blob: dd111f70a3f690db841671564903c454a8aa4ae9 [file] [log] [blame]
#!/usr/bin/env python
#
# argdist.py Trace a function and display a distribution of its
# parameter values as a histogram or frequency count.
#
# USAGE: argdist.py [-h] [-p PID] [-z STRING_SIZE] [-i INTERVAL]
# [-n COUNT] [-v] [-T TOP]
# [-C specifier [specifier ...]]
# [-H specifier [specifier ...]]
#
# Licensed under the Apache License, Version 2.0 (the "License")
# Copyright (C) 2016 Sasha Goldshtein.
from bcc import BPF
from time import sleep, strftime
import argparse
import re
class Specifier(object):
probe_text = """
DATA_DECL
int PROBENAME(struct pt_regs *ctx SIGNATURE)
{
PREFIX
PID_FILTER
KEY_EXPR
if (!(FILTER)) return 0;
COLLECT
return 0;
}
"""
next_probe_index = 0
aliases = { "$PID": "bpf_get_current_pid_tgid()" }
def _substitute_aliases(self, expr):
if expr is None:
return expr
for alias, subst in Specifier.aliases.items():
expr = expr.replace(alias, subst)
return expr
def _parse_signature(self):
params = map(str.strip, self.signature.split(','))
self.param_types = {}
for param in params:
# If the type is a pointer, the * can be next to the
# param name. Other complex types like arrays are not
# supported right now.
index = param.rfind('*')
index = index if index != -1 else param.rfind(' ')
param_type = param[0:index+1].strip()
param_name = param[index+1:].strip()
self.param_types[param_name] = param_type
entry_probe_text = """
int PROBENAME(struct pt_regs *ctx SIGNATURE)
{
u32 pid = bpf_get_current_pid_tgid();
PID_FILTER
COLLECT
return 0;
}
"""
def _generate_entry(self):
self.entry_probe_func = self.probe_func_name + "_entry"
text = self.entry_probe_text
text = text.replace("PROBENAME", self.entry_probe_func)
text = text.replace("SIGNATURE",
"" if len(self.signature) == 0 else ", " + self.signature)
pid_filter = "" if self.is_user or self.pid is None \
else "if (pid != %d) { return 0; }" % self.pid
text = text.replace("PID_FILTER", pid_filter)
collect = ""
for pname in self.args_to_probe:
param_hash = self.hashname_prefix + pname
if pname == "__latency":
collect += """
u64 __time = bpf_ktime_get_ns();
%s.update(&pid, &__time);
""" % param_hash
else:
collect += "%s.update(&pid, &%s);\n" % \
(param_hash, pname)
text = text.replace("COLLECT", collect)
return text
def _generate_entry_probe(self):
# Any $entry(name) expressions result in saving that argument
# when entering the function.
self.args_to_probe = set()
regex = r"\$entry\((\w+)\)"
for arg in re.finditer(regex, self.expr):
self.args_to_probe.add(arg.group(1))
for arg in re.finditer(regex, self.filter):
self.args_to_probe.add(arg.group(1))
if "$latency" in self.expr or "$latency" in self.filter:
self.args_to_probe.add("__latency")
self.param_types["__latency"] = "u64" # nanoseconds
for pname in self.args_to_probe:
if pname not in self.param_types:
raise ValueError("$entry(%s): no such param" \
% arg)
self.hashname_prefix = "%s_param_" % self.probe_hash_name
text = ""
for pname in self.args_to_probe:
# Each argument is stored in a separate hash that is
# keyed by pid.
text += "BPF_HASH(%s, u32, %s);\n" % \
(self.hashname_prefix + pname,
self.param_types[pname])
text += self._generate_entry()
return text
def _generate_retprobe_prefix(self):
# After we're done here, there are __%s_val variables for each
# argument we needed to probe using $entry(name), and they all
# have values (which isn't necessarily the case if we missed
# the method entry probe).
text = "u32 __pid = bpf_get_current_pid_tgid();\n"
self.param_val_names = {}
for pname in self.args_to_probe:
val_name = "__%s_val" % pname
text += "%s *%s = %s.lookup(&__pid);\n" % \
(self.param_types[pname], val_name,
self.hashname_prefix + pname)
text += "if (%s == 0) { return 0 ; }\n" % val_name
self.param_val_names[pname] = val_name
return text
def _replace_entry_exprs(self):
for pname, vname in self.param_val_names.items():
if pname == "__latency":
entry_expr = "$latency"
val_expr = "(bpf_ktime_get_ns() - *%s)" % vname
else:
entry_expr = "$entry(%s)" % pname
val_expr = "(*%s)" % vname
self.expr = self.expr.replace(entry_expr, val_expr)
self.filter = self.filter.replace(entry_expr,
val_expr)
def _attach_entry_probe(self):
if self.is_user:
self.bpf.attach_uprobe(name=self.library,
sym=self.function,
fn_name=self.entry_probe_func,
pid=self.pid or -1)
else:
self.bpf.attach_kprobe(event=self.function,
fn_name=self.entry_probe_func)
def __init__(self, type, specifier, pid):
self.raw_spec = specifier
spec_and_label = specifier.split(';')
self.label = spec_and_label[1] \
if len(spec_and_label) == 2 else None
parts = spec_and_label[0].strip().split(':')
if len(parts) < 3 or len(parts) > 6:
raise ValueError("invalid specifier format")
self.type = type # hist or freq
self.is_ret_probe = parts[0] == "r"
if self.type != "hist" and self.type != "freq":
raise ValueError("unrecognized probe type")
if parts[0] not in ["r", "p"]:
raise ValueError("unrecognized probe type")
self.library = parts[1]
self.is_user = len(self.library) > 0
fparts = parts[2].split('(')
if len(fparts) != 2:
raise ValueError("invalid specifier format")
self.function = fparts[0]
self.signature = fparts[1][:-1]
self._parse_signature()
# If the user didn't specify an expression to probe, we probe
# the retval in a ret probe, or simply the value "1" otherwise.
self.is_default_expr = len(parts) < 5
if not self.is_default_expr:
self.expr_type = parts[3]
self.expr = parts[4]
else:
if not self.is_ret_probe and self.type == "hist":
raise ValueError("dist probes must have expr")
self.expr_type = \
"u64" if not self.is_ret_probe else "int"
self.expr = "1" if not self.is_ret_probe else "$retval"
self.filter = "" if len(parts) != 6 else parts[5]
self._substitute_exprs()
# Do we need to attach an entry probe so that we can collect an
# argument that is required for an exit (return) probe?
self.entry_probe_required = self.is_ret_probe and \
("$entry" in self.expr or "$entry" in self.filter or
"$latency" in self.expr or "$latency" in self.filter)
self.pid = pid
# Generating unique names for probes means we can attach
# many times to the same function.
self.probe_func_name = "%s_probe%d" % \
(self.function, Specifier.next_probe_index)
self.probe_hash_name = "%s_hash%d" % \
(self.function, Specifier.next_probe_index)
Specifier.next_probe_index += 1
def _substitute_exprs(self):
self.expr = self.expr.replace("$retval",
"(%s)ctx->ax" % self.expr_type)
self.filter = self.filter.replace("$retval",
"(%s)ctx->ax" % self.expr_type)
self.expr = self._substitute_aliases(self.expr)
self.filter = self._substitute_aliases(self.filter)
def _is_string_probe(self):
return self.expr_type == "char*" or self.expr_type == "char *"
def generate_text(self, string_size):
# We don't like tools writing tools (Brendan Gregg), but this
# is an exception because we're letting the user fully
# customize the values we probe. As a rule of thumb though,
# try to build a custom tool for a specific purpose.
program = ""
# If any entry arguments are probed in a ret probe, we need
# to generate an entry probe to collect them
prefix = ""
if self.entry_probe_required:
program = self._generate_entry_probe()
prefix = self._generate_retprobe_prefix()
self._replace_entry_exprs()
program += self.probe_text.replace("PROBENAME",
self.probe_func_name)
signature = "" if len(self.signature) == 0 \
or self.is_ret_probe \
else ", " + self.signature
program = program.replace("SIGNATURE", signature)
if self.pid is not None and not self.is_user:
# Kernel probes need to explicitly filter pid
program = program.replace("PID_FILTER",
"u32 pid = bpf_get_current_pid_tgid();\n" + \
"if (pid != %d) { return 0; }" % self.pid)
else:
program = program.replace("PID_FILTER", "")
if self._is_string_probe():
decl = """
struct %s_key_t { char key[%d]; };
BPF_HASH(%s, struct %s_key_t, u64);
""" \
% (self.function, string_size,
self.probe_hash_name, self.function)
collect = "%s.increment(__key);" % self.probe_hash_name
key_expr = """
struct %s_key_t __key = {0};
bpf_probe_read(&__key.key, sizeof(__key.key), %s);
""" \
% (self.function, self.expr)
elif self.type == "freq":
decl = "BPF_HASH(%s, %s, u64);" % \
(self.probe_hash_name, self.expr_type)
collect = "%s.increment(__key);" % self.probe_hash_name
key_expr = "%s __key = %s;" % \
(self.expr_type, self.expr)
elif self.type == "hist":
decl = "BPF_HISTOGRAM(%s, %s);" % \
(self.probe_hash_name, self.expr_type)
collect = "%s.increment(bpf_log2l(__key));" % \
self.probe_hash_name
key_expr = "%s __key = %s;" % \
(self.expr_type, self.expr)
program = program.replace("DATA_DECL", decl)
program = program.replace("KEY_EXPR", key_expr)
program = program.replace("FILTER",
"1" if len(self.filter) == 0 else self.filter)
program = program.replace("COLLECT", collect)
program = program.replace("PREFIX", prefix)
return program
def attach(self, bpf):
self.bpf = bpf
if self.is_user:
if self.is_ret_probe:
bpf.attach_uretprobe(name=self.library,
sym=self.function,
fn_name=self.probe_func_name,
pid=self.pid or -1)
else:
bpf.attach_uprobe(name=self.library,
sym=self.function,
fn_name=self.probe_func_name,
pid=self.pid or -1)
else:
if self.is_ret_probe:
bpf.attach_kretprobe(event=self.function,
fn_name=self.probe_func_name)
else:
bpf.attach_kprobe(event=self.function,
fn_name=self.probe_func_name)
if self.entry_probe_required:
self._attach_entry_probe()
def display(self, top):
data = self.bpf.get_table(self.probe_hash_name)
if self.type == "freq":
print(self.label or self.raw_spec)
print("\t%-10s %s" % ("COUNT", "EVENT"))
data = sorted(data.items(), key=lambda kv: kv[1].value)
if top is not None:
data = data[-top:]
for key, value in data:
key_val = key.key if self._is_string_probe() \
else str(key.value)
# Print some nice values if the user didn't
# specify an expression to probe
if self.is_default_expr:
if not self.is_ret_probe:
key_str = "total calls"
else:
key_str = "retval = %s" % \
key_val
else:
key_str = "%s = %s" % \
(self.expr, key_val)
print("\t%-10s %s" % \
(str(value.value), key_str))
elif self.type == "hist":
label = self.label or \
(self.expr if not self.is_default_expr \
else "retval")
data.print_log2_hist(val_type=label)
examples = """
Probe specifier syntax:
{p,r}:[library]:function(signature)[:type:expr[:filter]][;label]
Where:
p,r -- probe at function entry or at function exit
in exit probes: can use $retval, $entry(param), $latency
library -- the library that contains the function
(leave empty for kernel functions)
function -- the function name to trace
signature -- the function's parameters, as in the C header
type -- the type of the expression to collect
expr -- the expression to collect
filter -- the filter that is applied to collected values
label -- the label for this probe in the resulting output
EXAMPLES:
argdist.py -H 'p::__kmalloc(u64 size):u64:size'
Print a histogram of allocation sizes passed to kmalloc
argdist.py -p 1005 -C 'p:c:malloc(size_t size):size_t:size:size==16'
Print a frequency count of how many times process 1005 called malloc
with an allocation size of 16 bytes
argdist.py -C 'r:c:gets():char*:$retval;snooped strings'
Snoop on all strings returned by gets()
argdist.py -H 'r::__kmalloc(size_t size):u64:$latency/$entry(size);ns per byte'
Print a histogram of nanoseconds per byte from kmalloc allocations
argdist.py -p 1005 -C 'p:c:write(int fd):int:fd' -T 5
Print frequency counts of how many times writes were issued to a
particular file descriptor number, in process 1005, but only show
the top 5 busiest fds
argdist.py -p 1005 -H 'r:c:read()'
Print a histogram of error codes returned by read() in process 1005
argdist.py -C 'r::__vfs_read():u32:$PID:$latency > 100000'
Print frequency of reads by process where the latency was >0.1ms
argdist.py -H 'r::__vfs_read(void *file, void *buf, size_t count):size_t:$entry(count):$latency > 1000000'
Print a histogram of read sizes that were longer than 1ms
argdist.py -H \\
'p:c:write(int fd, const void *buf, size_t count):size_t:count:fd==1'
Print a histogram of buffer sizes passed to write() across all
processes, where the file descriptor was 1 (STDOUT)
argdist.py -C 'p:c:fork();fork calls'
Count fork() calls in libc across all processes
Can also use funccount.py, which is easier and more flexible
argdist.py -H \\
'p:c:sleep(u32 seconds):u32:seconds' \\
'p:c:nanosleep(struct timespec { time_t tv_sec; long tv_nsec; } *req):long:req->tv_nsec'
Print histograms of sleep() and nanosleep() parameter values
argdist.py -p 2780 -z 120 \\
-C 'p:c:write(int fd, char* buf, size_t len):char*:buf:fd==1'
Spy on writes to STDOUT performed by process 2780, up to a string size
of 120 characters
"""
parser = argparse.ArgumentParser(description=
"Trace a function and display a summary of its parameter values.",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=examples)
parser.add_argument("-p", "--pid", type=int,
help="id of the process to trace (optional)")
parser.add_argument("-z", "--string-size", default=80, type=int,
help="maximum string size to read from char* arguments")
parser.add_argument("-i", "--interval", default=1, type=int,
help="output interval, in seconds")
parser.add_argument("-n", "--number", type=int, dest="count",
help="number of outputs")
parser.add_argument("-v", "--verbose", action="store_true",
help="print resulting BPF program code before executing")
parser.add_argument("-T", "--top", type=int,
help="number of top results to show (not applicable to histograms)")
parser.add_argument("-H", "--histogram", nargs="*", dest="histspecifier",
help="probe specifier to capture histogram of (see examples below)")
parser.add_argument("-C", "--count", nargs="*", dest="countspecifier",
help="probe specifier to capture count of (see examples below)")
args = parser.parse_args()
specifiers = []
for specifier in (args.countspecifier or []):
specifiers.append(Specifier("freq", specifier, args.pid))
for histspecifier in (args.histspecifier or []):
specifiers.append(Specifier("hist", histspecifier, args.pid))
if len(specifiers) == 0:
print("at least one specifier is required")
exit(1)
bpf_source = "#include <uapi/linux/ptrace.h>\n"
for specifier in specifiers:
bpf_source += specifier.generate_text(args.string_size)
if args.verbose:
print(bpf_source)
bpf = BPF(text=bpf_source)
for specifier in specifiers:
specifier.attach(bpf)
count_so_far = 0
while True:
try:
sleep(args.interval)
except KeyboardInterrupt:
exit()
print("[%s]" % strftime("%H:%M:%S"))
for specifier in specifiers:
specifier.display(args.top)
count_so_far += 1
if args.count is not None and count_so_far >= args.count:
exit()