blob: 0bb65477ac60094e7b604d5fb36f08058d89a308 [file] [log] [blame]
Robert Sloana51059f2018-11-12 13:38:50 -08001# Copyright (c) 2018, Amazon Inc.
2#
3# Permission to use, copy, modify, and/or distribute this software for any
4# purpose with or without fee is hereby granted, provided that the above
5# copyright notice and this permission notice appear in all copies.
6#
7# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14#
15# Written by Nir Drucker, and Shay Gueron
16# AWS Cryptographic Algorithms Group
17# (ndrucker@amazon.com, gueron@amazon.com)
18# based on BN_mod_inverse_odd
19
20$flavour = shift;
21$output = shift;
22if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
23
24$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
25
26$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
27( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
28( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or
29die "can't locate x86_64-xlate.pl";
30
31open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
32*STDOUT=*OUT;
33
34#############################################################################
35# extern int beeu_mod_inverse_vartime(BN_ULONG out[P256_LIMBS],
36# BN_ULONG a[P256_LIMBS],
37# BN_ULONG n[P256_LIMBS]);
38#
39# (Binary Extended Euclidean Algorithm.
40# See https://en.wikipedia.org/wiki/Binary_GCD_algorithm)
41#
42# Assumption 1: n is odd for the BEEU
43# Assumption 2: 1 < a < n < 2^256
44
45$out = "%rdi";
46$a = "%rsi";
47$n = "%rdx";
48
49# X/Y will hold the inverse parameter
50# Assumption: X,Y<2^(256)
51$x0 = "%r8";
52$x1 = "%r9";
53$x2 = "%r10";
54$x3 = "%r11";
55# borrow from out (out is needed only at the end)
56$x4 = "%rdi";
57$y0 = "%r12";
58$y1 = "%r13";
59$y2 = "%r14";
60$y3 = "%r15";
61$y4 = "%rbp";
62$shift = "%rcx";
63$t0 = "%rax";
64$t1 = "%rbx";
65$t2 = "%rsi";
66# borrow
67$t3 = "%rcx";
68
69$T0 = "%xmm0";
70$T1 = "%xmm1";
71
72# Offsets on the stack
73$out_rsp = 0;
74$shift_rsp = $out_rsp+0x8;
75$a_rsp0 = $shift_rsp+0x8;
76$a_rsp1 = $a_rsp0+0x8;
77$a_rsp2 = $a_rsp1+0x8;
78$a_rsp3 = $a_rsp2+0x8;
79$b_rsp0 = $a_rsp3+0x8;
80$b_rsp1 = $b_rsp0+0x8;
81$b_rsp2 = $b_rsp1+0x8;
82$b_rsp3 = $b_rsp2+0x8;
83
84# Borrow when a_rsp/b_rsp are no longer needed.
85$y_rsp0 = $a_rsp0;
86$y_rsp1 = $y_rsp0+0x8;
87$y_rsp2 = $y_rsp1+0x8;
88$y_rsp3 = $y_rsp2+0x8;
89$y_rsp4 = $y_rsp3+0x8;
90$last_rsp_offset = $b_rsp3+0x8;
91
92sub TEST_B_ZERO {
93 return <<___;
94 xorq $t1, $t1
95 or $b_rsp0(%rsp), $t1
96 or $b_rsp1(%rsp), $t1
97 or $b_rsp2(%rsp), $t1
98 or $b_rsp3(%rsp), $t1
99 jz .Lbeeu_loop_end
100___
101}
102
103$g_next_label = 0;
104
105sub SHIFT1 {
106 my ($var0, $var1, $var2, $var3, $var4) = @_;
107 my $label = ".Lshift1_${g_next_label}";
108 $g_next_label++;
109
110 return <<___;
111 # Ensure X is even and divide by two.
112 movq \$1, $t1
113 andq $var0, $t1
114 jz $label
115 add 0*8($n), $var0
116 adc 1*8($n), $var1
117 adc 2*8($n), $var2
118 adc 3*8($n), $var3
119 adc \$0, $var4
120
121$label:
122 shrdq \$1, $var1, $var0
123 shrdq \$1, $var2, $var1
124 shrdq \$1, $var3, $var2
125 shrdq \$1, $var4, $var3
126 shrq \$1, $var4
127___
128}
129
130sub SHIFT256 {
131 my ($var) = @_;
132 return <<___;
133 # Copy shifted values.
134 # Remember not to override t3=rcx
135 movq 1*8+$var(%rsp), $t0
136 movq 2*8+$var(%rsp), $t1
137 movq 3*8+$var(%rsp), $t2
138
139 shrdq %cl, $t0, 0*8+$var(%rsp)
140 shrdq %cl, $t1, 1*8+$var(%rsp)
141 shrdq %cl, $t2, 2*8+$var(%rsp)
142
143 shrq %cl, $t2
144 mov $t2, 3*8+$var(%rsp)
145___
146}
147
148$code.=<<___;
149.text
150
151.type beeu_mod_inverse_vartime,\@function
152.hidden beeu_mod_inverse_vartime
153.globl beeu_mod_inverse_vartime
154.align 32
155beeu_mod_inverse_vartime:
156.cfi_startproc
157 push %rbp
158.cfi_push rbp
Robert Sloana51059f2018-11-12 13:38:50 -0800159 push %r12
160.cfi_push r12
161 push %r13
162.cfi_push r13
163 push %r14
164.cfi_push r14
165 push %r15
166.cfi_push r15
167 push %rbx
168.cfi_push rbx
169 push %rsi
170.cfi_push rsi
171
172 sub \$$last_rsp_offset, %rsp
Robert Sloan4c22c5f2019-03-01 15:53:37 -0800173.cfi_adjust_cfa_offset $last_rsp_offset
Robert Sloana51059f2018-11-12 13:38:50 -0800174 movq $out, $out_rsp(%rsp)
175
176 # X=1, Y=0
177 movq \$1, $x0
178 xorq $x1, $x1
179 xorq $x2, $x2
180 xorq $x3, $x3
181 xorq $x4, $x4
182
183 xorq $y0, $y0
184 xorq $y1, $y1
185 xorq $y2, $y2
186 xorq $y3, $y3
187 xorq $y4, $y4
188
189 # Copy a/n into B/A on the stack.
190 vmovdqu 0*8($a), $T0
191 vmovdqu 2*8($a), $T1
192 vmovdqu $T0, $b_rsp0(%rsp)
193 vmovdqu $T1, $b_rsp2(%rsp)
194
195 vmovdqu 0*8($n), $T0
196 vmovdqu 2*8($n), $T1
197 vmovdqu $T0, $a_rsp0(%rsp)
198 vmovdqu $T1, $a_rsp2(%rsp)
199
200.Lbeeu_loop:
201 ${\TEST_B_ZERO}
202
203 # 0 < B < |n|,
204 # 0 < A <= |n|,
205 # (1) X*a == B (mod |n|),
206 # (2) (-1)*Y*a == A (mod |n|)
207
208 # Now divide B by the maximum possible power of two in the
209 # integers, and divide X by the same value mod |n|. When we're
210 # done, (1) still holds.
211 movq \$1, $shift
212
213 # Note that B > 0
214.Lbeeu_shift_loop_XB:
215 movq $shift, $t1
216 andq $b_rsp0(%rsp), $t1
217 jnz .Lbeeu_shift_loop_end_XB
218
219 ${\SHIFT1($x0, $x1, $x2, $x3, $x4)}
220 shl \$1, $shift
221
222 # Test wraparound of the shift parameter. The probability to have 32 zeroes
223 # in a row is small Therefore having the value below equal \$0x8000000 or
224 # \$0x8000 does not affect the performance. We choose 0x8000000 because it
225 # is the maximal immediate value possible.
226 cmp \$0x8000000, $shift
227 jne .Lbeeu_shift_loop_XB
228
229.Lbeeu_shift_loop_end_XB:
230 bsf $shift, $shift
231 test $shift, $shift
232 jz .Lbeeu_no_shift_XB
233
234 ${\SHIFT256($b_rsp0)}
235
236.Lbeeu_no_shift_XB:
237 # Same for A and Y. Afterwards, (2) still holds.
238 movq \$1, $shift
239
240 # Note that A > 0
241.Lbeeu_shift_loop_YA:
242 movq $shift, $t1
243 andq $a_rsp0(%rsp), $t1
244 jnz .Lbeeu_shift_loop_end_YA
245
246 ${\SHIFT1($y0, $y1, $y2, $y3, $y4)}
247 shl \$1, $shift
248
249 # Test wraparound of the shift parameter. The probability to have 32 zeroes
250 # in a row is small therefore having the value below equal \$0x8000000 or
251 # \$0x8000 Does not affect the performance. We choose 0x8000000 because it
252 # is the maximal immediate value possible.
253 cmp \$0x8000000, $shift
254 jne .Lbeeu_shift_loop_YA
255
256.Lbeeu_shift_loop_end_YA:
257 bsf $shift, $shift
258 test $shift, $shift
259 jz .Lbeeu_no_shift_YA
260
261 ${\SHIFT256($a_rsp0)}
262
263.Lbeeu_no_shift_YA:
264 # T = B-A (A,B < 2^256)
265 mov $b_rsp0(%rsp), $t0
266 mov $b_rsp1(%rsp), $t1
267 mov $b_rsp2(%rsp), $t2
268 mov $b_rsp3(%rsp), $t3
269 sub $a_rsp0(%rsp), $t0
270 sbb $a_rsp1(%rsp), $t1
271 sbb $a_rsp2(%rsp), $t2
272 sbb $a_rsp3(%rsp), $t3 # borrow from shift
273 jnc .Lbeeu_B_bigger_than_A
274
275 # A = A - B
276 mov $a_rsp0(%rsp), $t0
277 mov $a_rsp1(%rsp), $t1
278 mov $a_rsp2(%rsp), $t2
279 mov $a_rsp3(%rsp), $t3
280 sub $b_rsp0(%rsp), $t0
281 sbb $b_rsp1(%rsp), $t1
282 sbb $b_rsp2(%rsp), $t2
283 sbb $b_rsp3(%rsp), $t3
284 mov $t0, $a_rsp0(%rsp)
285 mov $t1, $a_rsp1(%rsp)
286 mov $t2, $a_rsp2(%rsp)
287 mov $t3, $a_rsp3(%rsp)
288
289 # Y = Y + X
290 add $x0, $y0
291 adc $x1, $y1
292 adc $x2, $y2
293 adc $x3, $y3
294 adc $x4, $y4
295 jmp .Lbeeu_loop
296
297.Lbeeu_B_bigger_than_A:
298 # B = T = B - A
299 mov $t0, $b_rsp0(%rsp)
300 mov $t1, $b_rsp1(%rsp)
301 mov $t2, $b_rsp2(%rsp)
302 mov $t3, $b_rsp3(%rsp)
303
304 # X = Y + X
305 add $y0, $x0
306 adc $y1, $x1
307 adc $y2, $x2
308 adc $y3, $x3
309 adc $y4, $x4
310
311 jmp .Lbeeu_loop
312
313.Lbeeu_loop_end:
314 # The Euclid's algorithm loop ends when A == beeu(a,n);
315 # Therefore (-1)*Y*a == A (mod |n|), Y>0
316
317 # Verify that A = 1 ==> (-1)*Y*a = A = 1 (mod |n|)
318 mov $a_rsp0(%rsp), $t1
319 sub \$1, $t1
320 or $a_rsp1(%rsp), $t1
321 or $a_rsp2(%rsp), $t1
322 or $a_rsp3(%rsp), $t1
323 # If not, fail.
324 jnz .Lbeeu_err
325
326 # From this point on, we no longer need X
327 # Therefore we use it as a temporary storage.
328 # X = n
329 movq 0*8($n), $x0
330 movq 1*8($n), $x1
331 movq 2*8($n), $x2
332 movq 3*8($n), $x3
333 xorq $x4, $x4
334
335.Lbeeu_reduction_loop:
336 movq $y0, $y_rsp0(%rsp)
337 movq $y1, $y_rsp1(%rsp)
338 movq $y2, $y_rsp2(%rsp)
339 movq $y3, $y_rsp3(%rsp)
340 movq $y4, $y_rsp4(%rsp)
341
342 # If Y>n ==> Y=Y-n
343 sub $x0, $y0
344 sbb $x1, $y1
345 sbb $x2, $y2
346 sbb $x3, $y3
347 sbb \$0, $y4
348
349 # Choose old Y or new Y
350 cmovc $y_rsp0(%rsp), $y0
351 cmovc $y_rsp1(%rsp), $y1
352 cmovc $y_rsp2(%rsp), $y2
353 cmovc $y_rsp3(%rsp), $y3
354 jnc .Lbeeu_reduction_loop
355
356 # X = n - Y (n, Y < 2^256), (Cancel the (-1))
357 sub $y0, $x0
358 sbb $y1, $x1
359 sbb $y2, $x2
360 sbb $y3, $x3
361
362.Lbeeu_save:
363 # Save the inverse(<2^256) to out.
364 mov $out_rsp(%rsp), $out
365
366 movq $x0, 0*8($out)
367 movq $x1, 1*8($out)
368 movq $x2, 2*8($out)
369 movq $x3, 3*8($out)
370
371 # Return 1.
372 movq \$1, %rax
373 jmp .Lbeeu_finish
374
375.Lbeeu_err:
376 # Return 0.
377 xorq %rax, %rax
378
379.Lbeeu_finish:
380 add \$$last_rsp_offset, %rsp
Robert Sloan4c22c5f2019-03-01 15:53:37 -0800381.cfi_adjust_cfa_offset -$last_rsp_offset
Robert Sloana51059f2018-11-12 13:38:50 -0800382 pop %rsi
383.cfi_pop rsi
384 pop %rbx
385.cfi_pop rbx
386 pop %r15
387.cfi_pop r15
388 pop %r14
389.cfi_pop r14
390 pop %r13
391.cfi_pop r13
392 pop %r12
393.cfi_pop r12
394 pop %rbp
395.cfi_pop rbp
Robert Sloana51059f2018-11-12 13:38:50 -0800396 ret
Robert Sloan4c22c5f2019-03-01 15:53:37 -0800397.cfi_endproc
Robert Sloana51059f2018-11-12 13:38:50 -0800398
399.size beeu_mod_inverse_vartime, .-beeu_mod_inverse_vartime
400___
401
402print $code;
Srinivas Paladugudd42a612019-08-09 19:30:39 +0000403close STDOUT;