blob: d0f6b8f7ed270fb006bdc2e795bbd237aa744bc2 [file] [log] [blame]
Adam Langleyd9e397b2015-01-22 14:27:53 -08001#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# January, September 2004.
16#
17# It was noted that Intel IA-32 C compiler generates code which
18# performs ~30% *faster* on P4 CPU than original *hand-coded*
19# SHA1 assembler implementation. To address this problem (and
20# prove that humans are still better than machines:-), the
21# original code was overhauled, which resulted in following
22# performance changes:
23#
24# compared with original compared with Intel cc
25# assembler impl. generated code
26# Pentium -16% +48%
27# PIII/AMD +8% +16%
28# P4 +85%(!) +45%
29#
30# As you can see Pentium came out as looser:-( Yet I reckoned that
31# improvement on P4 outweights the loss and incorporate this
32# re-tuned code to 0.9.7 and later.
33# ----------------------------------------------------------------
34# <appro@fy.chalmers.se>
35
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59# it possible to reduce amount of instructions required to perform
60# the operation in question, for further details see
61# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
Kenny Rootb8494592015-09-25 02:29:14 +000069# pair of µ-ops, and it's the additional µ-ops, two per round, that
Adam Langleyd9e397b2015-01-22 14:27:53 -080070# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
Kenny Rootb8494592015-09-25 02:29:14 +000071# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
Adam Langleyd9e397b2015-01-22 14:27:53 -080072# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82# March 2014.
83#
84# Add support for Intel SHA Extensions.
85
86######################################################################
87# Current performance is summarized in following table. Numbers are
88# CPU clock cycles spent to process single byte (less is better).
89#
90# x86 SSSE3 AVX
91# Pentium 15.7 -
92# PIII 11.5 -
93# P4 10.6 -
94# AMD K8 7.1 -
95# Core2 7.3 6.0/+22% -
96# Westmere 7.3 5.5/+33% -
97# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73%
98# Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53%
99# Haswell 6.5 4.3/+51% 4.1(**)/+58%
Robert Sloana94fe052017-02-21 08:49:28 -0800100# Skylake 6.4 4.1/+55% 4.1(**)/+55%
Adam Langleyd9e397b2015-01-22 14:27:53 -0800101# Bulldozer 11.6 6.0/+92%
102# VIA Nano 10.6 7.5/+41%
103# Atom 12.5 9.3(*)/+35%
104# Silvermont 14.5 9.9(*)/+46%
Robert Sloana94fe052017-02-21 08:49:28 -0800105# Goldmont 8.8 6.7/+30% 1.7(***)/+415%
Adam Langleyd9e397b2015-01-22 14:27:53 -0800106#
107# (*) Loop is 1056 instructions long and expected result is ~8.25.
108# The discrepancy is because of front-end limitations, so
109# called MS-ROM penalties, and on Silvermont even rotate's
110# limited parallelism.
111#
112# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
Robert Sloana94fe052017-02-21 08:49:28 -0800113#
114# (***) SHAEXT result
Adam Langleyd9e397b2015-01-22 14:27:53 -0800115
116$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
Robert Sloan572a4e22017-04-17 10:52:19 -0700117push(@INC,"${dir}","${dir}../../../perlasm");
Adam Langleyd9e397b2015-01-22 14:27:53 -0800118require "x86asm.pl";
119
David Benjaminc895d6b2016-08-11 13:26:41 -0400120$output=pop;
121open STDOUT,">$output";
122
Robert Sloan8ff03552017-06-14 12:40:58 -0700123&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
Adam Langleyd9e397b2015-01-22 14:27:53 -0800124
125$xmm=$ymm=0;
126for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
127
Kenny Roote99801b2015-11-06 15:31:15 -0800128# In upstream, this is controlled by shelling out to the compiler to check
129# versions, but BoringSSL is intended to be used with pre-generated perlasm
130# output, so this isn't useful anyway.
Adam Langley4139edb2016-01-13 15:00:54 -0800131$ymm = 1;
Adam Langleyd9e397b2015-01-22 14:27:53 -0800132
Kenny Roote99801b2015-11-06 15:31:15 -0800133$ymm = 0 unless ($xmm);
Adam Langleyd9e397b2015-01-22 14:27:53 -0800134
135$shaext=$xmm; ### set to zero if compiling for 1.0.1
136
Kenny Roote99801b2015-11-06 15:31:15 -0800137# TODO(davidben): Consider enabling the Intel SHA Extensions code once it's
138# been tested.
139$shaext = 0;
140
Adam Langleyd9e397b2015-01-22 14:27:53 -0800141&external_label("OPENSSL_ia32cap_P") if ($xmm);
142
143
144$A="eax";
145$B="ebx";
146$C="ecx";
147$D="edx";
148$E="edi";
149$T="esi";
150$tmp1="ebp";
151
152@V=($A,$B,$C,$D,$E,$T);
153
154$alt=0; # 1 denotes alternative IALU implementation, which performs
155 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
156 # Sandy Bridge...
157
158sub BODY_00_15
159 {
160 local($n,$a,$b,$c,$d,$e,$f)=@_;
161
162 &comment("00_15 $n");
163
164 &mov($f,$c); # f to hold F_00_19(b,c,d)
165 if ($n==0) { &mov($tmp1,$a); }
166 else { &mov($a,$tmp1); }
167 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
168 &xor($f,$d);
169 &add($tmp1,$e); # tmp1+=e;
170 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
171 # with xi, also note that e becomes
172 # f in next round...
173 &and($f,$b);
174 &rotr($b,2); # b=ROTATE(b,30)
175 &xor($f,$d); # f holds F_00_19(b,c,d)
176 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
177
178 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
179 &add($f,$tmp1); } # f+=tmp1
180 else { &add($tmp1,$f); } # f becomes a in next round
181 &mov($tmp1,$a) if ($alt && $n==15);
182 }
183
184sub BODY_16_19
185 {
186 local($n,$a,$b,$c,$d,$e,$f)=@_;
187
188 &comment("16_19 $n");
189
190if ($alt) {
191 &xor($c,$d);
192 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
193 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
194 &xor($f,&swtmp(($n+8)%16));
195 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
196 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
197 &rotl($f,1); # f=ROTATE(f,1)
198 &add($e,$tmp1); # e+=F_00_19(b,c,d)
199 &xor($c,$d); # restore $c
200 &mov($tmp1,$a); # b in next round
201 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
202 &mov(&swtmp($n%16),$f); # xi=f
203 &rotl($a,5); # ROTATE(a,5)
204 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
205 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
206 &add($f,$a); # f+=ROTATE(a,5)
207} else {
208 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
209 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
210 &xor($tmp1,$d);
211 &xor($f,&swtmp(($n+8)%16));
212 &and($tmp1,$b);
213 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
214 &rotl($f,1); # f=ROTATE(f,1)
215 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
216 &add($e,$tmp1); # e+=F_00_19(b,c,d)
217 &mov($tmp1,$a);
218 &rotr($b,2); # b=ROTATE(b,30)
219 &mov(&swtmp($n%16),$f); # xi=f
220 &rotl($tmp1,5); # ROTATE(a,5)
221 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
222 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
223 &add($f,$tmp1); # f+=ROTATE(a,5)
224}
225 }
226
227sub BODY_20_39
228 {
229 local($n,$a,$b,$c,$d,$e,$f)=@_;
230 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
231
232 &comment("20_39 $n");
233
234if ($alt) {
235 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
236 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
237 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
238 &xor($f,&swtmp(($n+8)%16));
239 &add($e,$tmp1); # e+=F_20_39(b,c,d)
240 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
241 &rotl($f,1); # f=ROTATE(f,1)
242 &mov($tmp1,$a); # b in next round
243 &rotr($b,7); # b=ROTATE(b,30)
244 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
245 &rotl($a,5); # ROTATE(a,5)
246 &xor($b,$c) if($n==39);# warm up for BODY_40_59
247 &and($tmp1,$b) if($n==39);
248 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
249 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
250 &add($f,$a); # f+=ROTATE(a,5)
251 &rotr($a,5) if ($n==79);
252} else {
253 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
254 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
255 &xor($tmp1,$c);
256 &xor($f,&swtmp(($n+8)%16));
257 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
258 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
259 &rotl($f,1); # f=ROTATE(f,1)
260 &add($e,$tmp1); # e+=F_20_39(b,c,d)
261 &rotr($b,2); # b=ROTATE(b,30)
262 &mov($tmp1,$a);
263 &rotl($tmp1,5); # ROTATE(a,5)
264 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
265 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
266 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
267 &add($f,$tmp1); # f+=ROTATE(a,5)
268}
269 }
270
271sub BODY_40_59
272 {
273 local($n,$a,$b,$c,$d,$e,$f)=@_;
274
275 &comment("40_59 $n");
276
277if ($alt) {
278 &add($e,$tmp1); # e+=b&(c^d)
279 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
280 &mov($tmp1,$d);
281 &xor($f,&swtmp(($n+8)%16));
282 &xor($c,$d); # restore $c
283 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
284 &rotl($f,1); # f=ROTATE(f,1)
285 &and($tmp1,$c);
286 &rotr($b,7); # b=ROTATE(b,30)
287 &add($e,$tmp1); # e+=c&d
288 &mov($tmp1,$a); # b in next round
289 &mov(&swtmp($n%16),$f); # xi=f
290 &rotl($a,5); # ROTATE(a,5)
291 &xor($b,$c) if ($n<59);
292 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
293 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
294 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
295 &add($f,$a); # f+=ROTATE(a,5)
296} else {
297 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
298 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
299 &xor($tmp1,$d);
300 &xor($f,&swtmp(($n+8)%16));
301 &and($tmp1,$b);
302 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
303 &rotl($f,1); # f=ROTATE(f,1)
304 &add($tmp1,$e); # b&(c^d)+=e
305 &rotr($b,2); # b=ROTATE(b,30)
306 &mov($e,$a); # e becomes volatile
307 &rotl($e,5); # ROTATE(a,5)
308 &mov(&swtmp($n%16),$f); # xi=f
309 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
310 &mov($tmp1,$c);
311 &add($f,$e); # f+=ROTATE(a,5)
312 &and($tmp1,$d);
313 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
314 &add($f,$tmp1); # f+=c&d
315}
316 }
317
318&function_begin("sha1_block_data_order");
319if ($xmm) {
320 &static_label("shaext_shortcut") if ($shaext);
321 &static_label("ssse3_shortcut");
322 &static_label("avx_shortcut") if ($ymm);
323 &static_label("K_XX_XX");
324
325 &call (&label("pic_point")); # make it PIC!
326 &set_label("pic_point");
327 &blindpop($tmp1);
328 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
329 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
330
331 &mov ($A,&DWP(0,$T));
332 &mov ($D,&DWP(4,$T));
333 &test ($D,1<<9); # check SSSE3 bit
334 &jz (&label("x86"));
335 &mov ($C,&DWP(8,$T));
336 &test ($A,1<<24); # check FXSR bit
337 &jz (&label("x86"));
338 if ($shaext) {
339 &test ($C,1<<29); # check SHA bit
340 &jnz (&label("shaext_shortcut"));
341 }
342 if ($ymm) {
343 &and ($D,1<<28); # mask AVX bit
344 &and ($A,1<<30); # mask "Intel CPU" bit
345 &or ($A,$D);
346 &cmp ($A,1<<28|1<<30);
347 &je (&label("avx_shortcut"));
348 }
349 &jmp (&label("ssse3_shortcut"));
350 &set_label("x86",16);
351}
352 &mov($tmp1,&wparam(0)); # SHA_CTX *c
353 &mov($T,&wparam(1)); # const void *input
354 &mov($A,&wparam(2)); # size_t num
355 &stack_push(16+3); # allocate X[16]
356 &shl($A,6);
357 &add($A,$T);
358 &mov(&wparam(2),$A); # pointer beyond the end of input
359 &mov($E,&DWP(16,$tmp1));# pre-load E
360 &jmp(&label("loop"));
361
362&set_label("loop",16);
363
364 # copy input chunk to X, but reversing byte order!
365 for ($i=0; $i<16; $i+=4)
366 {
367 &mov($A,&DWP(4*($i+0),$T));
368 &mov($B,&DWP(4*($i+1),$T));
369 &mov($C,&DWP(4*($i+2),$T));
370 &mov($D,&DWP(4*($i+3),$T));
371 &bswap($A);
372 &bswap($B);
373 &bswap($C);
374 &bswap($D);
375 &mov(&swtmp($i+0),$A);
376 &mov(&swtmp($i+1),$B);
377 &mov(&swtmp($i+2),$C);
378 &mov(&swtmp($i+3),$D);
379 }
380 &mov(&wparam(1),$T); # redundant in 1st spin
381
382 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
383 &mov($B,&DWP(4,$tmp1));
384 &mov($C,&DWP(8,$tmp1));
385 &mov($D,&DWP(12,$tmp1));
386 # E is pre-loaded
387
388 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
389 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
390 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
391 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
392 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
393
394 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
395
396 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
397 &mov($D,&wparam(1)); # D is last "T" and is discarded
398
399 &add($E,&DWP(0,$tmp1)); # E is last "A"...
400 &add($T,&DWP(4,$tmp1));
401 &add($A,&DWP(8,$tmp1));
402 &add($B,&DWP(12,$tmp1));
403 &add($C,&DWP(16,$tmp1));
404
405 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
406 &add($D,64); # advance input pointer
407 &mov(&DWP(4,$tmp1),$T);
408 &cmp($D,&wparam(2)); # have we reached the end yet?
409 &mov(&DWP(8,$tmp1),$A);
410 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
411 &mov(&DWP(12,$tmp1),$B);
412 &mov($T,$D); # input pointer
413 &mov(&DWP(16,$tmp1),$C);
414 &jb(&label("loop"));
415
416 &stack_pop(16+3);
417&function_end("sha1_block_data_order");
418
419if ($xmm) {
420if ($shaext) {
421######################################################################
422# Intel SHA Extensions implementation of SHA1 update function.
423#
424my ($ctx,$inp,$num)=("edi","esi","ecx");
425my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
426my @MSG=map("xmm$_",(4..7));
427
428sub sha1rnds4 {
429 my ($dst,$src,$imm)=@_;
430 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
431 { &data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm); }
432}
433sub sha1op38 {
434 my ($opcodelet,$dst,$src)=@_;
435 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
436 { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); }
437}
438sub sha1nexte { sha1op38(0xc8,@_); }
439sub sha1msg1 { sha1op38(0xc9,@_); }
440sub sha1msg2 { sha1op38(0xca,@_); }
441
442&function_begin("_sha1_block_data_order_shaext");
443 &call (&label("pic_point")); # make it PIC!
444 &set_label("pic_point");
445 &blindpop($tmp1);
446 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
447&set_label("shaext_shortcut");
448 &mov ($ctx,&wparam(0));
449 &mov ("ebx","esp");
450 &mov ($inp,&wparam(1));
451 &mov ($num,&wparam(2));
452 &sub ("esp",32);
453
454 &movdqu ($ABCD,&QWP(0,$ctx));
Adam Langleye9ada862015-05-11 17:20:37 -0700455 &movd ($E,&DWP(16,$ctx));
Adam Langleyd9e397b2015-01-22 14:27:53 -0800456 &and ("esp",-32);
457 &movdqa ($BSWAP,&QWP(0x50,$tmp1)); # byte-n-word swap
458
459 &movdqu (@MSG[0],&QWP(0,$inp));
460 &pshufd ($ABCD,$ABCD,0b00011011); # flip word order
461 &movdqu (@MSG[1],&QWP(0x10,$inp));
462 &pshufd ($E,$E,0b00011011); # flip word order
463 &movdqu (@MSG[2],&QWP(0x20,$inp));
464 &pshufb (@MSG[0],$BSWAP);
465 &movdqu (@MSG[3],&QWP(0x30,$inp));
466 &pshufb (@MSG[1],$BSWAP);
467 &pshufb (@MSG[2],$BSWAP);
468 &pshufb (@MSG[3],$BSWAP);
469 &jmp (&label("loop_shaext"));
470
471&set_label("loop_shaext",16);
472 &dec ($num);
473 &lea ("eax",&DWP(0x40,$inp));
474 &movdqa (&QWP(0,"esp"),$E); # offload $E
475 &paddd ($E,@MSG[0]);
476 &cmovne ($inp,"eax");
477 &movdqa (&QWP(16,"esp"),$ABCD); # offload $ABCD
478
479for($i=0;$i<20-4;$i+=2) {
480 &sha1msg1 (@MSG[0],@MSG[1]);
481 &movdqa ($E_,$ABCD);
482 &sha1rnds4 ($ABCD,$E,int($i/5)); # 0-3...
483 &sha1nexte ($E_,@MSG[1]);
484 &pxor (@MSG[0],@MSG[2]);
485 &sha1msg1 (@MSG[1],@MSG[2]);
486 &sha1msg2 (@MSG[0],@MSG[3]);
487
488 &movdqa ($E,$ABCD);
489 &sha1rnds4 ($ABCD,$E_,int(($i+1)/5));
490 &sha1nexte ($E,@MSG[2]);
491 &pxor (@MSG[1],@MSG[3]);
492 &sha1msg2 (@MSG[1],@MSG[0]);
493
494 push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG));
495}
496 &movdqu (@MSG[0],&QWP(0,$inp));
497 &movdqa ($E_,$ABCD);
498 &sha1rnds4 ($ABCD,$E,3); # 64-67
499 &sha1nexte ($E_,@MSG[1]);
500 &movdqu (@MSG[1],&QWP(0x10,$inp));
501 &pshufb (@MSG[0],$BSWAP);
502
503 &movdqa ($E,$ABCD);
504 &sha1rnds4 ($ABCD,$E_,3); # 68-71
505 &sha1nexte ($E,@MSG[2]);
506 &movdqu (@MSG[2],&QWP(0x20,$inp));
507 &pshufb (@MSG[1],$BSWAP);
508
509 &movdqa ($E_,$ABCD);
510 &sha1rnds4 ($ABCD,$E,3); # 72-75
511 &sha1nexte ($E_,@MSG[3]);
512 &movdqu (@MSG[3],&QWP(0x30,$inp));
513 &pshufb (@MSG[2],$BSWAP);
514
515 &movdqa ($E,$ABCD);
516 &sha1rnds4 ($ABCD,$E_,3); # 76-79
517 &movdqa ($E_,&QWP(0,"esp"));
518 &pshufb (@MSG[3],$BSWAP);
519 &sha1nexte ($E,$E_);
520 &paddd ($ABCD,&QWP(16,"esp"));
521
522 &jnz (&label("loop_shaext"));
523
524 &pshufd ($ABCD,$ABCD,0b00011011);
525 &pshufd ($E,$E,0b00011011);
526 &movdqu (&QWP(0,$ctx),$ABCD)
527 &movd (&DWP(16,$ctx),$E);
528 &mov ("esp","ebx");
529&function_end("_sha1_block_data_order_shaext");
530}
531######################################################################
532# The SSSE3 implementation.
533#
534# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
535# 32 elements of the message schedule or Xupdate outputs. First 4
536# quadruples are simply byte-swapped input, next 4 are calculated
537# according to method originally suggested by Dean Gaudet (modulo
538# being implemented in SSSE3). Once 8 quadruples or 32 elements are
539# collected, it switches to routine proposed by Max Locktyukhin.
540#
541# Calculations inevitably require temporary reqisters, and there are
542# no %xmm registers left to spare. For this reason part of the ring
543# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
544# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
545# X[-5], and X[4] - X[-4]...
546#
547# Another notable optimization is aggressive stack frame compression
548# aiming to minimize amount of 9-byte instructions...
549#
550# Yet another notable optimization is "jumping" $B variable. It means
551# that there is no register permanently allocated for $B value. This
552# allowed to eliminate one instruction from body_20_39...
553#
554my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
555my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
556my @V=($A,$B,$C,$D,$E);
557my $j=0; # hash round
558my $rx=0;
559my @T=($T,$tmp1);
560my $inp;
561
562my $_rol=sub { &rol(@_) };
563my $_ror=sub { &ror(@_) };
564
565&function_begin("_sha1_block_data_order_ssse3");
566 &call (&label("pic_point")); # make it PIC!
567 &set_label("pic_point");
568 &blindpop($tmp1);
569 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
570&set_label("ssse3_shortcut");
571
572 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
573 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
574 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
575 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
576 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
577
578 &mov ($E,&wparam(0)); # load argument block
579 &mov ($inp=@T[1],&wparam(1));
580 &mov ($D,&wparam(2));
581 &mov (@T[0],"esp");
582
583 # stack frame layout
584 #
585 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
586 # X[4]+K X[5]+K X[6]+K X[7]+K
587 # X[8]+K X[9]+K X[10]+K X[11]+K
588 # X[12]+K X[13]+K X[14]+K X[15]+K
589 #
590 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
591 # X[4] X[5] X[6] X[7]
592 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
593 #
594 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
595 # K_40_59 K_40_59 K_40_59 K_40_59
596 # K_60_79 K_60_79 K_60_79 K_60_79
597 # K_00_19 K_00_19 K_00_19 K_00_19
598 # pbswap mask
599 #
600 # +192 ctx # argument block
601 # +196 inp
602 # +200 end
603 # +204 esp
604 &sub ("esp",208);
605 &and ("esp",-64);
606
607 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
608 &movdqa (&QWP(112+16,"esp"),@X[5]);
609 &movdqa (&QWP(112+32,"esp"),@X[6]);
610 &shl ($D,6); # len*64
611 &movdqa (&QWP(112+48,"esp"),@X[3]);
612 &add ($D,$inp); # end of input
613 &movdqa (&QWP(112+64,"esp"),@X[2]);
614 &add ($inp,64);
615 &mov (&DWP(192+0,"esp"),$E); # save argument block
616 &mov (&DWP(192+4,"esp"),$inp);
617 &mov (&DWP(192+8,"esp"),$D);
618 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
619
620 &mov ($A,&DWP(0,$E)); # load context
621 &mov ($B,&DWP(4,$E));
622 &mov ($C,&DWP(8,$E));
623 &mov ($D,&DWP(12,$E));
624 &mov ($E,&DWP(16,$E));
625 &mov (@T[0],$B); # magic seed
626
627 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
628 &movdqu (@X[-3&7],&QWP(-48,$inp));
629 &movdqu (@X[-2&7],&QWP(-32,$inp));
630 &movdqu (@X[-1&7],&QWP(-16,$inp));
631 &pshufb (@X[-4&7],@X[2]); # byte swap
632 &pshufb (@X[-3&7],@X[2]);
633 &pshufb (@X[-2&7],@X[2]);
634 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
635 &pshufb (@X[-1&7],@X[2]);
636 &paddd (@X[-4&7],@X[3]); # add K_00_19
637 &paddd (@X[-3&7],@X[3]);
638 &paddd (@X[-2&7],@X[3]);
639 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
640 &psubd (@X[-4&7],@X[3]); # restore X[]
641 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
642 &psubd (@X[-3&7],@X[3]);
643 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
644 &mov (@T[1],$C);
645 &psubd (@X[-2&7],@X[3]);
646 &xor (@T[1],$D);
647 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
648 &and (@T[0],@T[1]);
649 &jmp (&label("loop"));
650
651######################################################################
652# SSE instruction sequence is first broken to groups of indepentent
653# instructions, independent in respect to their inputs and shifter
654# (not all architectures have more than one). Then IALU instructions
655# are "knitted in" between the SSE groups. Distance is maintained for
656# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
657# [which allegedly also implements SSSE3]...
658#
659# Temporary registers usage. X[2] is volatile at the entry and at the
660# end is restored from backtrace ring buffer. X[3] is expected to
661# contain current K_XX_XX constant and is used to caclulate X[-1]+K
662# from previous round, it becomes volatile the moment the value is
663# saved to stack for transfer to IALU. X[4] becomes volatile whenever
664# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
665# end it is loaded with next K_XX_XX [which becomes X[3] in next
666# round]...
667#
668sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
669{ use integer;
670 my $body = shift;
671 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
672 my ($a,$b,$c,$d,$e);
673
674 eval(shift(@insns)); # ror
675 eval(shift(@insns));
676 eval(shift(@insns));
677 &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
678 &movdqa (@X[2],@X[-1&7]);
679 eval(shift(@insns));
680 eval(shift(@insns));
681
682 &paddd (@X[3],@X[-1&7]);
683 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
684 eval(shift(@insns)); # rol
685 eval(shift(@insns));
686 &psrldq (@X[2],4); # "X[-3]", 3 dwords
687 eval(shift(@insns));
688 eval(shift(@insns));
689 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
690 eval(shift(@insns));
691 eval(shift(@insns)); # ror
692
693 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
694 eval(shift(@insns));
695 eval(shift(@insns));
696 eval(shift(@insns));
697
698 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
699 eval(shift(@insns));
700 eval(shift(@insns)); # rol
701 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
702 eval(shift(@insns));
703 eval(shift(@insns));
704
705 &movdqa (@X[4],@X[0]);
706 eval(shift(@insns));
707 eval(shift(@insns));
708 eval(shift(@insns)); # ror
709 &movdqa (@X[2],@X[0]);
710 eval(shift(@insns));
711
712 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
713 &paddd (@X[0],@X[0]);
714 eval(shift(@insns));
715 eval(shift(@insns));
716
717 &psrld (@X[2],31);
718 eval(shift(@insns));
719 eval(shift(@insns)); # rol
720 &movdqa (@X[3],@X[4]);
721 eval(shift(@insns));
722 eval(shift(@insns));
723 eval(shift(@insns));
724
725 &psrld (@X[4],30);
726 eval(shift(@insns));
727 eval(shift(@insns)); # ror
728 &por (@X[0],@X[2]); # "X[0]"<<<=1
729 eval(shift(@insns));
730 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
731 eval(shift(@insns));
732 eval(shift(@insns));
733
734 &pslld (@X[3],2);
735 eval(shift(@insns));
736 eval(shift(@insns)); # rol
737 &pxor (@X[0],@X[4]);
738 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
739 eval(shift(@insns));
740 eval(shift(@insns));
741
742 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
743 &pshufd (@X[1],@X[-3&7],0xee) if ($Xi<7); # was &movdqa (@X[1],@X[-2&7])
744 &pshufd (@X[3],@X[-1&7],0xee) if ($Xi==7);
745 eval(shift(@insns));
746 eval(shift(@insns));
747
748 foreach (@insns) { eval; } # remaining instructions [if any]
749
750 $Xi++; push(@X,shift(@X)); # "rotate" X[]
751}
752
753sub Xupdate_ssse3_32_79()
754{ use integer;
755 my $body = shift;
756 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
757 my ($a,$b,$c,$d,$e);
758
759 eval(shift(@insns)); # body_20_39
760 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
761 &punpcklqdq(@X[2],@X[-1&7]); # compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
762 eval(shift(@insns));
763 eval(shift(@insns));
764 eval(shift(@insns)); # rol
765
766 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
767 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
768 eval(shift(@insns));
769 eval(shift(@insns));
770 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
771 if ($Xi%5) {
772 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
773 } else { # ... or load next one
774 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
775 }
776 eval(shift(@insns)); # ror
777 &paddd (@X[3],@X[-1&7]);
778 eval(shift(@insns));
779
780 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
781 eval(shift(@insns)); # body_20_39
782 eval(shift(@insns));
783 eval(shift(@insns));
784 eval(shift(@insns)); # rol
785
786 &movdqa (@X[2],@X[0]);
787 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
788 eval(shift(@insns));
789 eval(shift(@insns));
790 eval(shift(@insns)); # ror
791 eval(shift(@insns));
792 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
793
794 &pslld (@X[0],2);
795 eval(shift(@insns)); # body_20_39
796 eval(shift(@insns));
797 &psrld (@X[2],30);
798 eval(shift(@insns));
799 eval(shift(@insns)); # rol
800 eval(shift(@insns));
801 eval(shift(@insns));
802 eval(shift(@insns)); # ror
803 eval(shift(@insns));
804 eval(shift(@insns)) if (@insns[1] =~ /_rol/);
805 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
806
807 &por (@X[0],@X[2]); # "X[0]"<<<=2
808 eval(shift(@insns)); # body_20_39
809 eval(shift(@insns));
810 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
811 eval(shift(@insns));
812 eval(shift(@insns)); # rol
813 eval(shift(@insns));
814 eval(shift(@insns));
815 eval(shift(@insns)); # ror
816 &pshufd (@X[3],@X[-1],0xee) if ($Xi<19); # was &movdqa (@X[3],@X[0])
817 eval(shift(@insns));
818
819 foreach (@insns) { eval; } # remaining instructions
820
821 $Xi++; push(@X,shift(@X)); # "rotate" X[]
822}
823
824sub Xuplast_ssse3_80()
825{ use integer;
826 my $body = shift;
827 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
828 my ($a,$b,$c,$d,$e);
829
830 eval(shift(@insns));
831 eval(shift(@insns));
832 eval(shift(@insns));
833 eval(shift(@insns));
834 eval(shift(@insns));
835 eval(shift(@insns));
836 eval(shift(@insns));
837 &paddd (@X[3],@X[-1&7]);
838 eval(shift(@insns));
839 eval(shift(@insns));
840 eval(shift(@insns));
841 eval(shift(@insns));
842
843 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
844
845 foreach (@insns) { eval; } # remaining instructions
846
847 &mov ($inp=@T[1],&DWP(192+4,"esp"));
848 &cmp ($inp,&DWP(192+8,"esp"));
849 &je (&label("done"));
850
851 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
852 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
853 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
854 &movdqu (@X[-3&7],&QWP(16,$inp));
855 &movdqu (@X[-2&7],&QWP(32,$inp));
856 &movdqu (@X[-1&7],&QWP(48,$inp));
857 &add ($inp,64);
858 &pshufb (@X[-4&7],@X[2]); # byte swap
859 &mov (&DWP(192+4,"esp"),$inp);
860 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
861
862 $Xi=0;
863}
864
865sub Xloop_ssse3()
866{ use integer;
867 my $body = shift;
868 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
869 my ($a,$b,$c,$d,$e);
870
871 eval(shift(@insns));
872 eval(shift(@insns));
873 eval(shift(@insns));
874 eval(shift(@insns));
875 eval(shift(@insns));
876 eval(shift(@insns));
877 eval(shift(@insns));
878 &pshufb (@X[($Xi-3)&7],@X[2]);
879 eval(shift(@insns));
880 eval(shift(@insns));
881 eval(shift(@insns));
882 eval(shift(@insns));
883 &paddd (@X[($Xi-4)&7],@X[3]);
884 eval(shift(@insns));
885 eval(shift(@insns));
886 eval(shift(@insns));
887 eval(shift(@insns));
888 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
889 eval(shift(@insns));
890 eval(shift(@insns));
891 eval(shift(@insns));
892 eval(shift(@insns));
893 &psubd (@X[($Xi-4)&7],@X[3]);
894
895 foreach (@insns) { eval; }
896 $Xi++;
897}
898
899sub Xtail_ssse3()
900{ use integer;
901 my $body = shift;
902 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
903 my ($a,$b,$c,$d,$e);
904
905 foreach (@insns) { eval; }
906}
907
908sub body_00_19 () { # ((c^d)&b)^d
909 # on start @T[0]=(c^d)&b
910 return &body_20_39() if ($rx==19); $rx++;
911 (
912 '($a,$b,$c,$d,$e)=@V;'.
913 '&$_ror ($b,$j?7:2);', # $b>>>2
914 '&xor (@T[0],$d);',
915 '&mov (@T[1],$a);', # $b in next round
916
917 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
918 '&xor ($b,$c);', # $c^$d for next round
919
920 '&$_rol ($a,5);',
921 '&add ($e,@T[0]);',
922 '&and (@T[1],$b);', # ($b&($c^$d)) for next round
923
924 '&xor ($b,$c);', # restore $b
925 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
926 );
927}
928
929sub body_20_39 () { # b^d^c
930 # on entry @T[0]=b^d
931 return &body_40_59() if ($rx==39); $rx++;
932 (
933 '($a,$b,$c,$d,$e)=@V;'.
934 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
935 '&xor (@T[0],$d) if($j==19);'.
936 '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c)
937 '&mov (@T[1],$a);', # $b in next round
938
939 '&$_rol ($a,5);',
940 '&add ($e,@T[0]);',
941 '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round
942
943 '&$_ror ($b,7);', # $b>>>2
944 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
945 );
946}
947
948sub body_40_59 () { # ((b^c)&(c^d))^c
949 # on entry @T[0]=(b^c), (c^=d)
950 $rx++;
951 (
952 '($a,$b,$c,$d,$e)=@V;'.
953 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
954 '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d)
955 '&xor ($c,$d) if ($j>=40);', # restore $c
956
957 '&$_ror ($b,7);', # $b>>>2
958 '&mov (@T[1],$a);', # $b for next round
959 '&xor (@T[0],$c);',
960
961 '&$_rol ($a,5);',
962 '&add ($e,@T[0]);',
963 '&xor (@T[1],$c) if ($j==59);'.
964 '&xor (@T[1],$b) if ($j< 59);', # b^c for next round
965
966 '&xor ($b,$c) if ($j< 59);', # c^d for next round
967 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
968 );
969}
970######
971sub bodyx_00_19 () { # ((c^d)&b)^d
972 # on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
973 return &bodyx_20_39() if ($rx==19); $rx++;
974 (
975 '($a,$b,$c,$d,$e)=@V;'.
976
977 '&rorx ($b,$b,2) if ($j==0);'. # $b>>>2
978 '&rorx ($b,@T[1],7) if ($j!=0);', # $b>>>2
979 '&lea ($e,&DWP(0,$e,@T[0]));',
980 '&rorx (@T[0],$a,5);',
981
982 '&andn (@T[1],$a,$c);',
983 '&and ($a,$b)',
984 '&add ($d,&DWP(4*(($j+1)&15),"esp"));', # X[]+K xfer
985
986 '&xor (@T[1],$a)',
987 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
988 );
989}
990
991sub bodyx_20_39 () { # b^d^c
992 # on start $b=b^c^d
993 return &bodyx_40_59() if ($rx==39); $rx++;
994 (
995 '($a,$b,$c,$d,$e)=@V;'.
996
997 '&add ($e,($j==19?@T[0]:$b))',
998 '&rorx ($b,@T[1],7);', # $b>>>2
999 '&rorx (@T[0],$a,5);',
1000
1001 '&xor ($a,$b) if ($j<79);',
1002 '&add ($d,&DWP(4*(($j+1)&15),"esp")) if ($j<79);', # X[]+K xfer
1003 '&xor ($a,$c) if ($j<79);',
1004 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1005 );
1006}
1007
1008sub bodyx_40_59 () { # ((b^c)&(c^d))^c
1009 # on start $b=((b^c)&(c^d))^c
1010 return &bodyx_20_39() if ($rx==59); $rx++;
1011 (
1012 '($a,$b,$c,$d,$e)=@V;'.
1013
1014 '&rorx (@T[0],$a,5)',
1015 '&lea ($e,&DWP(0,$e,$b))',
1016 '&rorx ($b,@T[1],7)', # $b>>>2
1017 '&add ($d,&DWP(4*(($j+1)&15),"esp"))', # X[]+K xfer
1018
1019 '&mov (@T[1],$c)',
1020 '&xor ($a,$b)', # b^c for next round
1021 '&xor (@T[1],$b)', # c^d for next round
1022
1023 '&and ($a,@T[1])',
1024 '&add ($e,@T[0])',
1025 '&xor ($a,$b)' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1026 );
1027}
1028
1029&set_label("loop",16);
1030 &Xupdate_ssse3_16_31(\&body_00_19);
1031 &Xupdate_ssse3_16_31(\&body_00_19);
1032 &Xupdate_ssse3_16_31(\&body_00_19);
1033 &Xupdate_ssse3_16_31(\&body_00_19);
1034 &Xupdate_ssse3_32_79(\&body_00_19);
1035 &Xupdate_ssse3_32_79(\&body_20_39);
1036 &Xupdate_ssse3_32_79(\&body_20_39);
1037 &Xupdate_ssse3_32_79(\&body_20_39);
1038 &Xupdate_ssse3_32_79(\&body_20_39);
1039 &Xupdate_ssse3_32_79(\&body_20_39);
1040 &Xupdate_ssse3_32_79(\&body_40_59);
1041 &Xupdate_ssse3_32_79(\&body_40_59);
1042 &Xupdate_ssse3_32_79(\&body_40_59);
1043 &Xupdate_ssse3_32_79(\&body_40_59);
1044 &Xupdate_ssse3_32_79(\&body_40_59);
1045 &Xupdate_ssse3_32_79(\&body_20_39);
1046 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
1047
1048 $saved_j=$j; @saved_V=@V;
1049
1050 &Xloop_ssse3(\&body_20_39);
1051 &Xloop_ssse3(\&body_20_39);
1052 &Xloop_ssse3(\&body_20_39);
1053
1054 &mov (@T[1],&DWP(192,"esp")); # update context
1055 &add ($A,&DWP(0,@T[1]));
1056 &add (@T[0],&DWP(4,@T[1])); # $b
1057 &add ($C,&DWP(8,@T[1]));
1058 &mov (&DWP(0,@T[1]),$A);
1059 &add ($D,&DWP(12,@T[1]));
1060 &mov (&DWP(4,@T[1]),@T[0]);
1061 &add ($E,&DWP(16,@T[1]));
1062 &mov (&DWP(8,@T[1]),$C);
1063 &mov ($B,$C);
1064 &mov (&DWP(12,@T[1]),$D);
1065 &xor ($B,$D);
1066 &mov (&DWP(16,@T[1]),$E);
1067 &mov (@T[1],@T[0]);
1068 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
1069 &and (@T[0],$B);
1070 &mov ($B,$T[1]);
1071
1072 &jmp (&label("loop"));
1073
1074&set_label("done",16); $j=$saved_j; @V=@saved_V;
1075
1076 &Xtail_ssse3(\&body_20_39);
1077 &Xtail_ssse3(\&body_20_39);
1078 &Xtail_ssse3(\&body_20_39);
1079
1080 &mov (@T[1],&DWP(192,"esp")); # update context
1081 &add ($A,&DWP(0,@T[1]));
1082 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1083 &add (@T[0],&DWP(4,@T[1])); # $b
1084 &add ($C,&DWP(8,@T[1]));
1085 &mov (&DWP(0,@T[1]),$A);
1086 &add ($D,&DWP(12,@T[1]));
1087 &mov (&DWP(4,@T[1]),@T[0]);
1088 &add ($E,&DWP(16,@T[1]));
1089 &mov (&DWP(8,@T[1]),$C);
1090 &mov (&DWP(12,@T[1]),$D);
1091 &mov (&DWP(16,@T[1]),$E);
1092
1093&function_end("_sha1_block_data_order_ssse3");
1094
1095$rx=0; # reset
1096
1097if ($ymm) {
1098my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
1099my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
1100my @V=($A,$B,$C,$D,$E);
1101my $j=0; # hash round
1102my @T=($T,$tmp1);
1103my $inp;
1104
1105my $_rol=sub { &shld(@_[0],@_) };
1106my $_ror=sub { &shrd(@_[0],@_) };
1107
1108&function_begin("_sha1_block_data_order_avx");
1109 &call (&label("pic_point")); # make it PIC!
1110 &set_label("pic_point");
1111 &blindpop($tmp1);
1112 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
1113&set_label("avx_shortcut");
1114 &vzeroall();
1115
1116 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
1117 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
1118 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
1119 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
1120 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
1121
1122 &mov ($E,&wparam(0)); # load argument block
1123 &mov ($inp=@T[1],&wparam(1));
1124 &mov ($D,&wparam(2));
1125 &mov (@T[0],"esp");
1126
1127 # stack frame layout
1128 #
1129 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
1130 # X[4]+K X[5]+K X[6]+K X[7]+K
1131 # X[8]+K X[9]+K X[10]+K X[11]+K
1132 # X[12]+K X[13]+K X[14]+K X[15]+K
1133 #
1134 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
1135 # X[4] X[5] X[6] X[7]
1136 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
1137 #
1138 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
1139 # K_40_59 K_40_59 K_40_59 K_40_59
1140 # K_60_79 K_60_79 K_60_79 K_60_79
1141 # K_00_19 K_00_19 K_00_19 K_00_19
1142 # pbswap mask
1143 #
1144 # +192 ctx # argument block
1145 # +196 inp
1146 # +200 end
1147 # +204 esp
1148 &sub ("esp",208);
1149 &and ("esp",-64);
1150
1151 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
1152 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
1153 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
1154 &shl ($D,6); # len*64
1155 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
1156 &add ($D,$inp); # end of input
1157 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
1158 &add ($inp,64);
1159 &mov (&DWP(192+0,"esp"),$E); # save argument block
1160 &mov (&DWP(192+4,"esp"),$inp);
1161 &mov (&DWP(192+8,"esp"),$D);
1162 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
1163
1164 &mov ($A,&DWP(0,$E)); # load context
1165 &mov ($B,&DWP(4,$E));
1166 &mov ($C,&DWP(8,$E));
1167 &mov ($D,&DWP(12,$E));
1168 &mov ($E,&DWP(16,$E));
1169 &mov (@T[0],$B); # magic seed
1170
1171 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
1172 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
1173 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
1174 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
1175 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1176 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
1177 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
1178 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1179 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
1180 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
1181 &vpaddd (@X[1],@X[-3&7],@X[3]);
1182 &vpaddd (@X[2],@X[-2&7],@X[3]);
1183 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
1184 &mov (@T[1],$C);
1185 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
1186 &xor (@T[1],$D);
1187 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
1188 &and (@T[0],@T[1]);
1189 &jmp (&label("loop"));
1190
1191sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
1192{ use integer;
1193 my $body = shift;
1194 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
1195 my ($a,$b,$c,$d,$e);
1196
1197 eval(shift(@insns));
1198 eval(shift(@insns));
1199 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
1200 eval(shift(@insns));
1201 eval(shift(@insns));
1202
1203 &vpaddd (@X[3],@X[3],@X[-1&7]);
1204 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
1205 eval(shift(@insns));
1206 eval(shift(@insns));
1207 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
1208 eval(shift(@insns));
1209 eval(shift(@insns));
1210 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
1211 eval(shift(@insns));
1212 eval(shift(@insns));
1213
1214 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
1215 eval(shift(@insns));
1216 eval(shift(@insns));
1217 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1218 eval(shift(@insns));
1219 eval(shift(@insns));
1220
1221 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
1222 eval(shift(@insns));
1223 eval(shift(@insns));
1224 eval(shift(@insns));
1225 eval(shift(@insns));
1226
1227 &vpsrld (@X[2],@X[0],31);
1228 eval(shift(@insns));
1229 eval(shift(@insns));
1230 eval(shift(@insns));
1231 eval(shift(@insns));
1232
1233 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
1234 &vpaddd (@X[0],@X[0],@X[0]);
1235 eval(shift(@insns));
1236 eval(shift(@insns));
1237 eval(shift(@insns));
1238 eval(shift(@insns));
1239
1240 &vpsrld (@X[3],@X[4],30);
1241 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
1242 eval(shift(@insns));
1243 eval(shift(@insns));
1244 eval(shift(@insns));
1245 eval(shift(@insns));
1246
1247 &vpslld (@X[4],@X[4],2);
1248 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1249 eval(shift(@insns));
1250 eval(shift(@insns));
1251 &vpxor (@X[0],@X[0],@X[3]);
1252 eval(shift(@insns));
1253 eval(shift(@insns));
1254 eval(shift(@insns));
1255 eval(shift(@insns));
1256
1257 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1258 eval(shift(@insns));
1259 eval(shift(@insns));
1260 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1261 eval(shift(@insns));
1262 eval(shift(@insns));
1263
1264 foreach (@insns) { eval; } # remaining instructions [if any]
1265
1266 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1267}
1268
1269sub Xupdate_avx_32_79()
1270{ use integer;
1271 my $body = shift;
1272 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
1273 my ($a,$b,$c,$d,$e);
1274
1275 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1276 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1277 eval(shift(@insns)); # body_20_39
1278 eval(shift(@insns));
1279 eval(shift(@insns));
1280 eval(shift(@insns)); # rol
1281
1282 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1283 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1284 eval(shift(@insns));
1285 eval(shift(@insns));
1286 if ($Xi%5) {
1287 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1288 } else { # ... or load next one
1289 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1290 }
1291 &vpaddd (@X[3],@X[3],@X[-1&7]);
1292 eval(shift(@insns)); # ror
1293 eval(shift(@insns));
1294
1295 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1296 eval(shift(@insns)); # body_20_39
1297 eval(shift(@insns));
1298 eval(shift(@insns));
1299 eval(shift(@insns)); # rol
1300
1301 &vpsrld (@X[2],@X[0],30);
1302 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1303 eval(shift(@insns));
1304 eval(shift(@insns));
1305 eval(shift(@insns)); # ror
1306 eval(shift(@insns));
1307
1308 &vpslld (@X[0],@X[0],2);
1309 eval(shift(@insns)); # body_20_39
1310 eval(shift(@insns));
1311 eval(shift(@insns));
1312 eval(shift(@insns)); # rol
1313 eval(shift(@insns));
1314 eval(shift(@insns));
1315 eval(shift(@insns)); # ror
1316 eval(shift(@insns));
1317
1318 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1319 eval(shift(@insns)); # body_20_39
1320 eval(shift(@insns));
1321 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1322 eval(shift(@insns));
1323 eval(shift(@insns)); # rol
1324 eval(shift(@insns));
1325 eval(shift(@insns));
1326 eval(shift(@insns)); # ror
1327 eval(shift(@insns));
1328
1329 foreach (@insns) { eval; } # remaining instructions
1330
1331 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1332}
1333
1334sub Xuplast_avx_80()
1335{ use integer;
1336 my $body = shift;
1337 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1338 my ($a,$b,$c,$d,$e);
1339
1340 eval(shift(@insns));
1341 &vpaddd (@X[3],@X[3],@X[-1&7]);
1342 eval(shift(@insns));
1343 eval(shift(@insns));
1344 eval(shift(@insns));
1345 eval(shift(@insns));
1346
1347 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1348
1349 foreach (@insns) { eval; } # remaining instructions
1350
1351 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1352 &cmp ($inp,&DWP(192+8,"esp"));
1353 &je (&label("done"));
1354
1355 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1356 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1357 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1358 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1359 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1360 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1361 &add ($inp,64);
1362 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1363 &mov (&DWP(192+4,"esp"),$inp);
1364 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1365
1366 $Xi=0;
1367}
1368
1369sub Xloop_avx()
1370{ use integer;
1371 my $body = shift;
1372 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1373 my ($a,$b,$c,$d,$e);
1374
1375 eval(shift(@insns));
1376 eval(shift(@insns));
1377 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1378 eval(shift(@insns));
1379 eval(shift(@insns));
1380 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1381 eval(shift(@insns));
1382 eval(shift(@insns));
1383 eval(shift(@insns));
1384 eval(shift(@insns));
1385 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1386 eval(shift(@insns));
1387 eval(shift(@insns));
1388
1389 foreach (@insns) { eval; }
1390 $Xi++;
1391}
1392
1393sub Xtail_avx()
1394{ use integer;
1395 my $body = shift;
1396 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1397 my ($a,$b,$c,$d,$e);
1398
1399 foreach (@insns) { eval; }
1400}
1401
1402&set_label("loop",16);
1403 &Xupdate_avx_16_31(\&body_00_19);
1404 &Xupdate_avx_16_31(\&body_00_19);
1405 &Xupdate_avx_16_31(\&body_00_19);
1406 &Xupdate_avx_16_31(\&body_00_19);
1407 &Xupdate_avx_32_79(\&body_00_19);
1408 &Xupdate_avx_32_79(\&body_20_39);
1409 &Xupdate_avx_32_79(\&body_20_39);
1410 &Xupdate_avx_32_79(\&body_20_39);
1411 &Xupdate_avx_32_79(\&body_20_39);
1412 &Xupdate_avx_32_79(\&body_20_39);
1413 &Xupdate_avx_32_79(\&body_40_59);
1414 &Xupdate_avx_32_79(\&body_40_59);
1415 &Xupdate_avx_32_79(\&body_40_59);
1416 &Xupdate_avx_32_79(\&body_40_59);
1417 &Xupdate_avx_32_79(\&body_40_59);
1418 &Xupdate_avx_32_79(\&body_20_39);
1419 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1420
1421 $saved_j=$j; @saved_V=@V;
1422
1423 &Xloop_avx(\&body_20_39);
1424 &Xloop_avx(\&body_20_39);
1425 &Xloop_avx(\&body_20_39);
1426
1427 &mov (@T[1],&DWP(192,"esp")); # update context
1428 &add ($A,&DWP(0,@T[1]));
1429 &add (@T[0],&DWP(4,@T[1])); # $b
1430 &add ($C,&DWP(8,@T[1]));
1431 &mov (&DWP(0,@T[1]),$A);
1432 &add ($D,&DWP(12,@T[1]));
1433 &mov (&DWP(4,@T[1]),@T[0]);
1434 &add ($E,&DWP(16,@T[1]));
1435 &mov ($B,$C);
1436 &mov (&DWP(8,@T[1]),$C);
1437 &xor ($B,$D);
1438 &mov (&DWP(12,@T[1]),$D);
1439 &mov (&DWP(16,@T[1]),$E);
1440 &mov (@T[1],@T[0]);
1441 &and (@T[0],$B);
1442 &mov ($B,@T[1]);
1443
1444 &jmp (&label("loop"));
1445
1446&set_label("done",16); $j=$saved_j; @V=@saved_V;
1447
1448 &Xtail_avx(\&body_20_39);
1449 &Xtail_avx(\&body_20_39);
1450 &Xtail_avx(\&body_20_39);
1451
1452 &vzeroall();
1453
1454 &mov (@T[1],&DWP(192,"esp")); # update context
1455 &add ($A,&DWP(0,@T[1]));
1456 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1457 &add (@T[0],&DWP(4,@T[1])); # $b
1458 &add ($C,&DWP(8,@T[1]));
1459 &mov (&DWP(0,@T[1]),$A);
1460 &add ($D,&DWP(12,@T[1]));
1461 &mov (&DWP(4,@T[1]),@T[0]);
1462 &add ($E,&DWP(16,@T[1]));
1463 &mov (&DWP(8,@T[1]),$C);
1464 &mov (&DWP(12,@T[1]),$D);
1465 &mov (&DWP(16,@T[1]),$E);
1466&function_end("_sha1_block_data_order_avx");
1467}
1468&set_label("K_XX_XX",64);
1469&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1470&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1471&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1472&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1473&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1474&data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
1475}
1476&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1477
1478&asm_finish();
David Benjaminc895d6b2016-08-11 13:26:41 -04001479
1480close STDOUT;