| #!/usr/bin/python |
| # @lint-avoid-python-3-compatibility-imports |
| # |
| # runqslower Trace long process scheduling delays. |
| # For Linux, uses BCC, eBPF. |
| # |
| # This script traces high scheduling delays between tasks being |
| # ready to run and them running on CPU after that. |
| # |
| # USAGE: runqslower [-p PID] [min_us] |
| # |
| # REQUIRES: Linux 4.9+ (BPF_PROG_TYPE_PERF_EVENT support). |
| # |
| # This measures the time a task spends waiting on a run queue for a turn |
| # on-CPU, and shows this time as a individual events. This time should be small, |
| # but a task may need to wait its turn due to CPU load. |
| # |
| # This measures two types of run queue latency: |
| # 1. The time from a task being enqueued on a run queue to its context switch |
| # and execution. This traces ttwu_do_wakeup(), wake_up_new_task() -> |
| # finish_task_switch() with either raw tracepoints (if supported) or kprobes |
| # and instruments the run queue latency after a voluntary context switch. |
| # 2. The time from when a task was involuntary context switched and still |
| # in the runnable state, to when it next executed. This is instrumented |
| # from finish_task_switch() alone. |
| # |
| # Copyright 2016 Cloudflare, Inc. |
| # Licensed under the Apache License, Version 2.0 (the "License") |
| # |
| # 02-May-2018 Ivan Babrou Created this. |
| |
| from __future__ import print_function |
| from bcc import BPF |
| import argparse |
| from time import strftime |
| import ctypes as ct |
| |
| # arguments |
| examples = """examples: |
| ./runqslower # trace run queue latency higher than 10000 us (default) |
| ./runqslower 1000 # trace run queue latency higher than 1000 us |
| ./runqslower -p 123 # trace pid 123 only |
| """ |
| parser = argparse.ArgumentParser( |
| description="Trace high run queue latency", |
| formatter_class=argparse.RawDescriptionHelpFormatter, |
| epilog=examples) |
| parser.add_argument("-p", "--pid", type=int, metavar="PID", dest="pid", |
| help="trace this PID only") |
| parser.add_argument("min_us", nargs="?", default='10000', |
| help="minimum run queue latecy to trace, in ms (default 10000)") |
| parser.add_argument("--ebpf", action="store_true", |
| help=argparse.SUPPRESS) |
| args = parser.parse_args() |
| min_us = int(args.min_us) |
| debug = 0 |
| |
| # define BPF program |
| bpf_text = """ |
| #include <uapi/linux/ptrace.h> |
| #include <linux/sched.h> |
| #include <linux/nsproxy.h> |
| #include <linux/pid_namespace.h> |
| |
| BPF_HASH(start, u32); |
| |
| struct rq; |
| |
| struct data_t { |
| u32 pid; |
| char task[TASK_COMM_LEN]; |
| u64 delta_us; |
| }; |
| |
| BPF_PERF_OUTPUT(events); |
| |
| // record enqueue timestamp |
| static int trace_enqueue(u32 tgid, u32 pid) |
| { |
| if (FILTER_PID || pid == 0) |
| return 0; |
| u64 ts = bpf_ktime_get_ns(); |
| start.update(&pid, &ts); |
| return 0; |
| } |
| """ |
| |
| bpf_text_kprobe = """ |
| int trace_wake_up_new_task(struct pt_regs *ctx, struct task_struct *p) |
| { |
| return trace_enqueue(p->tgid, p->pid); |
| } |
| |
| int trace_ttwu_do_wakeup(struct pt_regs *ctx, struct rq *rq, struct task_struct *p, |
| int wake_flags) |
| { |
| return trace_enqueue(p->tgid, p->pid); |
| } |
| |
| // calculate latency |
| int trace_run(struct pt_regs *ctx, struct task_struct *prev) |
| { |
| u32 pid, tgid; |
| |
| // ivcsw: treat like an enqueue event and store timestamp |
| if (prev->state == TASK_RUNNING) { |
| tgid = prev->tgid; |
| pid = prev->pid; |
| if (!(FILTER_PID || pid == 0)) { |
| u64 ts = bpf_ktime_get_ns(); |
| start.update(&pid, &ts); |
| } |
| } |
| |
| tgid = bpf_get_current_pid_tgid() >> 32; |
| pid = bpf_get_current_pid_tgid(); |
| |
| u64 *tsp, delta_us; |
| |
| // fetch timestamp and calculate delta |
| tsp = start.lookup(&pid); |
| if (tsp == 0) { |
| return 0; // missed enqueue |
| } |
| delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; |
| |
| if (FILTER_US) |
| return 0; |
| |
| struct data_t data = {}; |
| data.pid = pid; |
| data.delta_us = delta_us; |
| bpf_get_current_comm(&data.task, sizeof(data.task)); |
| |
| // output |
| events.perf_submit(ctx, &data, sizeof(data)); |
| |
| start.delete(&pid); |
| return 0; |
| } |
| """ |
| |
| bpf_text_raw_tp = """ |
| RAW_TRACEPOINT_PROBE(sched_wakeup) |
| { |
| // TP_PROTO(struct task_struct *p) |
| struct task_struct *p = (struct task_struct *)ctx->args[0]; |
| u32 tgid, pid; |
| |
| bpf_probe_read(&tgid, sizeof(tgid), &p->tgid); |
| bpf_probe_read(&pid, sizeof(pid), &p->pid); |
| return trace_enqueue(tgid, pid); |
| } |
| |
| RAW_TRACEPOINT_PROBE(sched_wakeup_new) |
| { |
| // TP_PROTO(struct task_struct *p) |
| struct task_struct *p = (struct task_struct *)ctx->args[0]; |
| u32 tgid, pid; |
| |
| bpf_probe_read(&tgid, sizeof(tgid), &p->tgid); |
| bpf_probe_read(&pid, sizeof(pid), &p->pid); |
| return trace_enqueue(tgid, pid); |
| } |
| |
| RAW_TRACEPOINT_PROBE(sched_switch) |
| { |
| // TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next) |
| struct task_struct *prev = (struct task_struct *)ctx->args[1]; |
| struct task_struct *next= (struct task_struct *)ctx->args[2]; |
| u32 pid, tgid; |
| long state; |
| |
| // ivcsw: treat like an enqueue event and store timestamp |
| bpf_probe_read(&state, sizeof(long), &prev->state); |
| if (state == TASK_RUNNING) { |
| bpf_probe_read(&tgid, sizeof(prev->tgid), &prev->tgid); |
| bpf_probe_read(&pid, sizeof(prev->pid), &prev->pid); |
| if (!(FILTER_PID || pid == 0)) { |
| u64 ts = bpf_ktime_get_ns(); |
| start.update(&pid, &ts); |
| } |
| } |
| |
| bpf_probe_read(&tgid, sizeof(next->tgid), &next->tgid); |
| bpf_probe_read(&pid, sizeof(next->pid), &next->pid); |
| |
| u64 *tsp, delta_us; |
| |
| // fetch timestamp and calculate delta |
| tsp = start.lookup(&pid); |
| if (tsp == 0) { |
| return 0; // missed enqueue |
| } |
| delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; |
| |
| if (FILTER_US) |
| return 0; |
| |
| struct data_t data = {}; |
| data.pid = pid; |
| data.delta_us = delta_us; |
| bpf_get_current_comm(&data.task, sizeof(data.task)); |
| |
| // output |
| events.perf_submit(ctx, &data, sizeof(data)); |
| |
| start.delete(&pid); |
| return 0; |
| } |
| """ |
| |
| is_support_raw_tp = BPF.support_raw_tracepoint() |
| if is_support_raw_tp: |
| bpf_text += bpf_text_raw_tp |
| else: |
| bpf_text += bpf_text_kprobe |
| |
| # code substitutions |
| if min_us == 0: |
| bpf_text = bpf_text.replace('FILTER_US', '0') |
| else: |
| bpf_text = bpf_text.replace('FILTER_US', 'delta_us <= %s' % str(min_us)) |
| if args.pid: |
| bpf_text = bpf_text.replace('FILTER_PID', 'pid != %s' % pid) |
| else: |
| bpf_text = bpf_text.replace('FILTER_PID', '0') |
| if debug or args.ebpf: |
| print(bpf_text) |
| if args.ebpf: |
| exit() |
| |
| # kernel->user event data: struct data_t |
| DNAME_INLINE_LEN = 32 # linux/dcache.h |
| TASK_COMM_LEN = 16 # linux/sched.h |
| class Data(ct.Structure): |
| _fields_ = [ |
| ("pid", ct.c_uint), |
| ("task", ct.c_char * TASK_COMM_LEN), |
| ("delta_us", ct.c_ulonglong), |
| ] |
| |
| # process event |
| def print_event(cpu, data, size): |
| event = ct.cast(data, ct.POINTER(Data)).contents |
| print("%-8s %-16s %-6s %14s" % (strftime("%H:%M:%S"), event.task, event.pid, event.delta_us)) |
| |
| # load BPF program |
| b = BPF(text=bpf_text) |
| if not is_support_raw_tp: |
| b.attach_kprobe(event="ttwu_do_wakeup", fn_name="trace_ttwu_do_wakeup") |
| b.attach_kprobe(event="wake_up_new_task", fn_name="trace_wake_up_new_task") |
| b.attach_kprobe(event="finish_task_switch", fn_name="trace_run") |
| |
| print("Tracing run queue latency higher than %d us" % min_us) |
| print("%-8s %-16s %-6s %14s" % ("TIME", "COMM", "PID", "LAT(us)")) |
| |
| # read events |
| b["events"].open_perf_buffer(print_event, page_cnt=64) |
| while 1: |
| b.perf_buffer_poll() |