blob: 0da396727b46367053b8b4ecbd756c3418cac1ec [file] [log] [blame]
#!/usr/bin/python
# @lint-avoid-python-3-compatibility-imports
#
# dcstat Directory entry cache (dcache) stats.
# For Linux, uses BCC, eBPF.
#
# USAGE: dcstat [interval [count]]
#
# This uses kernel dynamic tracing of kernel functions, lookup_fast() and
# d_lookup(), which will need to be modified to match kernel changes. See
# code comments.
#
# Copyright 2016 Netflix, Inc.
# Licensed under the Apache License, Version 2.0 (the "License")
#
# 09-Feb-2016 Brendan Gregg Created this.
from __future__ import print_function
from bcc import BPF
from ctypes import c_int
from time import sleep, strftime
from sys import argv
def usage():
print("USAGE: %s [interval [count]]" % argv[0])
exit()
# arguments
interval = 1
count = -1
if len(argv) > 1:
try:
interval = int(argv[1])
if interval == 0:
raise
if len(argv) > 2:
count = int(argv[2])
except: # also catches -h, --help
usage()
# define BPF program
bpf_text = """
#include <uapi/linux/ptrace.h>
enum stats {
S_REFS = 1,
S_SLOW,
S_MISS,
S_MAXSTAT
};
BPF_TABLE("array", int, u64, stats, S_MAXSTAT + 1);
/*
* How this is instrumented, and how to interpret the statistics, is very much
* tied to the current kernel implementation (this was written on Linux 4.4).
* This will need maintenance to keep working as the implementation changes. To
* aid future adventurers, this is is what the current code does, and why.
*
* First problem: the current implementation takes a path and then does a
* lookup of each component. So how do we count a reference? Once for the path
* lookup, or once for every component lookup? I've chosen the latter
* since it seems to map more closely to actual dcache lookups (via
* __d_lookup_rcu()). It's counted via calls to lookup_fast().
*
* The implementation tries different, progressively slower, approaches to
* lookup a file. At what point do we call it a dcache miss? I've choosen when
* a d_lookup() (which is called during lookup_slow()) returns zero.
*
* I've also included a "SLOW" statistic to show how often the fast lookup
* failed. Whether this exists or is interesting is an implementation detail,
* and the "SLOW" statistic may be removed in future versions.
*/
void count_fast(struct pt_regs *ctx) {
int key = S_REFS;
u64 *leaf = stats.lookup(&key);
if (leaf) (*leaf)++;
}
void count_lookup(struct pt_regs *ctx) {
int key = S_SLOW;
u64 *leaf = stats.lookup(&key);
if (leaf) (*leaf)++;
if (ctx->ax == 0) {
key = S_MISS;
leaf = stats.lookup(&key);
if (leaf) (*leaf)++;
}
}
"""
# load BPF program
b = BPF(text=bpf_text)
b.attach_kprobe(event="lookup_fast", fn_name="count_fast")
b.attach_kretprobe(event="d_lookup", fn_name="count_lookup")
# stat column labels and indexes
stats = {
"REFS": 1,
"SLOW": 2,
"MISS": 3
}
# header
print("%-8s " % "TIME", end="")
for stype, idx in sorted(stats.items(), key=lambda k_v: (k_v[1], k_v[0])):
print(" %8s" % (stype + "/s"), end="")
print(" %8s" % "HIT%")
# output
i = 0
while (1):
if count > 0:
i += 1
if i > count:
exit()
try:
sleep(interval)
except KeyboardInterrupt:
pass
exit()
print("%-8s: " % strftime("%H:%M:%S"), end="")
# print each statistic as a column
for stype, idx in sorted(stats.items(), key=lambda k_v: (k_v[1], k_v[0])):
try:
val = b["stats"][c_int(idx)].value / interval
print(" %8d" % val, end="")
except:
print(" %8d" % 0, end="")
# print hit ratio percentage
try:
ref = b["stats"][c_int(stats["REFS"])].value
miss = b["stats"][c_int(stats["MISS"])].value
hit = ref - miss
pct = float(100) * hit / ref
print(" %8.2f" % pct)
except:
print(" %7s%%" % "-")
b["stats"].clear()