blob: 47183c9b4f37f2549e3fb6834e2b02941a99af86 [file] [log] [blame] [view]
Suchakra Sharmac4970562015-08-03 19:22:22 -04001![BCC Logo](images/logo2.png)
Brendenc3c4fc12015-05-03 08:33:53 -07002# BPF Compiler Collection (BCC)
3
Brendan Gregg493fd622015-09-10 14:46:52 -07004BCC is a toolkit for creating efficient kernel tracing and manipulation
5programs, and includes several useful tools and examples. It makes use of eBPF
6(Extended Berkeley Packet Filters), a new feature that was first added to
7Linux 3.15. Much of what BCC uses requires Linux 4.1 and above.
Brendenc3c4fc12015-05-03 08:33:53 -07008
Brendan Gregg493fd622015-09-10 14:46:52 -07009eBPF was [described by](https://lkml.org/lkml/2015/4/14/232) Ingo Molnár as:
10
11> One of the more interesting features in this cycle is the ability to attach eBPF programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live kernel image that can never crash, hang or interfere with the kernel negatively.
12
Brendan Gregg25173392015-09-10 14:48:48 -070013BCC makes eBPF programs easier to write, with kernel instrumentation in C
Brendan Gregg493fd622015-09-10 14:46:52 -070014and a front-end in Python. It is suited for many tasks, including advanced
15performance analysis and network traffic control.
16
17## Screenshot
18
19This example traces a disk I/O kernel function, and populates an in-kernel
20power-of-2 histogram of the I/O size. For efficiency, only the histogram
21summary is returned to user-level.
22
23```Shell
24# ./bitehist.py
25Tracing... Hit Ctrl-C to end.
26^C
27 value : count distribution
28 0 -> 1 : 3 | |
29 2 -> 3 : 0 | |
30 4 -> 7 : 211 |********** |
31 8 -> 15 : 0 | |
32 16 -> 31 : 0 | |
33 32 -> 63 : 0 | |
34 64 -> 127 : 1 | |
35 128 -> 255 : 800 |**************************************|
36```
37
38The above output shows a bimodal distribution, where the largest mode of
39800 I/O was between 128 and 255 Kbytes in size.
40
41See the source: [bitehist.c](examples/bitehist.c) and
42[bitehist.py](examples/bitehist.py). What this traces, what this stores, and how
43the data is presented, can be entirely customized. This shows only some of
44many possible capabilities.
Brendenc3c4fc12015-05-03 08:33:53 -070045
Brenden Blanco31518432015-07-07 17:38:30 -070046## Installing
47
48See [INSTALL.md](INSTALL.md) for installation steps on your platform.
49
Brendan Gregg493fd622015-09-10 14:46:52 -070050## Contents
51
52Some of these are single files that contain both C and Python, others have a
53pair of .c and .py files, and some are directories of files.
54
55### Tracing
56
57Examples:
58
59- examples/[bitehist.py](examples/bitehist.py) examples/[bitehist.c](examples/bitehist.c): Block I/O size histogram. [Examples](examples/bitehist_example.txt).
Brendan Gregg25173392015-09-10 14:48:48 -070060- examples/[disksnoop.py](examples/disksnoop.py) examples/[disksnoop.c](examples/disksnoop.c): Trace block device I/O latency. [Examples](examples/disksnoop_example.txt).
Brendan Gregg493fd622015-09-10 14:46:52 -070061- examples/[hello_world.py](examples/hello_world.py): Prints "Hello, World!" for new processes.
62- examples/[trace_fields.py](examples/trace_fields.py): Simple example of printing fields from traced events.
63- examples/[vfsreadlat.py](examples/vfsreadlat.py) examples/[vfsreadlat.c](examples/vfsreadlat.c): VFS read latency distribution. [Examples](examples/vfsreadlat_example.txt).
64
65Tools:
66
67- tools/[funccount](tools/funccount): Count kernel function calls. [Examples](tools/funccount_example.txt).
68- tools/[pidpersec](tools/pidpersec): Count new processes (via fork). [Examples](tools/pidpersec_example.txt).
69- tools/[syncsnoop](tools/syncsnoop): Trace sync() syscall. [Examples](tools/syncsnoop_example.txt).
70- tools/[vfscount](tools/vfscount) tools/[vfscount.c](tools/vfscount.c): Count VFS calls. [Examples](tools/vfscount_example.txt).
71- tools/[vfsstat](tools/vfsstat) tools/[vfsstat.c](tools/vfsstat.c): Count some VFS calls, with column output. [Examples](tools/vfsstat_example.txt).
72
73### Networking
74
75Examples:
76
77- examples/[distributed_bridge/](examples/distributed_bridge): Distributed bridge example.
78- examples/[simple_tc.py](examples/simple_tc.py): Simple traffic control example.
79- examples/[simulation.py](examples/simulation.py): Simulation example.
80- examples/[simulation.py](examples/simulation.py): Simulation example.
81- examples/[tc_neighbor_sharing.py](examples/tc_neighbor_sharing.py) examples/[tc_neighbor_sharing.c](examples/tc_neighbor_sharing.c): Per-IP classification and rate limiting.
Brendan Gregg25173392015-09-10 14:48:48 -070082- examples/[tunnel_monitor/](examples/tunnel_monitor): Efficiently monitor traffic flows. [Example video](https://www.youtube.com/watch?v=yYy3Cwce02k).
Brendan Gregg493fd622015-09-10 14:46:52 -070083- examples/[vlan_learning.py](examples/vlan_learning.py) examples/[vlan_learning.c](examples/vlan_learning.c): Demux Ethernet traffic into worker veth+namespaces.
84
Brendenc3c4fc12015-05-03 08:33:53 -070085## Motivation
86
87BPF guarantees that the programs loaded into the kernel cannot crash, and
Brenden Blanco452de202015-05-03 10:43:07 -070088cannot run forever, but yet BPF is general purpose enough to perform many
89arbitrary types of computation. Currently, it is possible to write a program in
Brendenc3c4fc12015-05-03 08:33:53 -070090C that will compile into a valid BPF program, yet it is vastly easier to
91write a C program that will compile into invalid BPF (C is like that). The user
Brenden Blanco452de202015-05-03 10:43:07 -070092won't know until trying to run the program whether it was valid or not.
Brendenc3c4fc12015-05-03 08:33:53 -070093
94With a BPF-specific frontend, one should be able to write in a language and
95receive feedback from the compiler on the validity as it pertains to a BPF
96backend. This toolkit aims to provide a frontend that can only create valid BPF
97programs while still harnessing its full flexibility.
98
Brenden Blanco46176a12015-07-07 13:05:22 -070099Furthermore, current integrations with BPF have a kludgy workflow, sometimes
100involving compiling directly in a linux kernel source tree. This toolchain aims
101to minimize the time that a developer spends getting BPF compiled, and instead
102focus on the applications that can be written and the problems that can be
103solved with BPF.
104
Brendenc3c4fc12015-05-03 08:33:53 -0700105The features of this toolkit include:
106* End-to-end BPF workflow in a shared library
Brenden Blanco46176a12015-07-07 13:05:22 -0700107 * A modified C language for BPF backends
Brenden Blanco452de202015-05-03 10:43:07 -0700108 * Integration with llvm-bpf backend for JIT
Brendenc3c4fc12015-05-03 08:33:53 -0700109 * Dynamic (un)loading of JITed programs
110 * Support for BPF kernel hooks: socket filters, tc classifiers,
111 tc actions, and kprobes
112* Bindings for Python
113* Examples for socket filters, tc classifiers, and kprobes
Brenden Blanco32326202015-09-03 16:31:47 -0700114* Self-contained tools for tracing a running system
Brenden Blanco46176a12015-07-07 13:05:22 -0700115
116In the future, more bindings besides python will likely be supported. Feel free
117to add support for the language of your choice and send a pull request!
118
Brendan Gregg493fd622015-09-10 14:46:52 -0700119## Tutorial
Brenden Blanco46176a12015-07-07 13:05:22 -0700120
Brendan Gregg493fd622015-09-10 14:46:52 -0700121The BCC toolchain is currently composed of two parts: a C wrapper around LLVM,
122and a Python API to interact with the running program. Later, we will go into
123more detail of how this all works.
Brenden Blanco46176a12015-07-07 13:05:22 -0700124
125### Hello, World
126
127First, we should include the BPF class from the bpf module:
128```python
Brenden Blancoc35989d2015-09-02 18:04:07 -0700129from bcc import BPF
Brenden Blanco46176a12015-07-07 13:05:22 -0700130```
131
132Since the C code is so short, we will embed it inside the python script.
133
134The BPF program always takes at least one argument, which is a pointer to the
135context for this type of program. Different program types have different calling
136conventions, but for this one we don't care so `void *` is fine.
137```python
138prog = """
139int hello(void *ctx) {
140 bpf_trace_printk("Hello, World!\\n");
141 return 0;
142};
143"""
144b = BPF(text=prog)
145```
146
147For this example, we will call the program every time `fork()` is called by a
148userspace process. Underneath the hood, fork translates to the `clone` syscall,
149so we will attach our program to the kernel symbol `sys_clone`.
150```python
Brenden Blanco32326202015-09-03 16:31:47 -0700151b.attach_kprobe(event="sys_clone", fn_name="hello")
Brenden Blanco46176a12015-07-07 13:05:22 -0700152```
153
154The python process will then print the trace printk circular buffer until ctrl-c
155is pressed. The BPF program is removed from the kernel when the userspace
156process that loaded it closes the fd (or exits).
157```python
Brenden Blanco32326202015-09-03 16:31:47 -0700158b.trace_print()
Brenden Blanco46176a12015-07-07 13:05:22 -0700159```
160
161Output:
162```
163bcc/examples$ sudo python hello_world.py
164 python-7282 [002] d... 3757.488508: : Hello, World!
165```
166
Brenden Blanco00312852015-09-04 00:08:19 -0700167For an explanation of the meaning of the printed fields, see the trace_pipe
168section of the [kernel ftrace doc](https://www.kernel.org/doc/Documentation/trace/ftrace.txt).
169
Brenden Blanco46176a12015-07-07 13:05:22 -0700170[Source code listing](examples/hello_world.py)
171
172### Networking
173
Brenden Blanco31518432015-07-07 17:38:30 -0700174At RedHat Summit 2015, BCC was presented as part of a [session on BPF](http://www.devnation.org/#7784f1f7513e8542e4db519e79ff5eec).
175A multi-host vxlan environment is simulated and a BPF program used to monitor
176one of the physical interfaces. The BPF program keeps statistics on the inner
177and outer IP addresses traversing the interface, and the userspace component
178turns those statistics into a graph showing the traffic distribution at
179multiple granularities. See the code [here](examples/tunnel_monitor).
180
181[![Screenshot](http://img.youtube.com/vi/yYy3Cwce02k/0.jpg)](https://youtu.be/yYy3Cwce02k)
Brenden Blanco46176a12015-07-07 13:05:22 -0700182
183### Tracing
Brendenc3c4fc12015-05-03 08:33:53 -0700184
Brenden Blanco31518432015-07-07 17:38:30 -0700185Here is a slightly more complex tracing example than Hello World. This program
186will be invoked for every task change in the kernel, and record in a BPF map
187the new and old pids.
188
189The C program below introduces two new concepts.
190The first is the macro `BPF_TABLE`. This defines a table (type="hash"), with key
191type `key_t` and leaf type `u64` (a single counter). The table name is `stats`,
192containing 1024 entries maximum. One can `lookup`, `lookup_or_init`, `update`,
193and `delete` entries from the table.
194The second concept is the prev argument. This argument is treated specially by
195the BCC frontend, such that accesses to this variable are read from the saved
196context that is passed by the kprobe infrastructure. The prototype of the args
197starting from position 1 should match the prototype of the kernel function being
198kprobed. If done so, the program will have seamless access to the function
199parameters.
200```c
201#include <uapi/linux/ptrace.h>
202#include <linux/sched.h>
203
204struct key_t {
205 u32 prev_pid;
206 u32 curr_pid;
207};
208// map_type, key_type, leaf_type, table_name, num_entry
209BPF_TABLE("hash", struct key_t, u64, stats, 1024);
Brenden Blanco00312852015-09-04 00:08:19 -0700210// attach to finish_task_switch in kernel/sched/core.c, which has the following
211// prototype:
212// struct rq *finish_task_switch(struct task_struct *prev)
Brenden Blanco31518432015-07-07 17:38:30 -0700213int count_sched(struct pt_regs *ctx, struct task_struct *prev) {
214 struct key_t key = {};
215 u64 zero = 0, *val;
216
217 key.curr_pid = bpf_get_current_pid_tgid();
218 key.prev_pid = prev->pid;
219
220 val = stats.lookup_or_init(&key, &zero);
221 (*val)++;
222 return 0;
223}
224```
225[Source code listing](examples/task_switch.c)
226
227The userspace component loads the file shown above, and attaches it to the
Brenden Blanco00312852015-09-04 00:08:19 -0700228`finish_task_switch` kernel function.
229The [] operator of the BPF object gives access to each BPF_TABLE in the
230program, allowing pass-through access to the values residing in the kernel. Use
231the object as you would any other python dict object: read, update, and deletes
232are all allowed.
Brenden Blanco31518432015-07-07 17:38:30 -0700233```python
Brenden Blancoc35989d2015-09-02 18:04:07 -0700234from bcc import BPF
Brenden Blanco31518432015-07-07 17:38:30 -0700235from time import sleep
236
237b = BPF(src_file="task_switch.c")
Brenden Blancoc8b66982015-08-28 23:15:19 -0700238b.attach_kprobe(event="finish_task_switch", fn_name="count_sched")
Brenden Blanco31518432015-07-07 17:38:30 -0700239
240# generate many schedule events
241for i in range(0, 100): sleep(0.01)
242
Brenden Blancoc8b66982015-08-28 23:15:19 -0700243for k, v in b["stats"].items():
Brenden Blanco31518432015-07-07 17:38:30 -0700244 print("task_switch[%5d->%5d]=%u" % (k.prev_pid, k.curr_pid, v.value))
245```
246[Source code listing](examples/task_switch.py)
247
Brenden Blanco452de202015-05-03 10:43:07 -0700248## Getting started
249
Brenden Blanco31518432015-07-07 17:38:30 -0700250See [INSTALL.md](INSTALL.md) for installation steps on your platform.