blob: 51dfe5729e3af9a1156901741021266fa49bf361 [file] [log] [blame]
/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
/* Copyright (c) 2021, Oracle and/or its affiliates. */
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
#include "ksnoop.h"
/* For kretprobes, the instruction pointer in the struct pt_regs context
* is the kretprobe_trampoline. We derive the instruction pointer
* by pushing it onto a function stack on entry and popping it on return.
*
* We could use bpf_get_func_ip(), but "stack mode" - where we
* specify functions "a", "b and "c" and only want to see a trace if "a"
* calls "b" and "b" calls "c" - utilizes this stack to determine if trace
* data should be collected.
*/
#define FUNC_MAX_STACK_DEPTH 16
/* used to convince verifier we do not stray outside of array bounds */
#define FUNC_STACK_DEPTH_MASK (FUNC_MAX_STACK_DEPTH - 1)
#ifndef ENOSPC
#define ENOSPC 28
#endif
struct func_stack {
__u64 task;
__u64 ips[FUNC_MAX_STACK_DEPTH];
__u8 stack_depth;
};
#define MAX_TASKS 2048
/* function call stack hashed on a per-task key */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
/* function call stack for functions we are tracing */
__uint(max_entries, MAX_TASKS);
__type(key, __u64);
__type(value, struct func_stack);
} ksnoop_func_stack SEC(".maps");
/* per-cpu trace info hashed on function address */
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_HASH);
__uint(max_entries, MAX_FUNC_TRACES);
__type(key, __u64);
__type(value, struct trace);
} ksnoop_func_map SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY);
__uint(value_size, sizeof(int));
__uint(key_size, sizeof(int));
} ksnoop_perf_map SEC(".maps");
static void clear_trace(struct trace *trace)
{
__builtin_memset(&trace->trace_data, 0, sizeof(trace->trace_data));
trace->data_flags = 0;
trace->buf_len = 0;
}
static struct trace *get_trace(struct pt_regs *ctx, bool entry)
{
__u8 stack_depth, last_stack_depth;
struct func_stack *func_stack;
__u64 ip, last_ip = 0, task;
struct trace *trace;
task = bpf_get_current_task();
func_stack = bpf_map_lookup_elem(&ksnoop_func_stack, &task);
if (!func_stack) {
struct func_stack new_stack = { .task = task };
bpf_map_update_elem(&ksnoop_func_stack, &task, &new_stack,
BPF_NOEXIST);
func_stack = bpf_map_lookup_elem(&ksnoop_func_stack, &task);
if (!func_stack)
return NULL;
}
stack_depth = func_stack->stack_depth;
if (stack_depth > FUNC_MAX_STACK_DEPTH)
return NULL;
if (entry) {
ip = KSNOOP_IP_FIX(PT_REGS_IP_CORE(ctx));
if (stack_depth >= FUNC_MAX_STACK_DEPTH - 1)
return NULL;
/* verifier doesn't like using "stack_depth - 1" as array index
* directly.
*/
last_stack_depth = stack_depth - 1;
/* get address of last function we called */
if (last_stack_depth >= 0 &&
last_stack_depth < FUNC_MAX_STACK_DEPTH)
last_ip = func_stack->ips[last_stack_depth];
/* push ip onto stack. return will pop it. */
func_stack->ips[stack_depth] = ip;
/* mask used in case bounds checks are optimized out */
stack_depth = (stack_depth + 1) & FUNC_STACK_DEPTH_MASK;
func_stack->stack_depth = stack_depth;
/* rather than zero stack entries on popping, we zero the
* (stack_depth + 1)'th entry when pushing the current
* entry. The reason we take this approach is that
* when tracking the set of functions we returned from,
* we want the history of functions we returned from to
* be preserved.
*/
if (stack_depth < FUNC_MAX_STACK_DEPTH)
func_stack->ips[stack_depth] = 0;
} else {
if (stack_depth == 0 || stack_depth >= FUNC_MAX_STACK_DEPTH)
return NULL;
last_stack_depth = stack_depth;
/* get address of last function we returned from */
if (last_stack_depth >= 0 &&
last_stack_depth < FUNC_MAX_STACK_DEPTH)
last_ip = func_stack->ips[last_stack_depth];
if (stack_depth > 0) {
/* logical OR convinces verifier that we don't
* end up with a < 0 value, translating to 0xff
* and an outside of map element access.
*/
stack_depth = (stack_depth - 1) & FUNC_STACK_DEPTH_MASK;
}
/* retrieve ip from stack as IP in pt_regs is
* bpf kretprobe trampoline address.
*/
if (stack_depth >= 0 && stack_depth < FUNC_MAX_STACK_DEPTH)
ip = func_stack->ips[stack_depth];
if (stack_depth >= 0 && stack_depth < FUNC_MAX_STACK_DEPTH)
func_stack->stack_depth = stack_depth;
}
trace = bpf_map_lookup_elem(&ksnoop_func_map, &ip);
if (!trace)
return NULL;
/* we may stash data on entry since predicates are a mix
* of entry/return; in such cases, trace->flags specifies
* KSNOOP_F_STASH, and we will output stashed data on return.
* If returning, make sure we don't clear our stashed data.
*/
if (!entry && (trace->flags & KSNOOP_F_STASH)) {
/* skip clearing trace data */
if (!(trace->data_flags & KSNOOP_F_STASHED)) {
/* predicate must have failed */
return NULL;
}
/* skip clearing trace data */
} else {
/* clear trace data before starting. */
clear_trace(trace);
}
if (entry) {
/* if in stack mode, check if previous fn matches */
if (trace->prev_ip && trace->prev_ip != last_ip)
return NULL;
/* if tracing intermediate fn in stack of fns, stash data. */
if (trace->next_ip)
trace->data_flags |= KSNOOP_F_STASH;
/* we may stash data on entry since predicates are a mix
* of entry/return; in such cases, trace->flags specifies
* KSNOOP_F_STASH, and we will output stashed data on return.
*/
if (trace->flags & KSNOOP_F_STASH)
trace->data_flags |= KSNOOP_F_STASH;
/* otherwise the data is outputted (because we've reached
* the last fn in the set of fns specified).
*/
} else {
/* In stack mode, check if next fn matches the last fn
* we returned from; i.e. "a" called "b", and now
* we're at "a", was the last fn we returned from "b"?
* If so, stash data for later display (when we reach the
* first fn in the set of stack fns).
*/
if (trace->next_ip && trace->next_ip != last_ip)
return NULL;
if (trace->prev_ip)
trace->data_flags |= KSNOOP_F_STASH;
/* If there is no "prev" function, i.e. we are at the
* first function in a set of stack functions, the trace
* info is shown (along with any stashed info associated
* with callers).
*/
}
trace->task = task;
return trace;
}
static void output_trace(struct pt_regs *ctx, struct trace *trace)
{
__u16 trace_len;
if (trace->buf_len == 0)
goto skip;
/* we may be simply stashing values, and will report later */
if (trace->data_flags & KSNOOP_F_STASH) {
trace->data_flags &= ~KSNOOP_F_STASH;
trace->data_flags |= KSNOOP_F_STASHED;
return;
}
/* we may be outputting earlier stashed data */
if (trace->data_flags & KSNOOP_F_STASHED)
trace->data_flags &= ~KSNOOP_F_STASHED;
/* trim perf event size to only contain data we've recorded. */
trace_len = sizeof(*trace) + trace->buf_len - MAX_TRACE_BUF;
if (trace_len <= sizeof(*trace))
bpf_perf_event_output(ctx, &ksnoop_perf_map,
BPF_F_CURRENT_CPU,
trace, trace_len);
skip:
clear_trace(trace);
}
static void output_stashed_traces(struct pt_regs *ctx,
struct trace *currtrace,
bool entry)
{
struct func_stack *func_stack;
struct trace *trace = NULL;
__u8 i;
__u64 task = 0;
task = bpf_get_current_task();
func_stack = bpf_map_lookup_elem(&ksnoop_func_stack, &task);
if (!func_stack)
return;
if (entry) {
/* iterate from bottom to top of stack, outputting stashed
* data we find. This corresponds to the set of functions
* we called before the current function.
*/
for (i = 0;
i < func_stack->stack_depth - 1 && i < FUNC_MAX_STACK_DEPTH;
i++) {
trace = bpf_map_lookup_elem(&ksnoop_func_map,
&func_stack->ips[i]);
if (!trace || !(trace->data_flags & KSNOOP_F_STASHED))
break;
if (trace->task != task)
return;
output_trace(ctx, trace);
}
} else {
/* iterate from top to bottom of stack, outputting stashed
* data we find. This corresponds to the set of functions
* that returned prior to the current returning function.
*/
for (i = FUNC_MAX_STACK_DEPTH; i > 0; i--) {
__u64 ip;
ip = func_stack->ips[i];
if (!ip)
continue;
trace = bpf_map_lookup_elem(&ksnoop_func_map, &ip);
if (!trace || !(trace->data_flags & KSNOOP_F_STASHED))
break;
if (trace->task != task)
return;
output_trace(ctx, trace);
}
}
/* finally output the current trace info */
output_trace(ctx, currtrace);
}
static __u64 get_arg(struct pt_regs *ctx, enum arg argnum)
{
switch (argnum) {
case KSNOOP_ARG1:
return PT_REGS_PARM1_CORE(ctx);
case KSNOOP_ARG2:
return PT_REGS_PARM2_CORE(ctx);
case KSNOOP_ARG3:
return PT_REGS_PARM3_CORE(ctx);
case KSNOOP_ARG4:
return PT_REGS_PARM4_CORE(ctx);
case KSNOOP_ARG5:
return PT_REGS_PARM5_CORE(ctx);
case KSNOOP_RETURN:
return PT_REGS_RC_CORE(ctx);
default:
return 0;
}
}
static int ksnoop(struct pt_regs *ctx, bool entry)
{
void *data_ptr = NULL;
struct trace *trace;
__u64 data;
__u32 currpid;
int ret;
__u8 i;
trace = get_trace(ctx, entry);
if (!trace)
return 0;
/* make sure we want events from this pid */
currpid = bpf_get_current_pid_tgid();
if (trace->filter_pid && trace->filter_pid != currpid)
return 0;
trace->pid = currpid;
trace->cpu = bpf_get_smp_processor_id();
trace->time = bpf_ktime_get_ns();
trace->data_flags &= ~(KSNOOP_F_ENTRY | KSNOOP_F_RETURN);
if (entry)
trace->data_flags |= KSNOOP_F_ENTRY;
else
trace->data_flags |= KSNOOP_F_RETURN;
for (i = 0; i < MAX_TRACES; i++) {
struct trace_data *currdata;
struct value *currtrace;
char *buf_offset = NULL;
__u32 tracesize;
currdata = &trace->trace_data[i];
currtrace = &trace->traces[i];
if ((entry && !base_arg_is_entry(currtrace->base_arg)) ||
(!entry && base_arg_is_entry(currtrace->base_arg)))
continue;
/* skip void (unused) trace arguments, ensuring not to
* skip "void *".
*/
if (currtrace->type_id == 0 &&
!(currtrace->flags & KSNOOP_F_PTR))
continue;
data = get_arg(ctx, currtrace->base_arg);
/* look up member value and read into data field. */
if (currtrace->flags & KSNOOP_F_MEMBER) {
if (currtrace->offset)
data += currtrace->offset;
/* member is a pointer; read it in */
if (currtrace->flags & KSNOOP_F_PTR) {
void *dataptr = (void *)data;
ret = bpf_probe_read(&data, sizeof(data),
dataptr);
if (ret) {
currdata->err_type_id =
currtrace->type_id;
currdata->err = ret;
continue;
}
currdata->raw_value = data;
} else if (currtrace->size <=
sizeof(currdata->raw_value)) {
/* read member value for predicate comparison */
bpf_probe_read(&currdata->raw_value,
currtrace->size,
(void*)data);
}
} else {
currdata->raw_value = data;
}
/* simple predicate evaluation: if any predicate fails,
* skip all tracing for this function.
*/
if (currtrace->flags & KSNOOP_F_PREDICATE_MASK) {
bool ok = false;
if (currtrace->flags & KSNOOP_F_PREDICATE_EQ &&
currdata->raw_value == currtrace->predicate_value)
ok = true;
if (currtrace->flags & KSNOOP_F_PREDICATE_NOTEQ &&
currdata->raw_value != currtrace->predicate_value)
ok = true;
if (currtrace->flags & KSNOOP_F_PREDICATE_GT &&
currdata->raw_value > currtrace->predicate_value)
ok = true;
if (currtrace->flags & KSNOOP_F_PREDICATE_LT &&
currdata->raw_value < currtrace->predicate_value)
ok = true;
if (!ok) {
clear_trace(trace);
return 0;
}
}
if (currtrace->flags & (KSNOOP_F_PTR | KSNOOP_F_MEMBER))
data_ptr = (void *)data;
else
data_ptr = &data;
if (trace->buf_len + MAX_TRACE_DATA >= MAX_TRACE_BUF)
break;
buf_offset = &trace->buf[trace->buf_len];
if (buf_offset > &trace->buf[MAX_TRACE_BUF]) {
currdata->err_type_id = currtrace->type_id;
currdata->err = -ENOSPC;
continue;
}
currdata->buf_offset = trace->buf_len;
tracesize = currtrace->size;
if (tracesize > MAX_TRACE_DATA)
tracesize = MAX_TRACE_DATA;
ret = bpf_probe_read(buf_offset, tracesize, data_ptr);
if (ret < 0) {
currdata->err_type_id = currtrace->type_id;
currdata->err = ret;
continue;
} else {
currdata->buf_len = tracesize;
trace->buf_len += tracesize;
}
}
/* show accumulated stashed traces (if any) */
if ((entry && trace->prev_ip && !trace->next_ip) ||
(!entry && trace->next_ip && !trace->prev_ip))
output_stashed_traces(ctx, trace, entry);
else
output_trace(ctx, trace);
return 0;
}
SEC("kprobe/foo")
int kprobe_entry(struct pt_regs *ctx)
{
return ksnoop(ctx, true);
}
SEC("kretprobe/foo")
int kprobe_return(struct pt_regs *ctx)
{
return ksnoop(ctx, false);
}
char _license[] SEC("license") = "Dual BSD/GPL";