blob: cb35339b571adcc277a40bb91e2882d0b54c4f9a [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <openssl/asn1.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/stack.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/x509_vfy.h>
#include "internal.h"
#include "../crypto/internal.h"
namespace bssl {
// check_ssl_x509_method asserts that |ssl| has the X509-based method
// installed. Calling an X509-based method on an |ssl| with a different method
// will likely misbehave and possibly crash or leak memory.
static void check_ssl_x509_method(const SSL *ssl) {
assert(ssl == NULL || ssl->ctx->x509_method == &ssl_crypto_x509_method);
}
// check_ssl_ctx_x509_method acts like |check_ssl_x509_method|, but for an
// |SSL_CTX|.
static void check_ssl_ctx_x509_method(const SSL_CTX *ctx) {
assert(ctx == NULL || ctx->x509_method == &ssl_crypto_x509_method);
}
// x509_to_buffer returns a |CRYPTO_BUFFER| that contains the serialised
// contents of |x509|.
static UniquePtr<CRYPTO_BUFFER> x509_to_buffer(X509 *x509) {
uint8_t *buf = NULL;
int cert_len = i2d_X509(x509, &buf);
if (cert_len <= 0) {
return 0;
}
UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(buf, cert_len, NULL));
OPENSSL_free(buf);
return buffer;
}
// new_leafless_chain returns a fresh stack of buffers set to {NULL}.
static UniquePtr<STACK_OF(CRYPTO_BUFFER)> new_leafless_chain(void) {
UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain(sk_CRYPTO_BUFFER_new_null());
if (!chain ||
!sk_CRYPTO_BUFFER_push(chain.get(), nullptr)) {
return nullptr;
}
return chain;
}
// ssl_cert_set_chain sets elements 1.. of |cert->chain| to the serialised
// forms of elements of |chain|. It returns one on success or zero on error, in
// which case no change to |cert->chain| is made. It preverses the existing
// leaf from |cert->chain|, if any.
static int ssl_cert_set_chain(CERT *cert, STACK_OF(X509) *chain) {
UniquePtr<STACK_OF(CRYPTO_BUFFER)> new_chain;
if (cert->chain != nullptr) {
new_chain.reset(sk_CRYPTO_BUFFER_new_null());
if (!new_chain) {
return 0;
}
CRYPTO_BUFFER *leaf = sk_CRYPTO_BUFFER_value(cert->chain.get(), 0);
if (!sk_CRYPTO_BUFFER_push(new_chain.get(), leaf)) {
return 0;
}
// |leaf| might be NULL if it's a “leafless” chain.
if (leaf != nullptr) {
CRYPTO_BUFFER_up_ref(leaf);
}
}
for (X509 *x509 : chain) {
if (!new_chain) {
new_chain = new_leafless_chain();
if (!new_chain) {
return 0;
}
}
UniquePtr<CRYPTO_BUFFER> buffer = x509_to_buffer(x509);
if (!buffer ||
!PushToStack(new_chain.get(), std::move(buffer))) {
return 0;
}
}
cert->chain = std::move(new_chain);
return 1;
}
static void ssl_crypto_x509_cert_flush_cached_leaf(CERT *cert) {
X509_free(cert->x509_leaf);
cert->x509_leaf = NULL;
}
static void ssl_crypto_x509_cert_flush_cached_chain(CERT *cert) {
sk_X509_pop_free(cert->x509_chain, X509_free);
cert->x509_chain = NULL;
}
static int ssl_crypto_x509_check_client_CA_list(
STACK_OF(CRYPTO_BUFFER) *names) {
for (const CRYPTO_BUFFER *buffer : names) {
const uint8_t *inp = CRYPTO_BUFFER_data(buffer);
X509_NAME *name = d2i_X509_NAME(NULL, &inp, CRYPTO_BUFFER_len(buffer));
const int ok = name != NULL && inp == CRYPTO_BUFFER_data(buffer) +
CRYPTO_BUFFER_len(buffer);
X509_NAME_free(name);
if (!ok) {
return 0;
}
}
return 1;
}
static void ssl_crypto_x509_cert_clear(CERT *cert) {
ssl_crypto_x509_cert_flush_cached_leaf(cert);
ssl_crypto_x509_cert_flush_cached_chain(cert);
X509_free(cert->x509_stash);
cert->x509_stash = NULL;
}
static void ssl_crypto_x509_cert_free(CERT *cert) {
ssl_crypto_x509_cert_clear(cert);
X509_STORE_free(cert->verify_store);
}
static void ssl_crypto_x509_cert_dup(CERT *new_cert, const CERT *cert) {
if (cert->verify_store != NULL) {
X509_STORE_up_ref(cert->verify_store);
new_cert->verify_store = cert->verify_store;
}
}
static int ssl_crypto_x509_session_cache_objects(SSL_SESSION *sess) {
bssl::UniquePtr<STACK_OF(X509)> chain;
if (sk_CRYPTO_BUFFER_num(sess->certs) > 0) {
chain.reset(sk_X509_new_null());
if (!chain) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
}
X509 *leaf = nullptr;
for (CRYPTO_BUFFER *cert : sess->certs) {
UniquePtr<X509> x509(X509_parse_from_buffer(cert));
if (!x509) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return 0;
}
if (leaf == nullptr) {
leaf = x509.get();
}
if (!PushToStack(chain.get(), std::move(x509))) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
}
sk_X509_pop_free(sess->x509_chain, X509_free);
sess->x509_chain = chain.release();
sk_X509_pop_free(sess->x509_chain_without_leaf, X509_free);
sess->x509_chain_without_leaf = NULL;
X509_free(sess->x509_peer);
if (leaf != NULL) {
X509_up_ref(leaf);
}
sess->x509_peer = leaf;
return 1;
}
static int ssl_crypto_x509_session_dup(SSL_SESSION *new_session,
const SSL_SESSION *session) {
if (session->x509_peer != NULL) {
X509_up_ref(session->x509_peer);
new_session->x509_peer = session->x509_peer;
}
if (session->x509_chain != NULL) {
new_session->x509_chain = X509_chain_up_ref(session->x509_chain);
if (new_session->x509_chain == NULL) {
return 0;
}
}
return 1;
}
static void ssl_crypto_x509_session_clear(SSL_SESSION *session) {
X509_free(session->x509_peer);
session->x509_peer = NULL;
sk_X509_pop_free(session->x509_chain, X509_free);
session->x509_chain = NULL;
sk_X509_pop_free(session->x509_chain_without_leaf, X509_free);
session->x509_chain_without_leaf = NULL;
}
static int ssl_crypto_x509_session_verify_cert_chain(SSL_SESSION *session,
SSL *ssl,
uint8_t *out_alert) {
*out_alert = SSL_AD_INTERNAL_ERROR;
STACK_OF(X509) *const cert_chain = session->x509_chain;
if (cert_chain == NULL || sk_X509_num(cert_chain) == 0) {
return 0;
}
X509_STORE *verify_store = ssl->ctx->cert_store;
if (ssl->cert->verify_store != NULL) {
verify_store = ssl->cert->verify_store;
}
X509 *leaf = sk_X509_value(cert_chain, 0);
ScopedX509_STORE_CTX ctx;
if (!X509_STORE_CTX_init(ctx.get(), verify_store, leaf, cert_chain)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_X509_LIB);
return 0;
}
if (!X509_STORE_CTX_set_ex_data(ctx.get(),
SSL_get_ex_data_X509_STORE_CTX_idx(), ssl)) {
return 0;
}
// We need to inherit the verify parameters. These can be determined by the
// context: if its a server it will verify SSL client certificates or vice
// versa.
X509_STORE_CTX_set_default(ctx.get(),
ssl->server ? "ssl_client" : "ssl_server");
// Anything non-default in "param" should overwrite anything in the ctx.
X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(ctx.get()), ssl->param);
if (ssl->verify_callback) {
X509_STORE_CTX_set_verify_cb(ctx.get(), ssl->verify_callback);
}
int verify_ret;
if (ssl->ctx->app_verify_callback != NULL) {
verify_ret =
ssl->ctx->app_verify_callback(ctx.get(), ssl->ctx->app_verify_arg);
} else {
verify_ret = X509_verify_cert(ctx.get());
}
session->verify_result = ctx->error;
// If |SSL_VERIFY_NONE|, the error is non-fatal, but we keep the result.
if (verify_ret <= 0 && ssl->verify_mode != SSL_VERIFY_NONE) {
*out_alert = SSL_alert_from_verify_result(ctx->error);
return 0;
}
ERR_clear_error();
return 1;
}
static void ssl_crypto_x509_hs_flush_cached_ca_names(SSL_HANDSHAKE *hs) {
sk_X509_NAME_pop_free(hs->cached_x509_ca_names, X509_NAME_free);
hs->cached_x509_ca_names = NULL;
}
static int ssl_crypto_x509_ssl_new(SSL *ssl) {
ssl->param = X509_VERIFY_PARAM_new();
if (ssl->param == NULL) {
return 0;
}
X509_VERIFY_PARAM_inherit(ssl->param, ssl->ctx->param);
return 1;
}
static void ssl_crypto_x509_ssl_flush_cached_client_CA(SSL *ssl) {
sk_X509_NAME_pop_free(ssl->cached_x509_client_CA, X509_NAME_free);
ssl->cached_x509_client_CA = NULL;
}
static void ssl_crypto_x509_ssl_free(SSL *ssl) {
ssl_crypto_x509_ssl_flush_cached_client_CA(ssl);
X509_VERIFY_PARAM_free(ssl->param);
}
static int ssl_crypto_x509_ssl_auto_chain_if_needed(SSL *ssl) {
// Only build a chain if there are no intermediates configured and the feature
// isn't disabled.
if ((ssl->mode & SSL_MODE_NO_AUTO_CHAIN) ||
!ssl_has_certificate(ssl) ||
ssl->cert->chain == nullptr ||
sk_CRYPTO_BUFFER_num(ssl->cert->chain.get()) > 1) {
return 1;
}
UniquePtr<X509> leaf(X509_parse_from_buffer(
sk_CRYPTO_BUFFER_value(ssl->cert->chain.get(), 0)));
if (!leaf) {
OPENSSL_PUT_ERROR(SSL, ERR_R_X509_LIB);
return 0;
}
ScopedX509_STORE_CTX ctx;
if (!X509_STORE_CTX_init(ctx.get(), ssl->ctx->cert_store, leaf.get(), NULL)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_X509_LIB);
return 0;
}
// Attempt to build a chain, ignoring the result.
X509_verify_cert(ctx.get());
ERR_clear_error();
// Remove the leaf from the generated chain.
X509_free(sk_X509_shift(ctx->chain));
if (!ssl_cert_set_chain(ssl->cert, ctx->chain)) {
return 0;
}
ssl_crypto_x509_cert_flush_cached_chain(ssl->cert);
return 1;
}
static void ssl_crypto_x509_ssl_ctx_flush_cached_client_CA(SSL_CTX *ctx) {
sk_X509_NAME_pop_free(ctx->cached_x509_client_CA, X509_NAME_free);
ctx->cached_x509_client_CA = NULL;
}
static int ssl_crypto_x509_ssl_ctx_new(SSL_CTX *ctx) {
ctx->cert_store = X509_STORE_new();
ctx->param = X509_VERIFY_PARAM_new();
return (ctx->cert_store != NULL && ctx->param != NULL);
}
static void ssl_crypto_x509_ssl_ctx_free(SSL_CTX *ctx) {
ssl_crypto_x509_ssl_ctx_flush_cached_client_CA(ctx);
X509_VERIFY_PARAM_free(ctx->param);
X509_STORE_free(ctx->cert_store);
}
const SSL_X509_METHOD ssl_crypto_x509_method = {
ssl_crypto_x509_check_client_CA_list,
ssl_crypto_x509_cert_clear,
ssl_crypto_x509_cert_free,
ssl_crypto_x509_cert_dup,
ssl_crypto_x509_cert_flush_cached_chain,
ssl_crypto_x509_cert_flush_cached_leaf,
ssl_crypto_x509_session_cache_objects,
ssl_crypto_x509_session_dup,
ssl_crypto_x509_session_clear,
ssl_crypto_x509_session_verify_cert_chain,
ssl_crypto_x509_hs_flush_cached_ca_names,
ssl_crypto_x509_ssl_new,
ssl_crypto_x509_ssl_free,
ssl_crypto_x509_ssl_flush_cached_client_CA,
ssl_crypto_x509_ssl_auto_chain_if_needed,
ssl_crypto_x509_ssl_ctx_new,
ssl_crypto_x509_ssl_ctx_free,
ssl_crypto_x509_ssl_ctx_flush_cached_client_CA,
};
} // namespace bssl
using namespace bssl;
X509 *SSL_get_peer_certificate(const SSL *ssl) {
check_ssl_x509_method(ssl);
if (ssl == NULL) {
return NULL;
}
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL || session->x509_peer == NULL) {
return NULL;
}
X509_up_ref(session->x509_peer);
return session->x509_peer;
}
STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl) {
check_ssl_x509_method(ssl);
if (ssl == NULL) {
return NULL;
}
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL ||
session->x509_chain == NULL) {
return NULL;
}
if (!ssl->server) {
return session->x509_chain;
}
// OpenSSL historically didn't include the leaf certificate in the returned
// certificate chain, but only for servers.
if (session->x509_chain_without_leaf == NULL) {
session->x509_chain_without_leaf = sk_X509_new_null();
if (session->x509_chain_without_leaf == NULL) {
return NULL;
}
for (size_t i = 1; i < sk_X509_num(session->x509_chain); i++) {
X509 *cert = sk_X509_value(session->x509_chain, i);
if (!sk_X509_push(session->x509_chain_without_leaf, cert)) {
sk_X509_pop_free(session->x509_chain_without_leaf, X509_free);
session->x509_chain_without_leaf = NULL;
return NULL;
}
X509_up_ref(cert);
}
}
return session->x509_chain_without_leaf;
}
STACK_OF(X509) *SSL_get_peer_full_cert_chain(const SSL *ssl) {
check_ssl_x509_method(ssl);
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL) {
return NULL;
}
return session->x509_chain;
}
int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose) {
check_ssl_ctx_x509_method(ctx);
return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose);
}
int SSL_set_purpose(SSL *ssl, int purpose) {
check_ssl_x509_method(ssl);
return X509_VERIFY_PARAM_set_purpose(ssl->param, purpose);
}
int SSL_CTX_set_trust(SSL_CTX *ctx, int trust) {
check_ssl_ctx_x509_method(ctx);
return X509_VERIFY_PARAM_set_trust(ctx->param, trust);
}
int SSL_set_trust(SSL *ssl, int trust) {
check_ssl_x509_method(ssl);
return X509_VERIFY_PARAM_set_trust(ssl->param, trust);
}
int SSL_CTX_set1_param(SSL_CTX *ctx, const X509_VERIFY_PARAM *param) {
check_ssl_ctx_x509_method(ctx);
return X509_VERIFY_PARAM_set1(ctx->param, param);
}
int SSL_set1_param(SSL *ssl, const X509_VERIFY_PARAM *param) {
check_ssl_x509_method(ssl);
return X509_VERIFY_PARAM_set1(ssl->param, param);
}
X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
return ctx->param;
}
X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) {
check_ssl_x509_method(ssl);
return ssl->param;
}
int SSL_get_verify_depth(const SSL *ssl) {
check_ssl_x509_method(ssl);
return X509_VERIFY_PARAM_get_depth(ssl->param);
}
int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *) {
check_ssl_x509_method(ssl);
return ssl->verify_callback;
}
int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
return ctx->verify_mode;
}
int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
return X509_VERIFY_PARAM_get_depth(ctx->param);
}
int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(
int ok, X509_STORE_CTX *store_ctx) {
check_ssl_ctx_x509_method(ctx);
return ctx->default_verify_callback;
}
void SSL_set_verify(SSL *ssl, int mode,
int (*callback)(int ok, X509_STORE_CTX *store_ctx)) {
check_ssl_x509_method(ssl);
ssl->verify_mode = mode;
if (callback != NULL) {
ssl->verify_callback = callback;
}
}
void SSL_set_verify_depth(SSL *ssl, int depth) {
check_ssl_x509_method(ssl);
X509_VERIFY_PARAM_set_depth(ssl->param, depth);
}
void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
int (*cb)(X509_STORE_CTX *store_ctx,
void *arg),
void *arg) {
check_ssl_ctx_x509_method(ctx);
ctx->app_verify_callback = cb;
ctx->app_verify_arg = arg;
}
void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
int (*cb)(int, X509_STORE_CTX *)) {
check_ssl_ctx_x509_method(ctx);
ctx->verify_mode = mode;
ctx->default_verify_callback = cb;
}
void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) {
check_ssl_ctx_x509_method(ctx);
X509_VERIFY_PARAM_set_depth(ctx->param, depth);
}
int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
return X509_STORE_set_default_paths(ctx->cert_store);
}
int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *ca_file,
const char *ca_dir) {
check_ssl_ctx_x509_method(ctx);
return X509_STORE_load_locations(ctx->cert_store, ca_file, ca_dir);
}
void SSL_set_verify_result(SSL *ssl, long result) {
check_ssl_x509_method(ssl);
if (result != X509_V_OK) {
abort();
}
}
long SSL_get_verify_result(const SSL *ssl) {
check_ssl_x509_method(ssl);
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL) {
return X509_V_ERR_INVALID_CALL;
}
return session->verify_result;
}
X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
return ctx->cert_store;
}
void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) {
check_ssl_ctx_x509_method(ctx);
X509_STORE_free(ctx->cert_store);
ctx->cert_store = store;
}
static int ssl_use_certificate(CERT *cert, X509 *x) {
if (x == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
UniquePtr<CRYPTO_BUFFER> buffer = x509_to_buffer(x);
if (!buffer) {
return 0;
}
return ssl_set_cert(cert, std::move(buffer));
}
int SSL_use_certificate(SSL *ssl, X509 *x) {
check_ssl_x509_method(ssl);
return ssl_use_certificate(ssl->cert, x);
}
int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x) {
check_ssl_ctx_x509_method(ctx);
return ssl_use_certificate(ctx->cert, x);
}
// ssl_cert_cache_leaf_cert sets |cert->x509_leaf|, if currently NULL, from the
// first element of |cert->chain|.
static int ssl_cert_cache_leaf_cert(CERT *cert) {
assert(cert->x509_method);
if (cert->x509_leaf != NULL ||
cert->chain == NULL) {
return 1;
}
CRYPTO_BUFFER *leaf = sk_CRYPTO_BUFFER_value(cert->chain.get(), 0);
if (!leaf) {
return 1;
}
cert->x509_leaf = X509_parse_from_buffer(leaf);
return cert->x509_leaf != NULL;
}
static X509 *ssl_cert_get0_leaf(CERT *cert) {
if (cert->x509_leaf == NULL &&
!ssl_cert_cache_leaf_cert(cert)) {
return NULL;
}
return cert->x509_leaf;
}
X509 *SSL_get_certificate(const SSL *ssl) {
check_ssl_x509_method(ssl);
return ssl_cert_get0_leaf(ssl->cert);
}
X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
MutexWriteLock lock(const_cast<CRYPTO_MUTEX*>(&ctx->lock));
return ssl_cert_get0_leaf(ctx->cert);
}
static int ssl_cert_set0_chain(CERT *cert, STACK_OF(X509) *chain) {
if (!ssl_cert_set_chain(cert, chain)) {
return 0;
}
sk_X509_pop_free(chain, X509_free);
ssl_crypto_x509_cert_flush_cached_chain(cert);
return 1;
}
static int ssl_cert_set1_chain(CERT *cert, STACK_OF(X509) *chain) {
if (!ssl_cert_set_chain(cert, chain)) {
return 0;
}
ssl_crypto_x509_cert_flush_cached_chain(cert);
return 1;
}
static int ssl_cert_append_cert(CERT *cert, X509 *x509) {
assert(cert->x509_method);
UniquePtr<CRYPTO_BUFFER> buffer = x509_to_buffer(x509);
if (!buffer) {
return 0;
}
if (cert->chain != NULL) {
return PushToStack(cert->chain.get(), std::move(buffer));
}
cert->chain = new_leafless_chain();
if (!cert->chain ||
!PushToStack(cert->chain.get(), std::move(buffer))) {
cert->chain.reset();
return 0;
}
return 1;
}
static int ssl_cert_add0_chain_cert(CERT *cert, X509 *x509) {
if (!ssl_cert_append_cert(cert, x509)) {
return 0;
}
X509_free(cert->x509_stash);
cert->x509_stash = x509;
ssl_crypto_x509_cert_flush_cached_chain(cert);
return 1;
}
static int ssl_cert_add1_chain_cert(CERT *cert, X509 *x509) {
if (!ssl_cert_append_cert(cert, x509)) {
return 0;
}
ssl_crypto_x509_cert_flush_cached_chain(cert);
return 1;
}
int SSL_CTX_set0_chain(SSL_CTX *ctx, STACK_OF(X509) *chain) {
check_ssl_ctx_x509_method(ctx);
return ssl_cert_set0_chain(ctx->cert, chain);
}
int SSL_CTX_set1_chain(SSL_CTX *ctx, STACK_OF(X509) *chain) {
check_ssl_ctx_x509_method(ctx);
return ssl_cert_set1_chain(ctx->cert, chain);
}
int SSL_set0_chain(SSL *ssl, STACK_OF(X509) *chain) {
check_ssl_x509_method(ssl);
return ssl_cert_set0_chain(ssl->cert, chain);
}
int SSL_set1_chain(SSL *ssl, STACK_OF(X509) *chain) {
check_ssl_x509_method(ssl);
return ssl_cert_set1_chain(ssl->cert, chain);
}
int SSL_CTX_add0_chain_cert(SSL_CTX *ctx, X509 *x509) {
check_ssl_ctx_x509_method(ctx);
return ssl_cert_add0_chain_cert(ctx->cert, x509);
}
int SSL_CTX_add1_chain_cert(SSL_CTX *ctx, X509 *x509) {
check_ssl_ctx_x509_method(ctx);
return ssl_cert_add1_chain_cert(ctx->cert, x509);
}
int SSL_CTX_add_extra_chain_cert(SSL_CTX *ctx, X509 *x509) {
check_ssl_ctx_x509_method(ctx);
return SSL_CTX_add0_chain_cert(ctx, x509);
}
int SSL_add0_chain_cert(SSL *ssl, X509 *x509) {
check_ssl_x509_method(ssl);
return ssl_cert_add0_chain_cert(ssl->cert, x509);
}
int SSL_add1_chain_cert(SSL *ssl, X509 *x509) {
check_ssl_x509_method(ssl);
return ssl_cert_add1_chain_cert(ssl->cert, x509);
}
int SSL_CTX_clear_chain_certs(SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
return SSL_CTX_set0_chain(ctx, NULL);
}
int SSL_CTX_clear_extra_chain_certs(SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
return SSL_CTX_clear_chain_certs(ctx);
}
int SSL_clear_chain_certs(SSL *ssl) {
check_ssl_x509_method(ssl);
return SSL_set0_chain(ssl, NULL);
}
// ssl_cert_cache_chain_certs fills in |cert->x509_chain| from elements 1.. of
// |cert->chain|.
static int ssl_cert_cache_chain_certs(CERT *cert) {
assert(cert->x509_method);
if (cert->x509_chain != nullptr ||
cert->chain == nullptr ||
sk_CRYPTO_BUFFER_num(cert->chain.get()) < 2) {
return 1;
}
UniquePtr<STACK_OF(X509)> chain(sk_X509_new_null());
if (!chain) {
return 0;
}
for (size_t i = 1; i < sk_CRYPTO_BUFFER_num(cert->chain.get()); i++) {
CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(cert->chain.get(), i);
UniquePtr<X509> x509(X509_parse_from_buffer(buffer));
if (!x509 ||
!PushToStack(chain.get(), std::move(x509))) {
return 0;
}
}
cert->x509_chain = chain.release();
return 1;
}
int SSL_CTX_get0_chain_certs(const SSL_CTX *ctx, STACK_OF(X509) **out_chain) {
check_ssl_ctx_x509_method(ctx);
MutexWriteLock lock(const_cast<CRYPTO_MUTEX*>(&ctx->lock));
if (!ssl_cert_cache_chain_certs(ctx->cert)) {
*out_chain = NULL;
return 0;
}
*out_chain = ctx->cert->x509_chain;
return 1;
}
int SSL_CTX_get_extra_chain_certs(const SSL_CTX *ctx,
STACK_OF(X509) **out_chain) {
return SSL_CTX_get0_chain_certs(ctx, out_chain);
}
int SSL_get0_chain_certs(const SSL *ssl, STACK_OF(X509) **out_chain) {
check_ssl_x509_method(ssl);
if (!ssl_cert_cache_chain_certs(ssl->cert)) {
*out_chain = NULL;
return 0;
}
*out_chain = ssl->cert->x509_chain;
return 1;
}
static SSL_SESSION *ssl_session_new_with_crypto_x509(void) {
return ssl_session_new(&ssl_crypto_x509_method).release();
}
SSL_SESSION *d2i_SSL_SESSION_bio(BIO *bio, SSL_SESSION **out) {
return ASN1_d2i_bio_of(SSL_SESSION, ssl_session_new_with_crypto_x509,
d2i_SSL_SESSION, bio, out);
}
int i2d_SSL_SESSION_bio(BIO *bio, const SSL_SESSION *session) {
return ASN1_i2d_bio_of(SSL_SESSION, i2d_SSL_SESSION, bio, session);
}
IMPLEMENT_PEM_rw(SSL_SESSION, SSL_SESSION, PEM_STRING_SSL_SESSION, SSL_SESSION)
SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const uint8_t **pp, long length) {
if (length < 0) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return NULL;
}
CBS cbs;
CBS_init(&cbs, *pp, length);
UniquePtr<SSL_SESSION> ret = SSL_SESSION_parse(&cbs, &ssl_crypto_x509_method,
NULL /* no buffer pool */);
if (!ret) {
return NULL;
}
if (a) {
SSL_SESSION_free(*a);
*a = ret.get();
}
*pp = CBS_data(&cbs);
return ret.release();
}
STACK_OF(X509_NAME) *SSL_dup_CA_list(STACK_OF(X509_NAME) *list) {
return sk_X509_NAME_deep_copy(list, X509_NAME_dup, X509_NAME_free);
}
static void set_client_CA_list(STACK_OF(CRYPTO_BUFFER) **ca_list,
const STACK_OF(X509_NAME) *name_list,
CRYPTO_BUFFER_POOL *pool) {
UniquePtr<STACK_OF(CRYPTO_BUFFER)> buffers(sk_CRYPTO_BUFFER_new_null());
if (!buffers) {
return;
}
for (X509_NAME *name : name_list) {
uint8_t *outp = NULL;
int len = i2d_X509_NAME(name, &outp);
if (len < 0) {
return;
}
UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(outp, len, pool));
OPENSSL_free(outp);
if (!buffer ||
!PushToStack(buffers.get(), std::move(buffer))) {
return;
}
}
sk_CRYPTO_BUFFER_pop_free(*ca_list, CRYPTO_BUFFER_free);
*ca_list = buffers.release();
}
void SSL_set_client_CA_list(SSL *ssl, STACK_OF(X509_NAME) *name_list) {
check_ssl_x509_method(ssl);
ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl);
set_client_CA_list(&ssl->client_CA, name_list, ssl->ctx->pool);
sk_X509_NAME_pop_free(name_list, X509_NAME_free);
}
void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list) {
check_ssl_ctx_x509_method(ctx);
ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx);
set_client_CA_list(&ctx->client_CA, name_list, ctx->pool);
sk_X509_NAME_pop_free(name_list, X509_NAME_free);
}
static STACK_OF(X509_NAME) *
buffer_names_to_x509(const STACK_OF(CRYPTO_BUFFER) *names,
STACK_OF(X509_NAME) **cached) {
if (names == NULL) {
return NULL;
}
if (*cached != NULL) {
return *cached;
}
UniquePtr<STACK_OF(X509_NAME)> new_cache(sk_X509_NAME_new_null());
if (!new_cache) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
for (const CRYPTO_BUFFER *buffer : names) {
const uint8_t *inp = CRYPTO_BUFFER_data(buffer);
UniquePtr<X509_NAME> name(
d2i_X509_NAME(nullptr, &inp, CRYPTO_BUFFER_len(buffer)));
if (!name ||
inp != CRYPTO_BUFFER_data(buffer) + CRYPTO_BUFFER_len(buffer) ||
!PushToStack(new_cache.get(), std::move(name))) {
return NULL;
}
}
*cached = new_cache.release();
return *cached;
}
STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *ssl) {
check_ssl_x509_method(ssl);
// For historical reasons, this function is used both to query configuration
// state on a server as well as handshake state on a client. However, whether
// |ssl| is a client or server is not known until explicitly configured with
// |SSL_set_connect_state|. If |do_handshake| is NULL, |ssl| is in an
// indeterminate mode and |ssl->server| is unset.
if (ssl->do_handshake != NULL && !ssl->server) {
if (ssl->s3->hs != NULL) {
return buffer_names_to_x509(ssl->s3->hs->ca_names.get(),
&ssl->s3->hs->cached_x509_ca_names);
}
return NULL;
}
if (ssl->client_CA != NULL) {
return buffer_names_to_x509(
ssl->client_CA, (STACK_OF(X509_NAME) **)&ssl->cached_x509_client_CA);
}
return SSL_CTX_get_client_CA_list(ssl->ctx);
}
STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx) {
check_ssl_ctx_x509_method(ctx);
// This is a logically const operation that may be called on multiple threads,
// so it needs to lock around updating |cached_x509_client_CA|.
MutexWriteLock lock(const_cast<CRYPTO_MUTEX *>(&ctx->lock));
return buffer_names_to_x509(
ctx->client_CA,
const_cast<STACK_OF(X509_NAME) **>(&ctx->cached_x509_client_CA));
}
static int add_client_CA(STACK_OF(CRYPTO_BUFFER) **names, X509 *x509,
CRYPTO_BUFFER_POOL *pool) {
if (x509 == NULL) {
return 0;
}
uint8_t *outp = NULL;
int len = i2d_X509_NAME(X509_get_subject_name(x509), &outp);
if (len < 0) {
return 0;
}
UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(outp, len, pool));
OPENSSL_free(outp);
if (!buffer) {
return 0;
}
int alloced = 0;
if (*names == NULL) {
*names = sk_CRYPTO_BUFFER_new_null();
alloced = 1;
if (*names == NULL) {
return 0;
}
}
if (!PushToStack(*names, std::move(buffer))) {
if (alloced) {
sk_CRYPTO_BUFFER_pop_free(*names, CRYPTO_BUFFER_free);
*names = NULL;
}
return 0;
}
return 1;
}
int SSL_add_client_CA(SSL *ssl, X509 *x509) {
check_ssl_x509_method(ssl);
if (!add_client_CA(&ssl->client_CA, x509, ssl->ctx->pool)) {
return 0;
}
ssl_crypto_x509_ssl_flush_cached_client_CA(ssl);
return 1;
}
int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x509) {
check_ssl_ctx_x509_method(ctx);
if (!add_client_CA(&ctx->client_CA, x509, ctx->pool)) {
return 0;
}
ssl_crypto_x509_ssl_ctx_flush_cached_client_CA(ctx);
return 1;
}
static int do_client_cert_cb(SSL *ssl, void *arg) {
if (ssl_has_certificate(ssl) || ssl->ctx->client_cert_cb == NULL) {
return 1;
}
X509 *x509 = NULL;
EVP_PKEY *pkey = NULL;
int ret = ssl->ctx->client_cert_cb(ssl, &x509, &pkey);
if (ret < 0) {
return -1;
}
UniquePtr<X509> free_x509(x509);
UniquePtr<EVP_PKEY> free_pkey(pkey);
if (ret != 0) {
if (!SSL_use_certificate(ssl, x509) ||
!SSL_use_PrivateKey(ssl, pkey)) {
return 0;
}
}
return 1;
}
void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl,
X509 **out_x509,
EVP_PKEY **out_pkey)) {
check_ssl_ctx_x509_method(ctx);
// Emulate the old client certificate callback with the new one.
SSL_CTX_set_cert_cb(ctx, do_client_cert_cb, NULL);
ctx->client_cert_cb = cb;
}
static int set_cert_store(X509_STORE **store_ptr, X509_STORE *new_store,
int take_ref) {
X509_STORE_free(*store_ptr);
*store_ptr = new_store;
if (new_store != NULL && take_ref) {
X509_STORE_up_ref(new_store);
}
return 1;
}
int SSL_get_ex_data_X509_STORE_CTX_idx(void) {
// The ex_data index to go from |X509_STORE_CTX| to |SSL| always uses the
// reserved app_data slot. Before ex_data was introduced, app_data was used.
// Avoid breaking any software which assumes |X509_STORE_CTX_get_app_data|
// works.
return 0;
}
int SSL_CTX_set0_verify_cert_store(SSL_CTX *ctx, X509_STORE *store) {
check_ssl_ctx_x509_method(ctx);
return set_cert_store(&ctx->cert->verify_store, store, 0);
}
int SSL_CTX_set1_verify_cert_store(SSL_CTX *ctx, X509_STORE *store) {
check_ssl_ctx_x509_method(ctx);
return set_cert_store(&ctx->cert->verify_store, store, 1);
}
int SSL_set0_verify_cert_store(SSL *ssl, X509_STORE *store) {
check_ssl_x509_method(ssl);
return set_cert_store(&ssl->cert->verify_store, store, 0);
}
int SSL_set1_verify_cert_store(SSL *ssl, X509_STORE *store) {
check_ssl_x509_method(ssl);
return set_cert_store(&ssl->cert->verify_store, store, 1);
}
int SSL_alert_from_verify_result(long result) {
switch (result) {
case X509_V_ERR_CERT_CHAIN_TOO_LONG:
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
case X509_V_ERR_INVALID_CA:
case X509_V_ERR_PATH_LENGTH_EXCEEDED:
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
case X509_V_ERR_UNABLE_TO_GET_CRL:
case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
return SSL_AD_UNKNOWN_CA;
case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE:
case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE:
case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD:
case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD:
case X509_V_ERR_CERT_UNTRUSTED:
case X509_V_ERR_CERT_REJECTED:
case X509_V_ERR_HOSTNAME_MISMATCH:
case X509_V_ERR_EMAIL_MISMATCH:
case X509_V_ERR_IP_ADDRESS_MISMATCH:
return SSL_AD_BAD_CERTIFICATE;
case X509_V_ERR_CERT_SIGNATURE_FAILURE:
case X509_V_ERR_CRL_SIGNATURE_FAILURE:
return SSL_AD_DECRYPT_ERROR;
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_CRL_HAS_EXPIRED:
case X509_V_ERR_CRL_NOT_YET_VALID:
return SSL_AD_CERTIFICATE_EXPIRED;
case X509_V_ERR_CERT_REVOKED:
return SSL_AD_CERTIFICATE_REVOKED;
case X509_V_ERR_UNSPECIFIED:
case X509_V_ERR_OUT_OF_MEM:
case X509_V_ERR_INVALID_CALL:
case X509_V_ERR_STORE_LOOKUP:
return SSL_AD_INTERNAL_ERROR;
case X509_V_ERR_APPLICATION_VERIFICATION:
return SSL_AD_HANDSHAKE_FAILURE;
case X509_V_ERR_INVALID_PURPOSE:
return SSL_AD_UNSUPPORTED_CERTIFICATE;
default:
return SSL_AD_CERTIFICATE_UNKNOWN;
}
}