this many top allocating stacks (by size)")
parser.add_argument("-z", "--min-size", type=int,
help="capture only allocations larger than this size")
parser.add_argument("-Z", "--max-size", type=int,
help="capture only allocations smaller than this size")
parser.add_argument("-O", "--obj", type=str, default="c",
help="attach to allocator functions in the specified object")
parser.add_argument("--ebpf", action="store_true",
help=argparse.SUPPRESS)
args = parser.parse_args()
pid = args.pid
command = args.command
kernel_trace = (pid == -1 and command is None)
trace_all = args.trace
interval = args.interval
min_age_ns = 1e6 * args.older
sample_every_n = args.sample_rate
num_prints = args.count
top_stacks = args.top
min_size = args.min_size
max_size = args.max_size
obj = args.obj
if min_size is not None and max_size is not None and min_size > max_size:
print("min_size (-z) can't be greater than max_size (-Z)")
exit(1)
if command is not None:
print("Executing '%s' and tracing the resulting process." % command)
pid = run_command_get_pid(command)
bpf_source = """
#include <uapi/linux/ptrace.h>
struct alloc_info_t {
u64 size;
u64 timestamp_ns;
int stack_id;
};
struct combined_alloc_info_t {
u64 total_size;
u64 number_of_allocs;
};
BPF_HASH(sizes, u64);
BPF_TABLE("hash", u64, struct alloc_info_t, allocs, 1000000);
BPF_HASH(memptrs, u64, u64);
BPF_STACK_TRACE(stack_traces, 10240);
BPF_TABLE("hash", u64, struct combined_alloc_info_t, combined_allocs, 10240);
static inline void update_statistics_add(u64 stack_id, u64 sz) {
struct combined_alloc_info_t *existing_cinfo;
struct combined_alloc_info_t cinfo = {0};
existing_cinfo = combined_allocs.lookup(&stack_id);
if (existing_cinfo != 0)
cinfo = *existing_cinfo;
cinfo.total_size += sz;
cinfo.number_of_allocs += 1;
combined_allocs.update(&stack_id, &cinfo);
}
static inline void update_statistics_del(u64 stack_id, u64 sz) {
struct combined_alloc_info_t *existing_cinfo;
struct combined_alloc_info_t cinfo = {0};
existing_cinfo = combined_allocs.lookup(&stack_id);
if (existing_cinfo != 0)
cinfo = *existing_cinfo;
if (sz >= cinfo.total_size)
cinfo.total_size = 0;
else
cinfo.total_size -= sz;
if (cinfo.number_of_allocs > 0)
cinfo.number_of_allocs -= 1;
combined_allocs.update(&stack_id, &cinfo);
}
static inline int gen_alloc_enter(struct pt_regs *ctx, size_t size) {
SIZE_FILTER
if (SAMPLE_EVERY_N > 1) {
u64 ts = bpf_ktime_get_ns();
if (ts % SAMPLE_EVERY_N != 0)
return 0;
}
u64 pid = bpf_get_current_pid_tgid();
u64 size64 = size;
sizes.update(&pid, &size64);
if (SHOULD_PRINT)
bpf_trace_printk("alloc entered, size = %u\\n", size);
return 0;
}
static inline int gen_alloc_exit2(struct pt_regs *ctx, u64 address) {
u64 pid = bpf_get_current_pid_tgid();
u64* size64 = sizes.lookup(&pid);
struct alloc_info_t info = {0};
if (size64 == 0)
return 0; // missed alloc entry
info.size = *size64;
sizes.delete(&pid);
info.timestamp_ns = bpf_ktime_get_ns();
info.stack_id = stack_traces.get_stackid(ctx, STACK_FLAGS);
allocs.update(&address, &info);
update_statistics_add(info.stack_id, info.size);
if (SHOULD_PRINT) {
bpf_trace_printk("alloc exited, size = %lu, result = %lx\\n",
info.size, address);
}
return 0;
}
static inline int gen_alloc_exit(struct pt_regs *ctx) {
return gen_alloc_exit2(ctx, PT_REGS_RC(ctx));
}
static inline int gen_free_enter(struct pt_regs *ctx, void *address) {
u64 addr = (u64)address;
struct alloc_info_t *info = allocs.lookup(&addr);
if (info == 0)
return 0;
allocs.delete(&addr);
update_statistics_del(info->stack_id, info->size);
if (SHOULD_PRINT) {
bpf_trace_printk("free entered, address = %lx, size = %lu\\n",
address, info->size);
}
return 0;
}
int malloc_enter(struct pt_regs *ctx, size_t size) {
return gen_alloc_enter(ctx, size);
}
int malloc_exit(struct pt_regs *ctx) {
return gen_alloc_exit(ctx);
}
int free_enter(struct pt_regs *ctx, void *address) {
return gen_free_enter(ctx, address);
}
int calloc_enter(struct pt_regs *ctx, size_t nmemb, size_t size) {
return gen_alloc_enter(ctx, nmemb * size);
}
int calloc_exit(struct pt_regs *ctx) {
return gen_alloc_exit(ctx);
}
int realloc_enter(struct pt_regs *ctx, void *ptr, size_t size) {
gen_free_enter(ctx, ptr);
return gen_alloc_enter(ctx, size);
}
int realloc_exit(struct pt_regs *ctx) {
return gen_alloc_exit(ctx);
}
int posix_memalign_enter(struct pt_regs *ctx, void **memptr, size_t alignment,
size_t size) {
u64 memptr64 = (u64)(size_t)memptr;
u64 pid = bpf_get_current_pid_tgid();
memptrs.update(&pid, &memptr64);
return gen_alloc_enter(ctx, size);
}
int posix_memalign_exit(struct pt_regs *ctx) {
u64 pid = bpf_get_current_pid_tgid();
u64 *memptr64 = memptrs.lookup(&pid);
void *addr;
if (memptr64 == 0)
return 0;
memptrs.delete(&pid);
if (bpf_probe_read(&addr, sizeof(void*), (void*)(size_t)*memptr64))
return 0;
u64 addr64 = (u64)(size_t)addr;
return gen_alloc_exit2(ctx, addr64);
}
int aligned_alloc_enter(struct pt_regs *ctx, size_t alignment, size_t size) {
return gen_alloc_enter(ctx, size);
}
int aligned_alloc_exit(struct pt_regs *ctx) {
return gen_alloc_exit(ctx);
}
int valloc_enter(struct pt_regs *ctx, size_t size) {
return gen_alloc_enter(ctx, size);
}
int valloc_exit(struct pt_regs *ctx) {
return gen_alloc_exit(ctx);
}
int memalign_enter(struct pt_regs *ctx, size_t alignment, size_t size) {
return gen_alloc_enter(ctx, size);
}
int memalign_exit(struct pt_regs *ctx) {
return gen_alloc_exit(ctx);
}
int pvalloc_enter(struct pt_regs *ctx, size_t size) {
return gen_alloc_enter(ctx, size);
}
int pvalloc_exit(struct pt_regs *ctx) {
return gen_alloc_exit(ctx);
}
"""
bpf_source_kernel = """
TRACEPOINT_PROBE(kmem, kmalloc) {
gen_alloc_enter((struct pt_regs *)args, args->bytes_alloc);
return gen_alloc_exit2((struct pt_regs *)args, (size_t)args->ptr);
}
TRACEPOINT_PROBE(kmem, kmalloc_node) {
gen_alloc_enter((struct pt_regs *)args, args->bytes_alloc);
return gen_alloc_exit2((struct pt_regs *)args, (size_t)args->ptr);
}
TRACEPOINT_PROBE(kmem, kfree) {
return gen_free_enter((struct pt_regs *)args, (void *)args->ptr);
}
TRACEPOINT_PROBE(kmem, kmem_cache_alloc) {
gen_alloc_enter((struct pt_regs *)args, args->bytes_alloc);
return gen_alloc_exit2((struct pt_regs *)args, (size_t)args->ptr);
}
TRACEPOINT_PROBE(kmem, kmem_cache_alloc_node) {
gen_alloc_enter((struct pt_regs *)args, args->bytes_alloc);
return gen_alloc_exit2((struct pt_regs *)args, (size_t)args->ptr);
}
TRACEPOINT_PROBE(kmem, kmem_cache_free) {
return gen_free_enter((struct pt_regs *)args, (void *)args->ptr);
}
TRACEPOINT_PROBE(kmem, mm_page_alloc) {
gen_alloc_enter((struct pt_regs *)args, PAGE_SIZE << args->order);
return gen_alloc_exit2((struct pt_regs *)args, args->pfn);
}
TRACEPOINT_PROBE(kmem, mm_page_free) {
return gen_free_enter((struct pt_regs *)args, (void *)args->pfn);
}
"""
if kernel_trace:
bpf_source += bpf_source_kernel
bpf_source = bpf_source.replace("SHOULD_PRINT", "1" if trace_all else "0")
bpf_source = bpf_source.replace("SAMPLE_EVERY_N", str(sample_every_n))
bpf_source = bpf_source.replace("PAGE_SIZE", str(resource.getpagesize()))
size_filter = ""
if min_size is not None and max_size is not None:
size_filter = "if (size < %d || size > %d) return 0;" % \
(min_size, max_size)
elif min_size is not None:
size_filter = "if (size < %d) return 0;" % min_size
elif max_size is not None:
size_filter = "if (size > %d) return 0;" % max_size
bpf_source = bpf_source.replace("SIZE_FILTER", size_filter)
stack_flags = "BPF_F_REUSE_STACKID"
if not kernel_trace:
stack_flags += "|BPF_F_USER_STACK"
bpf_source = bpf_source.replace("STACK_FLAGS", stack_flags)
if args.ebpf:
print(bpf_source)
exit()
bpf = BPF(text=bpf_source)
if not kernel_trace:
print("Attaching to pid %d, Ctrl+C to quit." % pid)
def attach_probes(sym, fn_prefix=None, can_fail=False):
if fn_prefix is None:
fn_prefix = sym
try:
bpf.attach_uprobe(name=obj, sym=sym,
fn_name=fn_prefix + "_enter",
pid=pid)
bpf.attach_uretprobe(name=obj, sym=sym,
fn_name=fn_prefix + "_exit",
pid=pid)
except Exception:
if can_fail:
return
else:
raise
attach_probes("malloc")
attach_probes("calloc")
attach_probes("realloc")
attach_probes("posix_memalign")
attach_probes("valloc")
attach_probes("memalign")
attach_probes("pvalloc")
attach_probes("aligned_alloc", can_fail=True) # added in C11
bpf.attach_uprobe(name=obj, sym="free", fn_name="free_enter",
pid=pid)
else:
print("Attaching to kernel allocators, Ctrl+C to quit.")
# No probe attaching here. Allocations are counted by attaching to
# tracepoints.
#
# Memory allocations in Linux kernel are not limited to malloc/free
# equivalents. It's also common to allocate a memory page or multiple
# pages. Page allocator have two interfaces, one working with page
# frame numbers (PFN), while other working with page addresses. It's
# possible to allocate pages with one kind of functions, and free them
# with another. Code in kernel can easy convert PFNs to addresses and
# back, but it's hard to do the same in eBPF kprobe without fragile
# hacks.
#
# Fortunately, Linux exposes tracepoints for memory allocations, which
# can be instrumented by eBPF programs. Tracepoint for page allocations
# gives access to PFNs for both allocator interfaces. So there is no
# need to guess which allocation corresponds to which free.
def print_outstanding():
print("[%s] Top %d stacks with outstanding allocations:" %
(datetime.now().strftime("%H:%M:%S"), top_stacks))
alloc_info = {}
allocs = bpf["allocs"]
stack_traces = bpf["stack_traces"]
for address, info in sorted(allocs.items(), key=lambda a: a[1].size):
if BPF.monotonic_time() - min_age_ns < info.timestamp_ns:
continue
if info.stack_id < 0:
continue
if info.stack_id in alloc_info:
alloc_info[info.stack_id].update(info.size)
else:
stack = list(stack_traces.walk(info.stack_id))
combined = []
for addr in stack:
combined.append(bpf.sym(addr, pid,
show_module=True, show_offset=True))
alloc_info[info.stack_id] = Allocation(combined,
info.size)
if args.show_allocs:
print("\taddr = %x size = %s" %
(address.value, info.size))
to_show = sorted(alloc_info.values(),
key=lambda a: a.size)[-top_stacks:]
for alloc in to_show:
print("\t%d bytes in %d allocations from stack\n\t\t%s" %
(alloc.size, alloc.count, b"\n\t\t".join(alloc.stack)))
def print_outstanding_combined():
stack_traces = bpf["stack_traces"]
stacks = sorted(bpf["combined_allocs"].items(),
key=lambda a: -a[1].total_size)
cnt = 1
entries = []
for stack_id, info in stacks:
try:
trace = []
for addr in stack_traces.walk(stack_id.value):
sym = bpf.sym(addr, pid,
show_module=True,
show_offset=True)
trace.append(sym)
trace = "\n\t\t".join(trace)
except KeyError:
trace = "stack information lost"
entry = ("\t%d bytes in %d allocations from stack\n\t\t%s" %
(info.total_size, info.number_of_allocs, trace))
entries.append(entry)
cnt += 1
if cnt > top_stacks:
break
print("[%s] Top %d stacks with outstanding allocations:" %
(datetime.now().strftime("%H:%M:%S"), top_stacks))
print('\n'.join(reversed(entries)))
count_so_far = 0
while True:
if trace_all:
print(bpf.trace_fields())
else:
try:
sleep(interval)
except KeyboardInterrupt:
exit()
if args.combined_only:
print_outstanding_combined()
else:
print_outstanding()
count_so_far += 1
if num_prints is not None and count_so_far >= num_prints:
exit()