blob: a2c6eb54a72007f6ef3f8a4876675b3b1659dd90 [file] [log] [blame]
Adam Langleyd9e397b2015-01-22 14:27:53 -08001#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# Version 4.3.
11#
12# You might fail to appreciate this module performance from the first
13# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
14# to be *the* best Intel C compiler without -KPIC, performance appears
15# to be virtually identical... But try to re-configure with shared
16# library support... Aha! Intel compiler "suddenly" lags behind by 30%
17# [on P4, more on others]:-) And if compared to position-independent
18# code generated by GNU C, this code performs *more* than *twice* as
19# fast! Yes, all this buzz about PIC means that unlike other hand-
20# coded implementations, this one was explicitly designed to be safe
21# to use even in shared library context... This also means that this
22# code isn't necessarily absolutely fastest "ever," because in order
23# to achieve position independence an extra register has to be
24# off-loaded to stack, which affects the benchmark result.
25#
26# Special note about instruction choice. Do you recall RC4_INT code
27# performing poorly on P4? It might be the time to figure out why.
28# RC4_INT code implies effective address calculations in base+offset*4
29# form. Trouble is that it seems that offset scaling turned to be
30# critical path... At least eliminating scaling resulted in 2.8x RC4
31# performance improvement [as you might recall]. As AES code is hungry
32# for scaling too, I [try to] avoid the latter by favoring off-by-2
33# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
34#
35# As was shown by Dean Gaudet <dean@arctic.org>, the above note turned
36# void. Performance improvement with off-by-2 shifts was observed on
37# intermediate implementation, which was spilling yet another register
38# to stack... Final offset*4 code below runs just a tad faster on P4,
39# but exhibits up to 10% improvement on other cores.
40#
41# Second version is "monolithic" replacement for aes_core.c, which in
42# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key.
43# This made it possible to implement little-endian variant of the
44# algorithm without modifying the base C code. Motivating factor for
45# the undertaken effort was that it appeared that in tight IA-32
46# register window little-endian flavor could achieve slightly higher
47# Instruction Level Parallelism, and it indeed resulted in up to 15%
Kenny Rootb8494592015-09-25 02:29:14 +000048# better performance on most recent ยต-archs...
Adam Langleyd9e397b2015-01-22 14:27:53 -080049#
50# Third version adds AES_cbc_encrypt implementation, which resulted in
51# up to 40% performance imrovement of CBC benchmark results. 40% was
52# observed on P4 core, where "overall" imrovement coefficient, i.e. if
53# compared to PIC generated by GCC and in CBC mode, was observed to be
54# as large as 4x:-) CBC performance is virtually identical to ECB now
55# and on some platforms even better, e.g. 17.6 "small" cycles/byte on
56# Opteron, because certain function prologues and epilogues are
57# effectively taken out of the loop...
58#
59# Version 3.2 implements compressed tables and prefetch of these tables
60# in CBC[!] mode. Former means that 3/4 of table references are now
61# misaligned, which unfortunately has negative impact on elder IA-32
62# implementations, Pentium suffered 30% penalty, PIII - 10%.
63#
64# Version 3.3 avoids L1 cache aliasing between stack frame and
65# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
66# latter is achieved by copying the key schedule to controlled place in
67# stack. This unfortunately has rather strong impact on small block CBC
68# performance, ~2x deterioration on 16-byte block if compared to 3.3.
69#
70# Version 3.5 checks if there is L1 cache aliasing between user-supplied
71# key schedule and S-boxes and abstains from copying the former if
72# there is no. This allows end-user to consciously retain small block
73# performance by aligning key schedule in specific manner.
74#
75# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
76#
77# Current ECB performance numbers for 128-bit key in CPU cycles per
78# processed byte [measure commonly used by AES benchmarkers] are:
79#
80# small footprint fully unrolled
81# P4 24 22
82# AMD K8 20 19
83# PIII 25 23
84# Pentium 81 78
85#
86# Version 3.7 reimplements outer rounds as "compact." Meaning that
87# first and last rounds reference compact 256 bytes S-box. This means
88# that first round consumes a lot more CPU cycles and that encrypt
89# and decrypt performance becomes asymmetric. Encrypt performance
90# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
91# aggressively pre-fetched.
92#
93# Version 4.0 effectively rolls back to 3.6 and instead implements
94# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
95# which use exclusively 256 byte S-box. These functions are to be
96# called in modes not concealing plain text, such as ECB, or when
97# we're asked to process smaller amount of data [or unconditionally
98# on hyper-threading CPU]. Currently it's called unconditionally from
99# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
100# still needs to be modified to switch between slower and faster
101# mode when appropriate... But in either case benchmark landscape
102# changes dramatically and below numbers are CPU cycles per processed
103# byte for 128-bit key.
104#
105# ECB encrypt ECB decrypt CBC large chunk
106# P4 52[54] 83[95] 23
107# AMD K8 46[41] 66[70] 18
108# PIII 41[50] 60[77] 24
109# Core 2 31[36] 45[64] 18.5
110# Atom 76[100] 96[138] 60
111# Pentium 115 150 77
112#
113# Version 4.1 switches to compact S-box even in key schedule setup.
114#
115# Version 4.2 prefetches compact S-box in every SSE round or in other
116# words every cache-line is *guaranteed* to be accessed within ~50
117# cycles window. Why just SSE? Because it's needed on hyper-threading
118# CPU! Which is also why it's prefetched with 64 byte stride. Best
Robert Sloana94fe052017-02-21 08:49:28 -0800119# part is that it has no negative effect on performance:-)
Adam Langleyd9e397b2015-01-22 14:27:53 -0800120#
121# Version 4.3 implements switch between compact and non-compact block
122# functions in AES_cbc_encrypt depending on how much data was asked
123# to be processed in one stroke.
124#
125######################################################################
126# Timing attacks are classified in two classes: synchronous when
127# attacker consciously initiates cryptographic operation and collects
128# timing data of various character afterwards, and asynchronous when
129# malicious code is executed on same CPU simultaneously with AES,
130# instruments itself and performs statistical analysis of this data.
131#
132# As far as synchronous attacks go the root to the AES timing
133# vulnerability is twofold. Firstly, of 256 S-box elements at most 160
134# are referred to in single 128-bit block operation. Well, in C
135# implementation with 4 distinct tables it's actually as little as 40
136# references per 256 elements table, but anyway... Secondly, even
137# though S-box elements are clustered into smaller amount of cache-
138# lines, smaller than 160 and even 40, it turned out that for certain
139# plain-text pattern[s] or simply put chosen plain-text and given key
140# few cache-lines remain unaccessed during block operation. Now, if
141# attacker can figure out this access pattern, he can deduct the key
142# [or at least part of it]. The natural way to mitigate this kind of
143# attacks is to minimize the amount of cache-lines in S-box and/or
144# prefetch them to ensure that every one is accessed for more uniform
145# timing. But note that *if* plain-text was concealed in such way that
146# input to block function is distributed *uniformly*, then attack
147# wouldn't apply. Now note that some encryption modes, most notably
148# CBC, do mask the plain-text in this exact way [secure cipher output
149# is distributed uniformly]. Yes, one still might find input that
150# would reveal the information about given key, but if amount of
151# candidate inputs to be tried is larger than amount of possible key
152# combinations then attack becomes infeasible. This is why revised
153# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
154# of data is to be processed in one stroke. The current size limit of
155# 512 bytes is chosen to provide same [diminishigly low] probability
156# for cache-line to remain untouched in large chunk operation with
157# large S-box as for single block operation with compact S-box and
158# surely needs more careful consideration...
159#
160# As for asynchronous attacks. There are two flavours: attacker code
161# being interleaved with AES on hyper-threading CPU at *instruction*
162# level, and two processes time sharing single core. As for latter.
163# Two vectors. 1. Given that attacker process has higher priority,
164# yield execution to process performing AES just before timer fires
165# off the scheduler, immediately regain control of CPU and analyze the
166# cache state. For this attack to be efficient attacker would have to
167# effectively slow down the operation by several *orders* of magnitute,
168# by ratio of time slice to duration of handful of AES rounds, which
169# unlikely to remain unnoticed. Not to mention that this also means
170# that he would spend correspondigly more time to collect enough
171# statistical data to mount the attack. It's probably appropriate to
172# say that if adeversary reckons that this attack is beneficial and
173# risks to be noticed, you probably have larger problems having him
174# mere opportunity. In other words suggested code design expects you
175# to preclude/mitigate this attack by overall system security design.
176# 2. Attacker manages to make his code interrupt driven. In order for
177# this kind of attack to be feasible, interrupt rate has to be high
178# enough, again comparable to duration of handful of AES rounds. But
179# is there interrupt source of such rate? Hardly, not even 1Gbps NIC
180# generates interrupts at such raging rate...
181#
182# And now back to the former, hyper-threading CPU or more specifically
183# Intel P4. Recall that asynchronous attack implies that malicious
184# code instruments itself. And naturally instrumentation granularity
185# has be noticeably lower than duration of codepath accessing S-box.
186# Given that all cache-lines are accessed during that time that is.
187# Current implementation accesses *all* cache-lines within ~50 cycles
188# window, which is actually *less* than RDTSC latency on Intel P4!
189
190$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
Robert Sloan572a4e22017-04-17 10:52:19 -0700191push(@INC,"${dir}","${dir}../../../perlasm");
Adam Langleyd9e397b2015-01-22 14:27:53 -0800192require "x86asm.pl";
193
David Benjaminc895d6b2016-08-11 13:26:41 -0400194$output = pop;
195open OUT,">$output";
196*STDOUT=*OUT;
197
Adam Langleyd9e397b2015-01-22 14:27:53 -0800198&asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
199&static_label("AES_Te");
200&static_label("AES_Td");
201
202$s0="eax";
203$s1="ebx";
204$s2="ecx";
205$s3="edx";
206$key="edi";
207$acc="esi";
208$tbl="ebp";
209
210# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
211# by caller
212$__ra=&DWP(0,"esp"); # return address
213$__s0=&DWP(4,"esp"); # s0 backing store
214$__s1=&DWP(8,"esp"); # s1 backing store
215$__s2=&DWP(12,"esp"); # s2 backing store
216$__s3=&DWP(16,"esp"); # s3 backing store
217$__key=&DWP(20,"esp"); # pointer to key schedule
218$__end=&DWP(24,"esp"); # pointer to end of key schedule
219$__tbl=&DWP(28,"esp"); # %ebp backing store
220
221# stack frame layout in AES_[en|crypt] routines, which differs from
222# above by 4 and overlaps by %ebp backing store
223$_tbl=&DWP(24,"esp");
224$_esp=&DWP(28,"esp");
225
226sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
227
228$speed_limit=512; # chunks smaller than $speed_limit are
229 # processed with compact routine in CBC mode
230$small_footprint=1; # $small_footprint=1 code is ~5% slower [on
Kenny Rootb8494592015-09-25 02:29:14 +0000231 # recent ยต-archs], but ~5 times smaller!
Adam Langleyd9e397b2015-01-22 14:27:53 -0800232 # I favor compact code to minimize cache
233 # contention and in hope to "collect" 5% back
234 # in real-life applications...
235
236$vertical_spin=0; # shift "verticaly" defaults to 0, because of
237 # its proof-of-concept status...
238# Note that there is no decvert(), as well as last encryption round is
239# performed with "horizontal" shifts. This is because this "vertical"
240# implementation [one which groups shifts on a given $s[i] to form a
241# "column," unlike "horizontal" one, which groups shifts on different
242# $s[i] to form a "row"] is work in progress. It was observed to run
243# few percents faster on Intel cores, but not AMD. On AMD K8 core it's
244# whole 12% slower:-( So we face a trade-off... Shall it be resolved
245# some day? Till then the code is considered experimental and by
246# default remains dormant...
247
248sub encvert()
249{ my ($te,@s) = @_;
250 my ($v0,$v1) = ($acc,$key);
251
252 &mov ($v0,$s[3]); # copy s3
253 &mov (&DWP(4,"esp"),$s[2]); # save s2
254 &mov ($v1,$s[0]); # copy s0
255 &mov (&DWP(8,"esp"),$s[1]); # save s1
256
257 &movz ($s[2],&HB($s[0]));
258 &and ($s[0],0xFF);
259 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0
260 &shr ($v1,16);
261 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8
262 &movz ($s[1],&HB($v1));
263 &and ($v1,0xFF);
264 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16
265 &mov ($v1,$v0);
266 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24
267
268 &and ($v0,0xFF);
269 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0
270 &movz ($v0,&HB($v1));
271 &shr ($v1,16);
272 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8
273 &movz ($v0,&HB($v1));
274 &and ($v1,0xFF);
275 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16
276 &mov ($v1,&DWP(4,"esp")); # restore s2
277 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24
278
279 &mov ($v0,$v1);
280 &and ($v1,0xFF);
281 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0
282 &movz ($v1,&HB($v0));
283 &shr ($v0,16);
284 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8
285 &movz ($v1,&HB($v0));
286 &and ($v0,0xFF);
287 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16
288 &mov ($v0,&DWP(8,"esp")); # restore s1
289 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24
290
291 &mov ($v1,$v0);
292 &and ($v0,0xFF);
293 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0
294 &movz ($v0,&HB($v1));
295 &shr ($v1,16);
296 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8
297 &movz ($v0,&HB($v1));
298 &and ($v1,0xFF);
299 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16
300 &mov ($key,$__key); # reincarnate v1 as key
301 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24
302}
303
304# Another experimental routine, which features "horizontal spin," but
305# eliminates one reference to stack. Strangely enough runs slower...
306sub enchoriz()
307{ my ($v0,$v1) = ($key,$acc);
308
309 &movz ($v0,&LB($s0)); # 3, 2, 1, 0*
310 &rotr ($s2,8); # 8,11,10, 9
311 &mov ($v1,&DWP(0,$te,$v0,8)); # 0
312 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4
313 &rotr ($s3,16); # 13,12,15,14
314 &xor ($v1,&DWP(3,$te,$v0,8)); # 5
315 &movz ($v0,&HB($s2)); # 8,11,10*, 9
316 &rotr ($s0,16); # 1, 0, 3, 2
317 &xor ($v1,&DWP(2,$te,$v0,8)); # 10
318 &movz ($v0,&HB($s3)); # 13,12,15*,14
319 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected
320 &mov ($__s0,$v1); # t[0] saved
321
322 &movz ($v0,&LB($s1)); # 7, 6, 5, 4*
323 &shr ($s1,16); # -, -, 7, 6
324 &mov ($v1,&DWP(0,$te,$v0,8)); # 4
325 &movz ($v0,&LB($s3)); # 13,12,15,14*
326 &xor ($v1,&DWP(2,$te,$v0,8)); # 14
327 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2
328 &and ($s3,0xffff0000); # 13,12, -, -
329 &xor ($v1,&DWP(1,$te,$v0,8)); # 3
330 &movz ($v0,&LB($s2)); # 8,11,10, 9*
331 &or ($s3,$s1); # 13,12, 7, 6
332 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected
333 &mov ($s1,$v1); # s[1]=t[1]
334
335 &movz ($v0,&LB($s0)); # 1, 0, 3, 2*
336 &shr ($s2,16); # -, -, 8,11
337 &mov ($v1,&DWP(2,$te,$v0,8)); # 2
338 &movz ($v0,&HB($s3)); # 13,12, 7*, 6
339 &xor ($v1,&DWP(1,$te,$v0,8)); # 7
340 &movz ($v0,&HB($s2)); # -, -, 8*,11
341 &xor ($v1,&DWP(0,$te,$v0,8)); # 8
342 &mov ($v0,$s3);
343 &shr ($v0,24); # 13
344 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected
345
346 &movz ($v0,&LB($s2)); # -, -, 8,11*
347 &shr ($s0,24); # 1*
348 &mov ($s2,&DWP(1,$te,$v0,8)); # 11
349 &xor ($s2,&DWP(3,$te,$s0,8)); # 1
350 &mov ($s0,$__s0); # s[0]=t[0]
351 &movz ($v0,&LB($s3)); # 13,12, 7, 6*
352 &shr ($s3,16); # , ,13,12
353 &xor ($s2,&DWP(2,$te,$v0,8)); # 6
354 &mov ($key,$__key); # reincarnate v0 as key
355 &and ($s3,0xff); # , ,13,12*
356 &mov ($s3,&DWP(0,$te,$s3,8)); # 12
357 &xor ($s3,$s2); # s[2]=t[3] collected
358 &mov ($s2,$v1); # s[2]=t[2]
359}
360
361# More experimental code... SSE one... Even though this one eliminates
362# *all* references to stack, it's not faster...
363sub sse_encbody()
364{
365 &movz ($acc,&LB("eax")); # 0
366 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0
367 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
368 &movz ("edx",&HB("eax")); # 1
369 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1
370 &shr ("eax",16); # 5, 4
371
372 &movz ($acc,&LB("ebx")); # 10
373 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10
374 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
375 &movz ($acc,&HB("ebx")); # 11
376 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11
377 &shr ("ebx",16); # 15,14
378
379 &movz ($acc,&HB("eax")); # 5
380 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5
381 &movq ("mm3",QWP(16,$key));
382 &movz ($acc,&HB("ebx")); # 15
383 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15
384 &movd ("mm0","ecx"); # t[0] collected
385
386 &movz ($acc,&LB("eax")); # 4
387 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4
388 &movd ("eax","mm2"); # 7, 6, 3, 2
389 &movz ($acc,&LB("ebx")); # 14
390 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14
391 &movd ("ebx","mm6"); # 13,12, 9, 8
392
393 &movz ($acc,&HB("eax")); # 3
394 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3
395 &movz ($acc,&HB("ebx")); # 9
396 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9
397 &movd ("mm1","ecx"); # t[1] collected
398
399 &movz ($acc,&LB("eax")); # 2
400 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2
401 &shr ("eax",16); # 7, 6
402 &punpckldq ("mm0","mm1"); # t[0,1] collected
403 &movz ($acc,&LB("ebx")); # 8
404 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8
405 &shr ("ebx",16); # 13,12
406
407 &movz ($acc,&HB("eax")); # 7
408 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7
409 &pxor ("mm0","mm3");
410 &movz ("eax",&LB("eax")); # 6
411 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6
412 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
413 &movz ($acc,&HB("ebx")); # 13
414 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13
415 &xor ("ecx",&DWP(24,$key)); # t[2]
416 &movd ("mm4","ecx"); # t[2] collected
417 &movz ("ebx",&LB("ebx")); # 12
418 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12
419 &shr ("ecx",16);
420 &movd ("eax","mm1"); # 5, 4, 1, 0
421 &mov ("ebx",&DWP(28,$key)); # t[3]
422 &xor ("ebx","edx");
423 &movd ("mm5","ebx"); # t[3] collected
424 &and ("ebx",0xffff0000);
425 &or ("ebx","ecx");
426
427 &punpckldq ("mm4","mm5"); # t[2,3] collected
428}
429
430######################################################################
431# "Compact" block function
432######################################################################
433
434sub enccompact()
435{ my $Fn = \&mov;
436 while ($#_>5) { pop(@_); $Fn=sub{}; }
437 my ($i,$te,@s)=@_;
438 my $tmp = $key;
439 my $out = $i==3?$s[0]:$acc;
440
441 # $Fn is used in first compact round and its purpose is to
442 # void restoration of some values from stack, so that after
443 # 4xenccompact with extra argument $key value is left there...
444 if ($i==3) { &$Fn ($key,$__key); }##%edx
445 else { &mov ($out,$s[0]); }
446 &and ($out,0xFF);
447 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
448 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
449 &movz ($out,&BP(-128,$te,$out,1));
450
451 if ($i==3) { $tmp=$s[1]; }##%eax
452 &movz ($tmp,&HB($s[1]));
453 &movz ($tmp,&BP(-128,$te,$tmp,1));
454 &shl ($tmp,8);
455 &xor ($out,$tmp);
456
457 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
458 else { &mov ($tmp,$s[2]);
459 &shr ($tmp,16); }
460 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
461 &and ($tmp,0xFF);
462 &movz ($tmp,&BP(-128,$te,$tmp,1));
463 &shl ($tmp,16);
464 &xor ($out,$tmp);
465
466 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
467 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
468 else { &mov ($tmp,$s[3]);
469 &shr ($tmp,24); }
470 &movz ($tmp,&BP(-128,$te,$tmp,1));
471 &shl ($tmp,24);
472 &xor ($out,$tmp);
473 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
474 if ($i==3) { &mov ($s[3],$acc); }
475 &comment();
476}
477
478sub enctransform()
479{ my @s = ($s0,$s1,$s2,$s3);
480 my $i = shift;
481 my $tmp = $tbl;
482 my $r2 = $key ;
483
484 &and ($tmp,$s[$i]);
485 &lea ($r2,&DWP(0,$s[$i],$s[$i]));
486 &mov ($acc,$tmp);
487 &shr ($tmp,7);
488 &and ($r2,0xfefefefe);
489 &sub ($acc,$tmp);
490 &mov ($tmp,$s[$i]);
491 &and ($acc,0x1b1b1b1b);
492 &rotr ($tmp,16);
493 &xor ($acc,$r2); # r2
494 &mov ($r2,$s[$i]);
495
496 &xor ($s[$i],$acc); # r0 ^ r2
497 &rotr ($r2,16+8);
498 &xor ($acc,$tmp);
499 &rotl ($s[$i],24);
500 &xor ($acc,$r2);
501 &mov ($tmp,0x80808080) if ($i!=1);
502 &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2
503}
504
505&function_begin_B("_x86_AES_encrypt_compact");
506 # note that caller is expected to allocate stack frame for me!
507 &mov ($__key,$key); # save key
508
509 &xor ($s0,&DWP(0,$key)); # xor with key
510 &xor ($s1,&DWP(4,$key));
511 &xor ($s2,&DWP(8,$key));
512 &xor ($s3,&DWP(12,$key));
513
514 &mov ($acc,&DWP(240,$key)); # load key->rounds
515 &lea ($acc,&DWP(-2,$acc,$acc));
516 &lea ($acc,&DWP(0,$key,$acc,8));
517 &mov ($__end,$acc); # end of key schedule
518
519 # prefetch Te4
520 &mov ($key,&DWP(0-128,$tbl));
521 &mov ($acc,&DWP(32-128,$tbl));
522 &mov ($key,&DWP(64-128,$tbl));
523 &mov ($acc,&DWP(96-128,$tbl));
524 &mov ($key,&DWP(128-128,$tbl));
525 &mov ($acc,&DWP(160-128,$tbl));
526 &mov ($key,&DWP(192-128,$tbl));
527 &mov ($acc,&DWP(224-128,$tbl));
528
529 &set_label("loop",16);
530
531 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
532 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
533 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
534 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
535 &mov ($tbl,0x80808080);
536 &enctransform(2);
537 &enctransform(3);
538 &enctransform(0);
539 &enctransform(1);
540 &mov ($key,$__key);
541 &mov ($tbl,$__tbl);
542 &add ($key,16); # advance rd_key
543 &xor ($s0,&DWP(0,$key));
544 &xor ($s1,&DWP(4,$key));
545 &xor ($s2,&DWP(8,$key));
546 &xor ($s3,&DWP(12,$key));
547
548 &cmp ($key,$__end);
549 &mov ($__key,$key);
550 &jb (&label("loop"));
551
552 &enccompact(0,$tbl,$s0,$s1,$s2,$s3);
553 &enccompact(1,$tbl,$s1,$s2,$s3,$s0);
554 &enccompact(2,$tbl,$s2,$s3,$s0,$s1);
555 &enccompact(3,$tbl,$s3,$s0,$s1,$s2);
556
557 &xor ($s0,&DWP(16,$key));
558 &xor ($s1,&DWP(20,$key));
559 &xor ($s2,&DWP(24,$key));
560 &xor ($s3,&DWP(28,$key));
561
562 &ret ();
563&function_end_B("_x86_AES_encrypt_compact");
564
565######################################################################
566# "Compact" SSE block function.
567######################################################################
568#
569# Performance is not actually extraordinary in comparison to pure
570# x86 code. In particular encrypt performance is virtually the same.
571# Decrypt performance on the other hand is 15-20% better on newer
Kenny Rootb8494592015-09-25 02:29:14 +0000572# ยต-archs [but we're thankful for *any* improvement here], and ~50%
Adam Langleyd9e397b2015-01-22 14:27:53 -0800573# better on PIII:-) And additionally on the pros side this code
574# eliminates redundant references to stack and thus relieves/
575# minimizes the pressure on the memory bus.
576#
577# MMX register layout lsb
578# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
579# | mm4 | mm0 |
580# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
Robert Sloana94fe052017-02-21 08:49:28 -0800581# | s3 | s2 | s1 | s0 |
Adam Langleyd9e397b2015-01-22 14:27:53 -0800582# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
583# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
584# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
585#
586# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
587# In this terms encryption and decryption "compact" permutation
588# matrices can be depicted as following:
589#
590# encryption lsb # decryption lsb
591# +----++----+----+----+----+ # +----++----+----+----+----+
592# | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 |
593# +----++----+----+----+----+ # +----++----+----+----+----+
594# | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 |
595# +----++----+----+----+----+ # +----++----+----+----+----+
596# | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 |
597# +----++----+----+----+----+ # +----++----+----+----+----+
598# | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 |
599# +----++----+----+----+----+ # +----++----+----+----+----+
600#
601######################################################################
602# Why not xmm registers? Short answer. It was actually tested and
603# was not any faster, but *contrary*, most notably on Intel CPUs.
604# Longer answer. Main advantage of using mm registers is that movd
605# latency is lower, especially on Intel P4. While arithmetic
606# instructions are twice as many, they can be scheduled every cycle
607# and not every second one when they are operating on xmm register,
608# so that "arithmetic throughput" remains virtually the same. And
609# finally the code can be executed even on elder SSE-only CPUs:-)
610
611sub sse_enccompact()
612{
613 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
614 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10
615 &movd ("eax","mm1"); # 5, 4, 1, 0
616 &movd ("ebx","mm5"); # 15,14,11,10
617 &mov ($__key,$key);
618
619 &movz ($acc,&LB("eax")); # 0
620 &movz ("edx",&HB("eax")); # 1
621 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
622 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
623 &movz ($key,&LB("ebx")); # 10
624 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
625 &shr ("eax",16); # 5, 4
626 &shl ("edx",8); # 1
627
628 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10
629 &movz ($key,&HB("ebx")); # 11
630 &shl ($acc,16); # 10
631 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
632 &or ("ecx",$acc); # 10
633 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11
634 &movz ($key,&HB("eax")); # 5
635 &shl ($acc,24); # 11
636 &shr ("ebx",16); # 15,14
637 &or ("edx",$acc); # 11
638
639 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5
640 &movz ($key,&HB("ebx")); # 15
641 &shl ($acc,8); # 5
642 &or ("ecx",$acc); # 5
643 &movz ($acc,&BP(-128,$tbl,$key,1)); # 15
644 &movz ($key,&LB("eax")); # 4
645 &shl ($acc,24); # 15
646 &or ("ecx",$acc); # 15
647
648 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4
649 &movz ($key,&LB("ebx")); # 14
650 &movd ("eax","mm2"); # 7, 6, 3, 2
651 &movd ("mm0","ecx"); # t[0] collected
652 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14
653 &movz ($key,&HB("eax")); # 3
654 &shl ("ecx",16); # 14
655 &movd ("ebx","mm6"); # 13,12, 9, 8
656 &or ("ecx",$acc); # 14
657
658 &movz ($acc,&BP(-128,$tbl,$key,1)); # 3
659 &movz ($key,&HB("ebx")); # 9
660 &shl ($acc,24); # 3
661 &or ("ecx",$acc); # 3
662 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9
663 &movz ($key,&LB("ebx")); # 8
664 &shl ($acc,8); # 9
665 &shr ("ebx",16); # 13,12
666 &or ("ecx",$acc); # 9
667
668 &movz ($acc,&BP(-128,$tbl,$key,1)); # 8
669 &movz ($key,&LB("eax")); # 2
670 &shr ("eax",16); # 7, 6
671 &movd ("mm1","ecx"); # t[1] collected
672 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2
673 &movz ($key,&HB("eax")); # 7
674 &shl ("ecx",16); # 2
675 &and ("eax",0xff); # 6
676 &or ("ecx",$acc); # 2
677
678 &punpckldq ("mm0","mm1"); # t[0,1] collected
679
680 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7
681 &movz ($key,&HB("ebx")); # 13
682 &shl ($acc,24); # 7
683 &and ("ebx",0xff); # 12
684 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6
685 &or ("ecx",$acc); # 7
686 &shl ("eax",16); # 6
687 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13
688 &or ("edx","eax"); # 6
689 &shl ($acc,8); # 13
690 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12
691 &or ("ecx",$acc); # 13
692 &or ("edx","ebx"); # 12
693 &mov ($key,$__key);
694 &movd ("mm4","ecx"); # t[2] collected
695 &movd ("mm5","edx"); # t[3] collected
696
697 &punpckldq ("mm4","mm5"); # t[2,3] collected
698}
699
700 if (!$x86only) {
701&function_begin_B("_sse_AES_encrypt_compact");
702 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
703 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
704
705 # note that caller is expected to allocate stack frame for me!
706 &mov ($acc,&DWP(240,$key)); # load key->rounds
707 &lea ($acc,&DWP(-2,$acc,$acc));
708 &lea ($acc,&DWP(0,$key,$acc,8));
709 &mov ($__end,$acc); # end of key schedule
710
711 &mov ($s0,0x1b1b1b1b); # magic constant
712 &mov (&DWP(8,"esp"),$s0);
713 &mov (&DWP(12,"esp"),$s0);
714
715 # prefetch Te4
716 &mov ($s0,&DWP(0-128,$tbl));
717 &mov ($s1,&DWP(32-128,$tbl));
718 &mov ($s2,&DWP(64-128,$tbl));
719 &mov ($s3,&DWP(96-128,$tbl));
720 &mov ($s0,&DWP(128-128,$tbl));
721 &mov ($s1,&DWP(160-128,$tbl));
722 &mov ($s2,&DWP(192-128,$tbl));
723 &mov ($s3,&DWP(224-128,$tbl));
724
725 &set_label("loop",16);
726 &sse_enccompact();
727 &add ($key,16);
728 &cmp ($key,$__end);
729 &ja (&label("out"));
730
731 &movq ("mm2",&QWP(8,"esp"));
732 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
733 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0
734 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4");
735 &pand ("mm3","mm2"); &pand ("mm7","mm2");
736 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16)
737 &paddb ("mm0","mm0"); &paddb ("mm4","mm4");
738 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2
739 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0
740 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2
741 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16)
742
743 &movq ("mm2","mm3"); &movq ("mm6","mm7");
744 &pslld ("mm3",8); &pslld ("mm7",8);
745 &psrld ("mm2",24); &psrld ("mm6",24);
746 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8
747 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24
748
749 &movq ("mm3","mm1"); &movq ("mm7","mm5");
750 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
751 &psrld ("mm1",8); &psrld ("mm5",8);
752 &mov ($s0,&DWP(0-128,$tbl));
753 &pslld ("mm3",24); &pslld ("mm7",24);
754 &mov ($s1,&DWP(64-128,$tbl));
755 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8
756 &mov ($s2,&DWP(128-128,$tbl));
757 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24
758 &mov ($s3,&DWP(192-128,$tbl));
759
760 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
761 &jmp (&label("loop"));
762
763 &set_label("out",16);
764 &pxor ("mm0",&QWP(0,$key));
765 &pxor ("mm4",&QWP(8,$key));
766
767 &ret ();
768&function_end_B("_sse_AES_encrypt_compact");
769 }
770
771######################################################################
772# Vanilla block function.
773######################################################################
774
775sub encstep()
776{ my ($i,$te,@s) = @_;
777 my $tmp = $key;
778 my $out = $i==3?$s[0]:$acc;
779
780 # lines marked with #%e?x[i] denote "reordered" instructions...
781 if ($i==3) { &mov ($key,$__key); }##%edx
782 else { &mov ($out,$s[0]);
783 &and ($out,0xFF); }
784 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
785 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
786 &mov ($out,&DWP(0,$te,$out,8));
787
788 if ($i==3) { $tmp=$s[1]; }##%eax
789 &movz ($tmp,&HB($s[1]));
790 &xor ($out,&DWP(3,$te,$tmp,8));
791
792 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
793 else { &mov ($tmp,$s[2]);
794 &shr ($tmp,16); }
795 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
796 &and ($tmp,0xFF);
797 &xor ($out,&DWP(2,$te,$tmp,8));
798
799 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
800 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
Robert Sloana94fe052017-02-21 08:49:28 -0800801 else { &mov ($tmp,$s[3]);
Adam Langleyd9e397b2015-01-22 14:27:53 -0800802 &shr ($tmp,24) }
803 &xor ($out,&DWP(1,$te,$tmp,8));
804 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
805 if ($i==3) { &mov ($s[3],$acc); }
806 &comment();
807}
808
809sub enclast()
810{ my ($i,$te,@s)=@_;
811 my $tmp = $key;
812 my $out = $i==3?$s[0]:$acc;
813
814 if ($i==3) { &mov ($key,$__key); }##%edx
815 else { &mov ($out,$s[0]); }
816 &and ($out,0xFF);
817 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
818 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
819 &mov ($out,&DWP(2,$te,$out,8));
820 &and ($out,0x000000ff);
821
822 if ($i==3) { $tmp=$s[1]; }##%eax
823 &movz ($tmp,&HB($s[1]));
824 &mov ($tmp,&DWP(0,$te,$tmp,8));
825 &and ($tmp,0x0000ff00);
826 &xor ($out,$tmp);
827
828 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
829 else { &mov ($tmp,$s[2]);
830 &shr ($tmp,16); }
831 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
832 &and ($tmp,0xFF);
833 &mov ($tmp,&DWP(0,$te,$tmp,8));
834 &and ($tmp,0x00ff0000);
835 &xor ($out,$tmp);
836
837 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
838 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
839 else { &mov ($tmp,$s[3]);
840 &shr ($tmp,24); }
841 &mov ($tmp,&DWP(2,$te,$tmp,8));
842 &and ($tmp,0xff000000);
843 &xor ($out,$tmp);
844 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
845 if ($i==3) { &mov ($s[3],$acc); }
846}
847
848&function_begin_B("_x86_AES_encrypt");
849 if ($vertical_spin) {
850 # I need high parts of volatile registers to be accessible...
851 &exch ($s1="edi",$key="ebx");
852 &mov ($s2="esi",$acc="ecx");
853 }
854
855 # note that caller is expected to allocate stack frame for me!
856 &mov ($__key,$key); # save key
857
858 &xor ($s0,&DWP(0,$key)); # xor with key
859 &xor ($s1,&DWP(4,$key));
860 &xor ($s2,&DWP(8,$key));
861 &xor ($s3,&DWP(12,$key));
862
863 &mov ($acc,&DWP(240,$key)); # load key->rounds
864
865 if ($small_footprint) {
866 &lea ($acc,&DWP(-2,$acc,$acc));
867 &lea ($acc,&DWP(0,$key,$acc,8));
868 &mov ($__end,$acc); # end of key schedule
869
870 &set_label("loop",16);
871 if ($vertical_spin) {
872 &encvert($tbl,$s0,$s1,$s2,$s3);
873 } else {
874 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
875 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
876 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
877 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
878 }
879 &add ($key,16); # advance rd_key
880 &xor ($s0,&DWP(0,$key));
881 &xor ($s1,&DWP(4,$key));
882 &xor ($s2,&DWP(8,$key));
883 &xor ($s3,&DWP(12,$key));
884 &cmp ($key,$__end);
885 &mov ($__key,$key);
886 &jb (&label("loop"));
887 }
888 else {
889 &cmp ($acc,10);
890 &jle (&label("10rounds"));
891 &cmp ($acc,12);
892 &jle (&label("12rounds"));
893
894 &set_label("14rounds",4);
895 for ($i=1;$i<3;$i++) {
896 if ($vertical_spin) {
897 &encvert($tbl,$s0,$s1,$s2,$s3);
898 } else {
899 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
900 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
901 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
902 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
903 }
904 &xor ($s0,&DWP(16*$i+0,$key));
905 &xor ($s1,&DWP(16*$i+4,$key));
906 &xor ($s2,&DWP(16*$i+8,$key));
907 &xor ($s3,&DWP(16*$i+12,$key));
908 }
909 &add ($key,32);
910 &mov ($__key,$key); # advance rd_key
911 &set_label("12rounds",4);
912 for ($i=1;$i<3;$i++) {
913 if ($vertical_spin) {
914 &encvert($tbl,$s0,$s1,$s2,$s3);
915 } else {
916 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
917 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
918 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
919 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
920 }
921 &xor ($s0,&DWP(16*$i+0,$key));
922 &xor ($s1,&DWP(16*$i+4,$key));
923 &xor ($s2,&DWP(16*$i+8,$key));
924 &xor ($s3,&DWP(16*$i+12,$key));
925 }
926 &add ($key,32);
927 &mov ($__key,$key); # advance rd_key
928 &set_label("10rounds",4);
929 for ($i=1;$i<10;$i++) {
930 if ($vertical_spin) {
931 &encvert($tbl,$s0,$s1,$s2,$s3);
932 } else {
933 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
934 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
935 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
936 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
937 }
938 &xor ($s0,&DWP(16*$i+0,$key));
939 &xor ($s1,&DWP(16*$i+4,$key));
940 &xor ($s2,&DWP(16*$i+8,$key));
941 &xor ($s3,&DWP(16*$i+12,$key));
942 }
943 }
944
945 if ($vertical_spin) {
946 # "reincarnate" some registers for "horizontal" spin...
947 &mov ($s1="ebx",$key="edi");
948 &mov ($s2="ecx",$acc="esi");
949 }
950 &enclast(0,$tbl,$s0,$s1,$s2,$s3);
951 &enclast(1,$tbl,$s1,$s2,$s3,$s0);
952 &enclast(2,$tbl,$s2,$s3,$s0,$s1);
953 &enclast(3,$tbl,$s3,$s0,$s1,$s2);
954
955 &add ($key,$small_footprint?16:160);
956 &xor ($s0,&DWP(0,$key));
957 &xor ($s1,&DWP(4,$key));
958 &xor ($s2,&DWP(8,$key));
959 &xor ($s3,&DWP(12,$key));
960
961 &ret ();
962
963&set_label("AES_Te",64); # Yes! I keep it in the code segment!
964 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
965 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
966 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
967 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
968 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
969 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
970 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
971 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
972 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
973 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
974 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
975 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
976 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
977 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
978 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
979 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
980 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
981 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
982 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
983 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
984 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
985 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
986 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
987 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
988 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
989 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
990 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
991 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
992 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
993 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
994 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
995 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
996 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
997 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
998 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
999 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
1000 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
1001 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
1002 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
1003 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
1004 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
1005 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
1006 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
1007 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
1008 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
1009 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1010 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1011 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1012 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1013 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1014 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1015 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1016 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1017 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1018 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1019 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1020 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1021 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1022 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1023 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1024 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1025 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1026 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1027 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
1028
1029#Te4 # four copies of Te4 to choose from to avoid L1 aliasing
1030 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1031 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1032 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1033 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1034 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1035 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1036 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1037 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1038 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1039 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1040 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1041 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1042 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1043 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1044 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1045 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1046 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1047 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1048 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1049 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1050 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1051 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1052 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1053 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1054 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1055 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1056 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1057 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1058 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1059 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1060 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1061 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1062
1063 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1064 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1065 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1066 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1067 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1068 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1069 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1070 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1071 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1072 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1073 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1074 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1075 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1076 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1077 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1078 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1079 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1080 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1081 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1082 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1083 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1084 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1085 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1086 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1087 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1088 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1089 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1090 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1091 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1092 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1093 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1094 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1095
1096 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1097 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1098 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1099 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1100 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1101 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1102 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1103 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1104 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1105 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1106 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1107 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1108 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1109 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1110 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1111 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1112 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1113 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1114 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1115 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1116 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1117 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1118 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1119 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1120 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1121 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1122 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1123 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1124 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1125 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1126 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1127 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1128
1129 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1130 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1131 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1132 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1133 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1134 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1135 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1136 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1137 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1138 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1139 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1140 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1141 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1142 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1143 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1144 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1145 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1146 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1147 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1148 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1149 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1150 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1151 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1152 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1153 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1154 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1155 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1156 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1157 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1158 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1159 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1160 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1161#rcon:
1162 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1163 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1164 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1165 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1166&function_end_B("_x86_AES_encrypt");
1167
1168# void asm_AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1169&function_begin("asm_AES_encrypt");
1170 &mov ($acc,&wparam(0)); # load inp
1171 &mov ($key,&wparam(2)); # load key
1172
1173 &mov ($s0,"esp");
1174 &sub ("esp",36);
1175 &and ("esp",-64); # align to cache-line
1176
1177 # place stack frame just "above" the key schedule
1178 &lea ($s1,&DWP(-64-63,$key));
1179 &sub ($s1,"esp");
1180 &neg ($s1);
1181 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1182 &sub ("esp",$s1);
1183 &add ("esp",4); # 4 is reserved for caller's return address
1184 &mov ($_esp,$s0); # save stack pointer
1185
1186 &call (&label("pic_point")); # make it PIC!
1187 &set_label("pic_point");
1188 &blindpop($tbl);
1189 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
1190 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
1191
1192 # pick Te4 copy which can't "overlap" with stack frame or key schedule
1193 &lea ($s1,&DWP(768-4,"esp"));
1194 &sub ($s1,$tbl);
1195 &and ($s1,0x300);
1196 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1197
1198 if (!$x86only) {
1199 &bt (&DWP(0,$s0),25); # check for SSE bit
1200 &jnc (&label("x86"));
1201
1202 &movq ("mm0",&QWP(0,$acc));
1203 &movq ("mm4",&QWP(8,$acc));
1204 &call ("_sse_AES_encrypt_compact");
1205 &mov ("esp",$_esp); # restore stack pointer
1206 &mov ($acc,&wparam(1)); # load out
1207 &movq (&QWP(0,$acc),"mm0"); # write output data
1208 &movq (&QWP(8,$acc),"mm4");
1209 &emms ();
1210 &function_end_A();
1211 }
1212 &set_label("x86",16);
1213 &mov ($_tbl,$tbl);
1214 &mov ($s0,&DWP(0,$acc)); # load input data
1215 &mov ($s1,&DWP(4,$acc));
1216 &mov ($s2,&DWP(8,$acc));
1217 &mov ($s3,&DWP(12,$acc));
1218 &call ("_x86_AES_encrypt_compact");
1219 &mov ("esp",$_esp); # restore stack pointer
1220 &mov ($acc,&wparam(1)); # load out
1221 &mov (&DWP(0,$acc),$s0); # write output data
1222 &mov (&DWP(4,$acc),$s1);
1223 &mov (&DWP(8,$acc),$s2);
1224 &mov (&DWP(12,$acc),$s3);
1225&function_end("asm_AES_encrypt");
1226
1227#--------------------------------------------------------------------#
1228
1229######################################################################
1230# "Compact" block function
1231######################################################################
1232
1233sub deccompact()
1234{ my $Fn = \&mov;
1235 while ($#_>5) { pop(@_); $Fn=sub{}; }
1236 my ($i,$td,@s)=@_;
1237 my $tmp = $key;
1238 my $out = $i==3?$s[0]:$acc;
1239
1240 # $Fn is used in first compact round and its purpose is to
1241 # void restoration of some values from stack, so that after
1242 # 4xdeccompact with extra argument $key, $s0 and $s1 values
1243 # are left there...
1244 if($i==3) { &$Fn ($key,$__key); }
1245 else { &mov ($out,$s[0]); }
1246 &and ($out,0xFF);
1247 &movz ($out,&BP(-128,$td,$out,1));
1248
1249 if ($i==3) { $tmp=$s[1]; }
1250 &movz ($tmp,&HB($s[1]));
1251 &movz ($tmp,&BP(-128,$td,$tmp,1));
1252 &shl ($tmp,8);
1253 &xor ($out,$tmp);
1254
1255 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1256 else { mov ($tmp,$s[2]); }
1257 &shr ($tmp,16);
1258 &and ($tmp,0xFF);
1259 &movz ($tmp,&BP(-128,$td,$tmp,1));
1260 &shl ($tmp,16);
1261 &xor ($out,$tmp);
1262
1263 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); }
1264 else { &mov ($tmp,$s[3]); }
1265 &shr ($tmp,24);
1266 &movz ($tmp,&BP(-128,$td,$tmp,1));
1267 &shl ($tmp,24);
1268 &xor ($out,$tmp);
1269 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1270 if ($i==3) { &$Fn ($s[3],$__s0); }
1271}
1272
1273# must be called with 2,3,0,1 as argument sequence!!!
1274sub dectransform()
1275{ my @s = ($s0,$s1,$s2,$s3);
1276 my $i = shift;
1277 my $tmp = $key;
1278 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1279 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1280 my $tp8 = $tbl;
1281
1282 &mov ($tmp,0x80808080);
1283 &and ($tmp,$s[$i]);
1284 &mov ($acc,$tmp);
1285 &shr ($tmp,7);
1286 &lea ($tp2,&DWP(0,$s[$i],$s[$i]));
1287 &sub ($acc,$tmp);
1288 &and ($tp2,0xfefefefe);
1289 &and ($acc,0x1b1b1b1b);
1290 &xor ($tp2,$acc);
1291 &mov ($tmp,0x80808080);
1292
1293 &and ($tmp,$tp2);
1294 &mov ($acc,$tmp);
1295 &shr ($tmp,7);
1296 &lea ($tp4,&DWP(0,$tp2,$tp2));
1297 &sub ($acc,$tmp);
1298 &and ($tp4,0xfefefefe);
1299 &and ($acc,0x1b1b1b1b);
1300 &xor ($tp2,$s[$i]); # tp2^tp1
1301 &xor ($tp4,$acc);
1302 &mov ($tmp,0x80808080);
1303
1304 &and ($tmp,$tp4);
1305 &mov ($acc,$tmp);
1306 &shr ($tmp,7);
1307 &lea ($tp8,&DWP(0,$tp4,$tp4));
1308 &sub ($acc,$tmp);
1309 &and ($tp8,0xfefefefe);
1310 &and ($acc,0x1b1b1b1b);
1311 &xor ($tp4,$s[$i]); # tp4^tp1
1312 &rotl ($s[$i],8); # = ROTATE(tp1,8)
1313 &xor ($tp8,$acc);
1314
1315 &xor ($s[$i],$tp2);
1316 &xor ($tp2,$tp8);
1317 &xor ($s[$i],$tp4);
1318 &xor ($tp4,$tp8);
1319 &rotl ($tp2,24);
1320 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
1321 &rotl ($tp4,16);
1322 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
1323 &rotl ($tp8,8);
1324 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
1325 &mov ($s[0],$__s0) if($i==2); #prefetch $s0
1326 &mov ($s[1],$__s1) if($i==3); #prefetch $s1
1327 &mov ($s[2],$__s2) if($i==1);
1328 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8)
1329
1330 &mov ($s[3],$__s3) if($i==1);
1331 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2);
1332}
1333
1334&function_begin_B("_x86_AES_decrypt_compact");
1335 # note that caller is expected to allocate stack frame for me!
1336 &mov ($__key,$key); # save key
1337
1338 &xor ($s0,&DWP(0,$key)); # xor with key
1339 &xor ($s1,&DWP(4,$key));
1340 &xor ($s2,&DWP(8,$key));
1341 &xor ($s3,&DWP(12,$key));
1342
1343 &mov ($acc,&DWP(240,$key)); # load key->rounds
1344
1345 &lea ($acc,&DWP(-2,$acc,$acc));
1346 &lea ($acc,&DWP(0,$key,$acc,8));
1347 &mov ($__end,$acc); # end of key schedule
1348
1349 # prefetch Td4
1350 &mov ($key,&DWP(0-128,$tbl));
1351 &mov ($acc,&DWP(32-128,$tbl));
1352 &mov ($key,&DWP(64-128,$tbl));
1353 &mov ($acc,&DWP(96-128,$tbl));
1354 &mov ($key,&DWP(128-128,$tbl));
1355 &mov ($acc,&DWP(160-128,$tbl));
1356 &mov ($key,&DWP(192-128,$tbl));
1357 &mov ($acc,&DWP(224-128,$tbl));
1358
1359 &set_label("loop",16);
1360
1361 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1362 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1363 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1364 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1365 &dectransform(2);
1366 &dectransform(3);
1367 &dectransform(0);
1368 &dectransform(1);
1369 &mov ($key,$__key);
1370 &mov ($tbl,$__tbl);
1371 &add ($key,16); # advance rd_key
1372 &xor ($s0,&DWP(0,$key));
1373 &xor ($s1,&DWP(4,$key));
1374 &xor ($s2,&DWP(8,$key));
1375 &xor ($s3,&DWP(12,$key));
1376
1377 &cmp ($key,$__end);
1378 &mov ($__key,$key);
1379 &jb (&label("loop"));
1380
1381 &deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1382 &deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1383 &deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1384 &deccompact(3,$tbl,$s3,$s2,$s1,$s0);
1385
1386 &xor ($s0,&DWP(16,$key));
1387 &xor ($s1,&DWP(20,$key));
1388 &xor ($s2,&DWP(24,$key));
1389 &xor ($s3,&DWP(28,$key));
1390
1391 &ret ();
1392&function_end_B("_x86_AES_decrypt_compact");
1393
1394######################################################################
1395# "Compact" SSE block function.
1396######################################################################
1397
1398sub sse_deccompact()
1399{
1400 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0
1401 &pshufw ("mm5","mm4",0x09); # 13,12,11,10
1402 &movd ("eax","mm1"); # 7, 6, 1, 0
1403 &movd ("ebx","mm5"); # 13,12,11,10
1404 &mov ($__key,$key);
1405
1406 &movz ($acc,&LB("eax")); # 0
1407 &movz ("edx",&HB("eax")); # 1
1408 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4
1409 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
1410 &movz ($key,&LB("ebx")); # 10
1411 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
1412 &shr ("eax",16); # 7, 6
1413 &shl ("edx",8); # 1
1414
1415 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10
1416 &movz ($key,&HB("ebx")); # 11
1417 &shl ($acc,16); # 10
1418 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14
1419 &or ("ecx",$acc); # 10
1420 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11
1421 &movz ($key,&HB("eax")); # 7
1422 &shl ($acc,24); # 11
1423 &shr ("ebx",16); # 13,12
1424 &or ("edx",$acc); # 11
1425
1426 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7
1427 &movz ($key,&HB("ebx")); # 13
1428 &shl ($acc,24); # 7
1429 &or ("ecx",$acc); # 7
1430 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13
1431 &movz ($key,&LB("eax")); # 6
1432 &shl ($acc,8); # 13
1433 &movd ("eax","mm2"); # 3, 2, 5, 4
1434 &or ("ecx",$acc); # 13
1435
1436 &movz ($acc,&BP(-128,$tbl,$key,1)); # 6
1437 &movz ($key,&LB("ebx")); # 12
1438 &shl ($acc,16); # 6
1439 &movd ("ebx","mm6"); # 9, 8,15,14
1440 &movd ("mm0","ecx"); # t[0] collected
1441 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12
1442 &movz ($key,&LB("eax")); # 4
1443 &or ("ecx",$acc); # 12
1444
1445 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4
1446 &movz ($key,&LB("ebx")); # 14
1447 &or ("edx",$acc); # 4
1448 &movz ($acc,&BP(-128,$tbl,$key,1)); # 14
1449 &movz ($key,&HB("eax")); # 5
1450 &shl ($acc,16); # 14
1451 &shr ("eax",16); # 3, 2
1452 &or ("edx",$acc); # 14
1453
1454 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5
1455 &movz ($key,&HB("ebx")); # 15
1456 &shr ("ebx",16); # 9, 8
1457 &shl ($acc,8); # 5
1458 &movd ("mm1","edx"); # t[1] collected
1459 &movz ("edx",&BP(-128,$tbl,$key,1)); # 15
1460 &movz ($key,&HB("ebx")); # 9
1461 &shl ("edx",24); # 15
1462 &and ("ebx",0xff); # 8
1463 &or ("edx",$acc); # 15
1464
1465 &punpckldq ("mm0","mm1"); # t[0,1] collected
1466
1467 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9
1468 &movz ($key,&LB("eax")); # 2
1469 &shl ($acc,8); # 9
1470 &movz ("eax",&HB("eax")); # 3
1471 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8
1472 &or ("ecx",$acc); # 9
1473 &movz ($acc,&BP(-128,$tbl,$key,1)); # 2
1474 &or ("edx","ebx"); # 8
1475 &shl ($acc,16); # 2
1476 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3
1477 &or ("edx",$acc); # 2
1478 &shl ("eax",24); # 3
1479 &or ("ecx","eax"); # 3
1480 &mov ($key,$__key);
1481 &movd ("mm4","edx"); # t[2] collected
1482 &movd ("mm5","ecx"); # t[3] collected
1483
1484 &punpckldq ("mm4","mm5"); # t[2,3] collected
1485}
1486
1487 if (!$x86only) {
1488&function_begin_B("_sse_AES_decrypt_compact");
1489 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
1490 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
1491
1492 # note that caller is expected to allocate stack frame for me!
1493 &mov ($acc,&DWP(240,$key)); # load key->rounds
1494 &lea ($acc,&DWP(-2,$acc,$acc));
1495 &lea ($acc,&DWP(0,$key,$acc,8));
1496 &mov ($__end,$acc); # end of key schedule
1497
1498 &mov ($s0,0x1b1b1b1b); # magic constant
1499 &mov (&DWP(8,"esp"),$s0);
1500 &mov (&DWP(12,"esp"),$s0);
1501
1502 # prefetch Td4
1503 &mov ($s0,&DWP(0-128,$tbl));
1504 &mov ($s1,&DWP(32-128,$tbl));
1505 &mov ($s2,&DWP(64-128,$tbl));
1506 &mov ($s3,&DWP(96-128,$tbl));
1507 &mov ($s0,&DWP(128-128,$tbl));
1508 &mov ($s1,&DWP(160-128,$tbl));
1509 &mov ($s2,&DWP(192-128,$tbl));
1510 &mov ($s3,&DWP(224-128,$tbl));
1511
1512 &set_label("loop",16);
1513 &sse_deccompact();
1514 &add ($key,16);
1515 &cmp ($key,$__end);
1516 &ja (&label("out"));
1517
1518 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1519 &movq ("mm3","mm0"); &movq ("mm7","mm4");
1520 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1);
1521 &movq ("mm1","mm0"); &movq ("mm5","mm4");
1522 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16)
1523 &pslld ("mm2",8); &pslld ("mm6",8);
1524 &psrld ("mm3",8); &psrld ("mm7",8);
1525 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8
1526 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8
1527 &pslld ("mm2",16); &pslld ("mm6",16);
1528 &psrld ("mm3",16); &psrld ("mm7",16);
1529 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24
1530 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24
1531
1532 &movq ("mm3",&QWP(8,"esp"));
1533 &pxor ("mm2","mm2"); &pxor ("mm6","mm6");
1534 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5");
1535 &pand ("mm2","mm3"); &pand ("mm6","mm3");
1536 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1537 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2
1538 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1539 &movq ("mm2","mm1"); &movq ("mm6","mm5");
1540 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2
1541 &pslld ("mm3",24); &pslld ("mm7",24);
1542 &psrld ("mm2",8); &psrld ("mm6",8);
1543 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24
1544 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8
1545
1546 &movq ("mm2",&QWP(8,"esp"));
1547 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1548 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1549 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1550 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1551 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4
1552 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1);
1553 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4
Robert Sloana94fe052017-02-21 08:49:28 -08001554 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16)
Adam Langleyd9e397b2015-01-22 14:27:53 -08001555
1556 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1557 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1558 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1559 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1560 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8
1561 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
1562 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1563 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1);
1564 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16)
1565 &pslld ("mm1",8); &pslld ("mm5",8);
1566 &psrld ("mm3",8); &psrld ("mm7",8);
1567 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
1568 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8
1569 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8
1570 &mov ($s0,&DWP(0-128,$tbl));
1571 &pslld ("mm1",16); &pslld ("mm5",16);
1572 &mov ($s1,&DWP(64-128,$tbl));
1573 &psrld ("mm3",16); &psrld ("mm7",16);
1574 &mov ($s2,&DWP(128-128,$tbl));
1575 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24
1576 &mov ($s3,&DWP(192-128,$tbl));
1577 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24
1578
1579 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
1580 &jmp (&label("loop"));
1581
1582 &set_label("out",16);
1583 &pxor ("mm0",&QWP(0,$key));
1584 &pxor ("mm4",&QWP(8,$key));
1585
1586 &ret ();
1587&function_end_B("_sse_AES_decrypt_compact");
1588 }
1589
1590######################################################################
1591# Vanilla block function.
1592######################################################################
1593
1594sub decstep()
1595{ my ($i,$td,@s) = @_;
1596 my $tmp = $key;
1597 my $out = $i==3?$s[0]:$acc;
1598
1599 # no instructions are reordered, as performance appears
1600 # optimal... or rather that all attempts to reorder didn't
1601 # result in better performance [which by the way is not a
1602 # bit lower than ecryption].
1603 if($i==3) { &mov ($key,$__key); }
1604 else { &mov ($out,$s[0]); }
1605 &and ($out,0xFF);
1606 &mov ($out,&DWP(0,$td,$out,8));
1607
1608 if ($i==3) { $tmp=$s[1]; }
1609 &movz ($tmp,&HB($s[1]));
1610 &xor ($out,&DWP(3,$td,$tmp,8));
1611
1612 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1613 else { &mov ($tmp,$s[2]); }
1614 &shr ($tmp,16);
1615 &and ($tmp,0xFF);
1616 &xor ($out,&DWP(2,$td,$tmp,8));
1617
1618 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1619 else { &mov ($tmp,$s[3]); }
1620 &shr ($tmp,24);
1621 &xor ($out,&DWP(1,$td,$tmp,8));
1622 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1623 if ($i==3) { &mov ($s[3],$__s0); }
1624 &comment();
1625}
1626
1627sub declast()
1628{ my ($i,$td,@s)=@_;
1629 my $tmp = $key;
1630 my $out = $i==3?$s[0]:$acc;
1631
1632 if($i==0) { &lea ($td,&DWP(2048+128,$td));
1633 &mov ($tmp,&DWP(0-128,$td));
1634 &mov ($acc,&DWP(32-128,$td));
1635 &mov ($tmp,&DWP(64-128,$td));
1636 &mov ($acc,&DWP(96-128,$td));
1637 &mov ($tmp,&DWP(128-128,$td));
1638 &mov ($acc,&DWP(160-128,$td));
1639 &mov ($tmp,&DWP(192-128,$td));
1640 &mov ($acc,&DWP(224-128,$td));
1641 &lea ($td,&DWP(-128,$td)); }
1642 if($i==3) { &mov ($key,$__key); }
1643 else { &mov ($out,$s[0]); }
1644 &and ($out,0xFF);
1645 &movz ($out,&BP(0,$td,$out,1));
1646
1647 if ($i==3) { $tmp=$s[1]; }
1648 &movz ($tmp,&HB($s[1]));
1649 &movz ($tmp,&BP(0,$td,$tmp,1));
1650 &shl ($tmp,8);
1651 &xor ($out,$tmp);
1652
1653 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1654 else { mov ($tmp,$s[2]); }
1655 &shr ($tmp,16);
1656 &and ($tmp,0xFF);
1657 &movz ($tmp,&BP(0,$td,$tmp,1));
1658 &shl ($tmp,16);
1659 &xor ($out,$tmp);
1660
1661 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1662 else { &mov ($tmp,$s[3]); }
1663 &shr ($tmp,24);
1664 &movz ($tmp,&BP(0,$td,$tmp,1));
1665 &shl ($tmp,24);
1666 &xor ($out,$tmp);
1667 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1668 if ($i==3) { &mov ($s[3],$__s0);
1669 &lea ($td,&DWP(-2048,$td)); }
1670}
1671
1672&function_begin_B("_x86_AES_decrypt");
1673 # note that caller is expected to allocate stack frame for me!
1674 &mov ($__key,$key); # save key
1675
1676 &xor ($s0,&DWP(0,$key)); # xor with key
1677 &xor ($s1,&DWP(4,$key));
1678 &xor ($s2,&DWP(8,$key));
1679 &xor ($s3,&DWP(12,$key));
1680
1681 &mov ($acc,&DWP(240,$key)); # load key->rounds
1682
1683 if ($small_footprint) {
1684 &lea ($acc,&DWP(-2,$acc,$acc));
1685 &lea ($acc,&DWP(0,$key,$acc,8));
1686 &mov ($__end,$acc); # end of key schedule
1687 &set_label("loop",16);
1688 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1689 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1690 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1691 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1692 &add ($key,16); # advance rd_key
1693 &xor ($s0,&DWP(0,$key));
1694 &xor ($s1,&DWP(4,$key));
1695 &xor ($s2,&DWP(8,$key));
1696 &xor ($s3,&DWP(12,$key));
1697 &cmp ($key,$__end);
1698 &mov ($__key,$key);
1699 &jb (&label("loop"));
1700 }
1701 else {
1702 &cmp ($acc,10);
1703 &jle (&label("10rounds"));
1704 &cmp ($acc,12);
1705 &jle (&label("12rounds"));
1706
1707 &set_label("14rounds",4);
1708 for ($i=1;$i<3;$i++) {
1709 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1710 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1711 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1712 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1713 &xor ($s0,&DWP(16*$i+0,$key));
1714 &xor ($s1,&DWP(16*$i+4,$key));
1715 &xor ($s2,&DWP(16*$i+8,$key));
1716 &xor ($s3,&DWP(16*$i+12,$key));
1717 }
1718 &add ($key,32);
1719 &mov ($__key,$key); # advance rd_key
1720 &set_label("12rounds",4);
1721 for ($i=1;$i<3;$i++) {
1722 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1723 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1724 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1725 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1726 &xor ($s0,&DWP(16*$i+0,$key));
1727 &xor ($s1,&DWP(16*$i+4,$key));
1728 &xor ($s2,&DWP(16*$i+8,$key));
1729 &xor ($s3,&DWP(16*$i+12,$key));
1730 }
1731 &add ($key,32);
1732 &mov ($__key,$key); # advance rd_key
1733 &set_label("10rounds",4);
1734 for ($i=1;$i<10;$i++) {
1735 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1736 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1737 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1738 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1739 &xor ($s0,&DWP(16*$i+0,$key));
1740 &xor ($s1,&DWP(16*$i+4,$key));
1741 &xor ($s2,&DWP(16*$i+8,$key));
1742 &xor ($s3,&DWP(16*$i+12,$key));
1743 }
1744 }
1745
1746 &declast(0,$tbl,$s0,$s3,$s2,$s1);
1747 &declast(1,$tbl,$s1,$s0,$s3,$s2);
1748 &declast(2,$tbl,$s2,$s1,$s0,$s3);
1749 &declast(3,$tbl,$s3,$s2,$s1,$s0);
1750
1751 &add ($key,$small_footprint?16:160);
1752 &xor ($s0,&DWP(0,$key));
1753 &xor ($s1,&DWP(4,$key));
1754 &xor ($s2,&DWP(8,$key));
1755 &xor ($s3,&DWP(12,$key));
1756
1757 &ret ();
1758
1759&set_label("AES_Td",64); # Yes! I keep it in the code segment!
1760 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1761 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1762 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1763 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1764 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1765 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1766 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1767 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1768 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1769 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1770 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1771 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1772 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1773 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1774 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1775 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1776 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1777 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1778 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1779 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1780 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1781 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1782 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1783 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1784 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1785 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1786 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1787 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1788 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
1789 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1790 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1791 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1792 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1793 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1794 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1795 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1796 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1797 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1798 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1799 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1800 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1801 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1802 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1803 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1804 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1805 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1806 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1807 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1808 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1809 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1810 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1811 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1812 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1813 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1814 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1815 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1816 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1817 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1818 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1819 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1820 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1821 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1822 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1823 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
1824
1825#Td4: # four copies of Td4 to choose from to avoid L1 aliasing
1826 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1827 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1828 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1829 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1830 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1831 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1832 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1833 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1834 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1835 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1836 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1837 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1838 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1839 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1840 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1841 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1842 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1843 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1844 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1845 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1846 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1847 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1848 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1849 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1850 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1851 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1852 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1853 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1854 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1855 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1856 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1857 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1858
1859 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1860 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1861 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1862 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1863 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1864 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1865 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1866 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1867 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1868 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1869 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1870 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1871 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1872 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1873 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1874 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1875 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1876 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1877 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1878 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1879 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1880 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1881 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1882 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1883 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1884 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1885 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1886 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1887 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1888 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1889 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1890 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1891
1892 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1893 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1894 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1895 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1896 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1897 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1898 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1899 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1900 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1901 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1902 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1903 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1904 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1905 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1906 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1907 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1908 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1909 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1910 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1911 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1912 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1913 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1914 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1915 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1916 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1917 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1918 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1919 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1920 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1921 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1922 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1923 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1924
1925 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1926 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1927 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1928 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1929 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1930 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1931 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1932 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1933 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1934 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1935 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1936 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1937 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1938 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1939 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1940 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1941 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1942 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1943 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1944 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1945 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1946 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1947 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1948 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1949 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1950 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1951 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1952 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1953 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1954 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1955 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1956 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1957&function_end_B("_x86_AES_decrypt");
1958
1959# void asm_AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1960&function_begin("asm_AES_decrypt");
1961 &mov ($acc,&wparam(0)); # load inp
1962 &mov ($key,&wparam(2)); # load key
1963
1964 &mov ($s0,"esp");
1965 &sub ("esp",36);
1966 &and ("esp",-64); # align to cache-line
1967
1968 # place stack frame just "above" the key schedule
1969 &lea ($s1,&DWP(-64-63,$key));
1970 &sub ($s1,"esp");
1971 &neg ($s1);
1972 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1973 &sub ("esp",$s1);
1974 &add ("esp",4); # 4 is reserved for caller's return address
1975 &mov ($_esp,$s0); # save stack pointer
1976
1977 &call (&label("pic_point")); # make it PIC!
1978 &set_label("pic_point");
1979 &blindpop($tbl);
1980 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
1981 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
1982
1983 # pick Td4 copy which can't "overlap" with stack frame or key schedule
1984 &lea ($s1,&DWP(768-4,"esp"));
1985 &sub ($s1,$tbl);
1986 &and ($s1,0x300);
1987 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1988
1989 if (!$x86only) {
1990 &bt (&DWP(0,$s0),25); # check for SSE bit
1991 &jnc (&label("x86"));
1992
1993 &movq ("mm0",&QWP(0,$acc));
1994 &movq ("mm4",&QWP(8,$acc));
1995 &call ("_sse_AES_decrypt_compact");
1996 &mov ("esp",$_esp); # restore stack pointer
1997 &mov ($acc,&wparam(1)); # load out
1998 &movq (&QWP(0,$acc),"mm0"); # write output data
1999 &movq (&QWP(8,$acc),"mm4");
2000 &emms ();
2001 &function_end_A();
2002 }
2003 &set_label("x86",16);
2004 &mov ($_tbl,$tbl);
2005 &mov ($s0,&DWP(0,$acc)); # load input data
2006 &mov ($s1,&DWP(4,$acc));
2007 &mov ($s2,&DWP(8,$acc));
2008 &mov ($s3,&DWP(12,$acc));
2009 &call ("_x86_AES_decrypt_compact");
2010 &mov ("esp",$_esp); # restore stack pointer
2011 &mov ($acc,&wparam(1)); # load out
2012 &mov (&DWP(0,$acc),$s0); # write output data
2013 &mov (&DWP(4,$acc),$s1);
2014 &mov (&DWP(8,$acc),$s2);
2015 &mov (&DWP(12,$acc),$s3);
2016&function_end("asm_AES_decrypt");
2017
2018# void asm_AES_cbc_encrypt (const void char *inp, unsigned char *out,
2019# size_t length, const AES_KEY *key,
2020# unsigned char *ivp,const int enc);
2021{
2022# stack frame layout
2023# -4(%esp) # return address 0(%esp)
Robert Sloana94fe052017-02-21 08:49:28 -08002024# 0(%esp) # s0 backing store 4(%esp)
Adam Langleyd9e397b2015-01-22 14:27:53 -08002025# 4(%esp) # s1 backing store 8(%esp)
2026# 8(%esp) # s2 backing store 12(%esp)
2027# 12(%esp) # s3 backing store 16(%esp)
2028# 16(%esp) # key backup 20(%esp)
2029# 20(%esp) # end of key schedule 24(%esp)
2030# 24(%esp) # %ebp backup 28(%esp)
2031# 28(%esp) # %esp backup
2032my $_inp=&DWP(32,"esp"); # copy of wparam(0)
2033my $_out=&DWP(36,"esp"); # copy of wparam(1)
2034my $_len=&DWP(40,"esp"); # copy of wparam(2)
2035my $_key=&DWP(44,"esp"); # copy of wparam(3)
2036my $_ivp=&DWP(48,"esp"); # copy of wparam(4)
2037my $_tmp=&DWP(52,"esp"); # volatile variable
2038#
2039my $ivec=&DWP(60,"esp"); # ivec[16]
2040my $aes_key=&DWP(76,"esp"); # copy of aes_key
2041my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds
2042
2043&function_begin("asm_AES_cbc_encrypt");
2044 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len
2045 &cmp ($s2,0);
2046 &je (&label("drop_out"));
2047
2048 &call (&label("pic_point")); # make it PIC!
2049 &set_label("pic_point");
2050 &blindpop($tbl);
2051 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
2052
2053 &cmp (&wparam(5),0);
2054 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2055 &jne (&label("picked_te"));
2056 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2057 &set_label("picked_te");
2058
2059 # one can argue if this is required
2060 &pushf ();
2061 &cld ();
2062
2063 &cmp ($s2,$speed_limit);
2064 &jb (&label("slow_way"));
2065 &test ($s2,15);
2066 &jnz (&label("slow_way"));
2067 if (!$x86only) {
2068 &bt (&DWP(0,$s0),28); # check for hyper-threading bit
2069 &jc (&label("slow_way"));
2070 }
2071 # pre-allocate aligned stack frame...
2072 &lea ($acc,&DWP(-80-244,"esp"));
2073 &and ($acc,-64);
2074
2075 # ... and make sure it doesn't alias with $tbl modulo 4096
2076 &mov ($s0,$tbl);
2077 &lea ($s1,&DWP(2048+256,$tbl));
2078 &mov ($s3,$acc);
2079 &and ($s0,0xfff); # s = %ebp&0xfff
2080 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff
2081 &and ($s3,0xfff); # p = %esp&0xfff
2082
2083 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e);
2084 &jb (&label("tbl_break_out"));
2085 &sub ($s3,$s1);
2086 &sub ($acc,$s3);
2087 &jmp (&label("tbl_ok"));
2088 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz;
2089 &sub ($s3,$s0);
2090 &and ($s3,0xfff);
2091 &add ($s3,384);
2092 &sub ($acc,$s3);
2093 &set_label("tbl_ok",4);
2094
2095 &lea ($s3,&wparam(0)); # obtain pointer to parameter block
2096 &exch ("esp",$acc); # allocate stack frame
2097 &add ("esp",4); # reserve for return address!
2098 &mov ($_tbl,$tbl); # save %ebp
2099 &mov ($_esp,$acc); # save %esp
2100
2101 &mov ($s0,&DWP(0,$s3)); # load inp
2102 &mov ($s1,&DWP(4,$s3)); # load out
2103 #&mov ($s2,&DWP(8,$s3)); # load len
2104 &mov ($key,&DWP(12,$s3)); # load key
2105 &mov ($acc,&DWP(16,$s3)); # load ivp
2106 &mov ($s3,&DWP(20,$s3)); # load enc flag
2107
2108 &mov ($_inp,$s0); # save copy of inp
2109 &mov ($_out,$s1); # save copy of out
2110 &mov ($_len,$s2); # save copy of len
2111 &mov ($_key,$key); # save copy of key
2112 &mov ($_ivp,$acc); # save copy of ivp
2113
2114 &mov ($mark,0); # copy of aes_key->rounds = 0;
2115 # do we copy key schedule to stack?
2116 &mov ($s1 eq "ebx" ? $s1 : "",$key);
2117 &mov ($s2 eq "ecx" ? $s2 : "",244/4);
2118 &sub ($s1,$tbl);
2119 &mov ("esi",$key);
2120 &and ($s1,0xfff);
2121 &lea ("edi",$aes_key);
2122 &cmp ($s1,2048+256);
2123 &jb (&label("do_copy"));
2124 &cmp ($s1,4096-244);
2125 &jb (&label("skip_copy"));
2126 &set_label("do_copy",4);
2127 &mov ($_key,"edi");
2128 &data_word(0xA5F3F689); # rep movsd
2129 &set_label("skip_copy");
2130
2131 &mov ($key,16);
2132 &set_label("prefetch_tbl",4);
2133 &mov ($s0,&DWP(0,$tbl));
2134 &mov ($s1,&DWP(32,$tbl));
2135 &mov ($s2,&DWP(64,$tbl));
2136 &mov ($acc,&DWP(96,$tbl));
2137 &lea ($tbl,&DWP(128,$tbl));
2138 &sub ($key,1);
2139 &jnz (&label("prefetch_tbl"));
2140 &sub ($tbl,2048);
2141
2142 &mov ($acc,$_inp);
2143 &mov ($key,$_ivp);
2144
2145 &cmp ($s3,0);
2146 &je (&label("fast_decrypt"));
2147
2148#----------------------------- ENCRYPT -----------------------------#
2149 &mov ($s0,&DWP(0,$key)); # load iv
2150 &mov ($s1,&DWP(4,$key));
2151
2152 &set_label("fast_enc_loop",16);
2153 &mov ($s2,&DWP(8,$key));
2154 &mov ($s3,&DWP(12,$key));
2155
2156 &xor ($s0,&DWP(0,$acc)); # xor input data
2157 &xor ($s1,&DWP(4,$acc));
2158 &xor ($s2,&DWP(8,$acc));
2159 &xor ($s3,&DWP(12,$acc));
2160
2161 &mov ($key,$_key); # load key
2162 &call ("_x86_AES_encrypt");
2163
2164 &mov ($acc,$_inp); # load inp
2165 &mov ($key,$_out); # load out
2166
2167 &mov (&DWP(0,$key),$s0); # save output data
2168 &mov (&DWP(4,$key),$s1);
2169 &mov (&DWP(8,$key),$s2);
2170 &mov (&DWP(12,$key),$s3);
2171
2172 &lea ($acc,&DWP(16,$acc)); # advance inp
2173 &mov ($s2,$_len); # load len
2174 &mov ($_inp,$acc); # save inp
2175 &lea ($s3,&DWP(16,$key)); # advance out
2176 &mov ($_out,$s3); # save out
2177 &sub ($s2,16); # decrease len
2178 &mov ($_len,$s2); # save len
2179 &jnz (&label("fast_enc_loop"));
2180 &mov ($acc,$_ivp); # load ivp
2181 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords
2182 &mov ($s3,&DWP(12,$key));
2183 &mov (&DWP(0,$acc),$s0); # save ivec
2184 &mov (&DWP(4,$acc),$s1);
2185 &mov (&DWP(8,$acc),$s2);
2186 &mov (&DWP(12,$acc),$s3);
2187
2188 &cmp ($mark,0); # was the key schedule copied?
2189 &mov ("edi",$_key);
2190 &je (&label("skip_ezero"));
2191 # zero copy of key schedule
2192 &mov ("ecx",240/4);
2193 &xor ("eax","eax");
2194 &align (4);
2195 &data_word(0xABF3F689); # rep stosd
2196 &set_label("skip_ezero");
2197 &mov ("esp",$_esp);
2198 &popf ();
2199 &set_label("drop_out");
2200 &function_end_A();
2201 &pushf (); # kludge, never executed
2202
2203#----------------------------- DECRYPT -----------------------------#
2204&set_label("fast_decrypt",16);
2205
2206 &cmp ($acc,$_out);
2207 &je (&label("fast_dec_in_place")); # in-place processing...
2208
2209 &mov ($_tmp,$key);
2210
2211 &align (4);
2212 &set_label("fast_dec_loop",16);
2213 &mov ($s0,&DWP(0,$acc)); # read input
2214 &mov ($s1,&DWP(4,$acc));
2215 &mov ($s2,&DWP(8,$acc));
2216 &mov ($s3,&DWP(12,$acc));
2217
2218 &mov ($key,$_key); # load key
2219 &call ("_x86_AES_decrypt");
2220
2221 &mov ($key,$_tmp); # load ivp
2222 &mov ($acc,$_len); # load len
2223 &xor ($s0,&DWP(0,$key)); # xor iv
2224 &xor ($s1,&DWP(4,$key));
2225 &xor ($s2,&DWP(8,$key));
2226 &xor ($s3,&DWP(12,$key));
2227
2228 &mov ($key,$_out); # load out
2229 &mov ($acc,$_inp); # load inp
2230
2231 &mov (&DWP(0,$key),$s0); # write output
2232 &mov (&DWP(4,$key),$s1);
2233 &mov (&DWP(8,$key),$s2);
2234 &mov (&DWP(12,$key),$s3);
2235
2236 &mov ($s2,$_len); # load len
2237 &mov ($_tmp,$acc); # save ivp
2238 &lea ($acc,&DWP(16,$acc)); # advance inp
2239 &mov ($_inp,$acc); # save inp
2240 &lea ($key,&DWP(16,$key)); # advance out
2241 &mov ($_out,$key); # save out
2242 &sub ($s2,16); # decrease len
2243 &mov ($_len,$s2); # save len
2244 &jnz (&label("fast_dec_loop"));
2245 &mov ($key,$_tmp); # load temp ivp
2246 &mov ($acc,$_ivp); # load user ivp
2247 &mov ($s0,&DWP(0,$key)); # load iv
2248 &mov ($s1,&DWP(4,$key));
2249 &mov ($s2,&DWP(8,$key));
2250 &mov ($s3,&DWP(12,$key));
2251 &mov (&DWP(0,$acc),$s0); # copy back to user
2252 &mov (&DWP(4,$acc),$s1);
2253 &mov (&DWP(8,$acc),$s2);
2254 &mov (&DWP(12,$acc),$s3);
2255 &jmp (&label("fast_dec_out"));
2256
2257 &set_label("fast_dec_in_place",16);
2258 &set_label("fast_dec_in_place_loop");
2259 &mov ($s0,&DWP(0,$acc)); # read input
2260 &mov ($s1,&DWP(4,$acc));
2261 &mov ($s2,&DWP(8,$acc));
2262 &mov ($s3,&DWP(12,$acc));
2263
2264 &lea ($key,$ivec);
2265 &mov (&DWP(0,$key),$s0); # copy to temp
2266 &mov (&DWP(4,$key),$s1);
2267 &mov (&DWP(8,$key),$s2);
2268 &mov (&DWP(12,$key),$s3);
2269
2270 &mov ($key,$_key); # load key
2271 &call ("_x86_AES_decrypt");
2272
2273 &mov ($key,$_ivp); # load ivp
2274 &mov ($acc,$_out); # load out
2275 &xor ($s0,&DWP(0,$key)); # xor iv
2276 &xor ($s1,&DWP(4,$key));
2277 &xor ($s2,&DWP(8,$key));
2278 &xor ($s3,&DWP(12,$key));
2279
2280 &mov (&DWP(0,$acc),$s0); # write output
2281 &mov (&DWP(4,$acc),$s1);
2282 &mov (&DWP(8,$acc),$s2);
2283 &mov (&DWP(12,$acc),$s3);
2284
2285 &lea ($acc,&DWP(16,$acc)); # advance out
2286 &mov ($_out,$acc); # save out
2287
2288 &lea ($acc,$ivec);
2289 &mov ($s0,&DWP(0,$acc)); # read temp
2290 &mov ($s1,&DWP(4,$acc));
2291 &mov ($s2,&DWP(8,$acc));
2292 &mov ($s3,&DWP(12,$acc));
2293
2294 &mov (&DWP(0,$key),$s0); # copy iv
2295 &mov (&DWP(4,$key),$s1);
2296 &mov (&DWP(8,$key),$s2);
2297 &mov (&DWP(12,$key),$s3);
2298
2299 &mov ($acc,$_inp); # load inp
2300 &mov ($s2,$_len); # load len
2301 &lea ($acc,&DWP(16,$acc)); # advance inp
2302 &mov ($_inp,$acc); # save inp
2303 &sub ($s2,16); # decrease len
2304 &mov ($_len,$s2); # save len
2305 &jnz (&label("fast_dec_in_place_loop"));
2306
2307 &set_label("fast_dec_out",4);
2308 &cmp ($mark,0); # was the key schedule copied?
2309 &mov ("edi",$_key);
2310 &je (&label("skip_dzero"));
2311 # zero copy of key schedule
2312 &mov ("ecx",240/4);
2313 &xor ("eax","eax");
2314 &align (4);
2315 &data_word(0xABF3F689); # rep stosd
2316 &set_label("skip_dzero");
2317 &mov ("esp",$_esp);
2318 &popf ();
2319 &function_end_A();
2320 &pushf (); # kludge, never executed
2321
2322#--------------------------- SLOW ROUTINE ---------------------------#
2323&set_label("slow_way",16);
2324
2325 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2326 &mov ($key,&wparam(3)); # load key
2327
2328 # pre-allocate aligned stack frame...
2329 &lea ($acc,&DWP(-80,"esp"));
2330 &and ($acc,-64);
2331
2332 # ... and make sure it doesn't alias with $key modulo 1024
2333 &lea ($s1,&DWP(-80-63,$key));
2334 &sub ($s1,$acc);
2335 &neg ($s1);
2336 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
2337 &sub ($acc,$s1);
2338
2339 # pick S-box copy which can't overlap with stack frame or $key
2340 &lea ($s1,&DWP(768,$acc));
2341 &sub ($s1,$tbl);
2342 &and ($s1,0x300);
2343 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
2344
2345 &lea ($s3,&wparam(0)); # pointer to parameter block
2346
2347 &exch ("esp",$acc);
2348 &add ("esp",4); # reserve for return address!
2349 &mov ($_tbl,$tbl); # save %ebp
2350 &mov ($_esp,$acc); # save %esp
2351 &mov ($_tmp,$s0); # save OPENSSL_ia32cap
2352
2353 &mov ($s0,&DWP(0,$s3)); # load inp
2354 &mov ($s1,&DWP(4,$s3)); # load out
2355 #&mov ($s2,&DWP(8,$s3)); # load len
2356 #&mov ($key,&DWP(12,$s3)); # load key
2357 &mov ($acc,&DWP(16,$s3)); # load ivp
2358 &mov ($s3,&DWP(20,$s3)); # load enc flag
2359
2360 &mov ($_inp,$s0); # save copy of inp
2361 &mov ($_out,$s1); # save copy of out
2362 &mov ($_len,$s2); # save copy of len
2363 &mov ($_key,$key); # save copy of key
2364 &mov ($_ivp,$acc); # save copy of ivp
2365
2366 &mov ($key,$acc);
2367 &mov ($acc,$s0);
2368
2369 &cmp ($s3,0);
2370 &je (&label("slow_decrypt"));
2371
2372#--------------------------- SLOW ENCRYPT ---------------------------#
2373 &cmp ($s2,16);
2374 &mov ($s3,$s1);
2375 &jb (&label("slow_enc_tail"));
2376
2377 if (!$x86only) {
2378 &bt ($_tmp,25); # check for SSE bit
2379 &jnc (&label("slow_enc_x86"));
2380
2381 &movq ("mm0",&QWP(0,$key)); # load iv
2382 &movq ("mm4",&QWP(8,$key));
2383
2384 &set_label("slow_enc_loop_sse",16);
2385 &pxor ("mm0",&QWP(0,$acc)); # xor input data
2386 &pxor ("mm4",&QWP(8,$acc));
2387
2388 &mov ($key,$_key);
2389 &call ("_sse_AES_encrypt_compact");
2390
2391 &mov ($acc,$_inp); # load inp
2392 &mov ($key,$_out); # load out
2393 &mov ($s2,$_len); # load len
2394
2395 &movq (&QWP(0,$key),"mm0"); # save output data
2396 &movq (&QWP(8,$key),"mm4");
2397
2398 &lea ($acc,&DWP(16,$acc)); # advance inp
2399 &mov ($_inp,$acc); # save inp
2400 &lea ($s3,&DWP(16,$key)); # advance out
2401 &mov ($_out,$s3); # save out
2402 &sub ($s2,16); # decrease len
2403 &cmp ($s2,16);
2404 &mov ($_len,$s2); # save len
2405 &jae (&label("slow_enc_loop_sse"));
2406 &test ($s2,15);
2407 &jnz (&label("slow_enc_tail"));
2408 &mov ($acc,$_ivp); # load ivp
2409 &movq (&QWP(0,$acc),"mm0"); # save ivec
2410 &movq (&QWP(8,$acc),"mm4");
2411 &emms ();
2412 &mov ("esp",$_esp);
2413 &popf ();
2414 &function_end_A();
2415 &pushf (); # kludge, never executed
2416 }
2417 &set_label("slow_enc_x86",16);
2418 &mov ($s0,&DWP(0,$key)); # load iv
2419 &mov ($s1,&DWP(4,$key));
2420
2421 &set_label("slow_enc_loop_x86",4);
2422 &mov ($s2,&DWP(8,$key));
2423 &mov ($s3,&DWP(12,$key));
2424
2425 &xor ($s0,&DWP(0,$acc)); # xor input data
2426 &xor ($s1,&DWP(4,$acc));
2427 &xor ($s2,&DWP(8,$acc));
2428 &xor ($s3,&DWP(12,$acc));
2429
2430 &mov ($key,$_key); # load key
2431 &call ("_x86_AES_encrypt_compact");
2432
2433 &mov ($acc,$_inp); # load inp
2434 &mov ($key,$_out); # load out
2435
2436 &mov (&DWP(0,$key),$s0); # save output data
2437 &mov (&DWP(4,$key),$s1);
2438 &mov (&DWP(8,$key),$s2);
2439 &mov (&DWP(12,$key),$s3);
2440
2441 &mov ($s2,$_len); # load len
2442 &lea ($acc,&DWP(16,$acc)); # advance inp
2443 &mov ($_inp,$acc); # save inp
2444 &lea ($s3,&DWP(16,$key)); # advance out
2445 &mov ($_out,$s3); # save out
2446 &sub ($s2,16); # decrease len
2447 &cmp ($s2,16);
2448 &mov ($_len,$s2); # save len
2449 &jae (&label("slow_enc_loop_x86"));
2450 &test ($s2,15);
2451 &jnz (&label("slow_enc_tail"));
2452 &mov ($acc,$_ivp); # load ivp
2453 &mov ($s2,&DWP(8,$key)); # restore last dwords
2454 &mov ($s3,&DWP(12,$key));
2455 &mov (&DWP(0,$acc),$s0); # save ivec
2456 &mov (&DWP(4,$acc),$s1);
2457 &mov (&DWP(8,$acc),$s2);
2458 &mov (&DWP(12,$acc),$s3);
2459
2460 &mov ("esp",$_esp);
2461 &popf ();
2462 &function_end_A();
2463 &pushf (); # kludge, never executed
2464
2465 &set_label("slow_enc_tail",16);
2466 &emms () if (!$x86only);
2467 &mov ($key eq "edi"? $key:"",$s3); # load out to edi
2468 &mov ($s1,16);
2469 &sub ($s1,$s2);
2470 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp
2471 &je (&label("enc_in_place"));
2472 &align (4);
2473 &data_word(0xA4F3F689); # rep movsb # copy input
2474 &jmp (&label("enc_skip_in_place"));
2475 &set_label("enc_in_place");
2476 &lea ($key,&DWP(0,$key,$s2));
2477 &set_label("enc_skip_in_place");
2478 &mov ($s2,$s1);
2479 &xor ($s0,$s0);
2480 &align (4);
2481 &data_word(0xAAF3F689); # rep stosb # zero tail
2482
2483 &mov ($key,$_ivp); # restore ivp
2484 &mov ($acc,$s3); # output as input
2485 &mov ($s0,&DWP(0,$key));
2486 &mov ($s1,&DWP(4,$key));
2487 &mov ($_len,16); # len=16
2488 &jmp (&label("slow_enc_loop_x86")); # one more spin...
2489
2490#--------------------------- SLOW DECRYPT ---------------------------#
2491&set_label("slow_decrypt",16);
2492 if (!$x86only) {
2493 &bt ($_tmp,25); # check for SSE bit
2494 &jnc (&label("slow_dec_loop_x86"));
2495
2496 &set_label("slow_dec_loop_sse",4);
2497 &movq ("mm0",&QWP(0,$acc)); # read input
2498 &movq ("mm4",&QWP(8,$acc));
2499
2500 &mov ($key,$_key);
2501 &call ("_sse_AES_decrypt_compact");
2502
2503 &mov ($acc,$_inp); # load inp
2504 &lea ($s0,$ivec);
2505 &mov ($s1,$_out); # load out
2506 &mov ($s2,$_len); # load len
2507 &mov ($key,$_ivp); # load ivp
2508
2509 &movq ("mm1",&QWP(0,$acc)); # re-read input
2510 &movq ("mm5",&QWP(8,$acc));
2511
2512 &pxor ("mm0",&QWP(0,$key)); # xor iv
2513 &pxor ("mm4",&QWP(8,$key));
2514
2515 &movq (&QWP(0,$key),"mm1"); # copy input to iv
2516 &movq (&QWP(8,$key),"mm5");
2517
2518 &sub ($s2,16); # decrease len
2519 &jc (&label("slow_dec_partial_sse"));
2520
2521 &movq (&QWP(0,$s1),"mm0"); # write output
2522 &movq (&QWP(8,$s1),"mm4");
2523
2524 &lea ($s1,&DWP(16,$s1)); # advance out
2525 &mov ($_out,$s1); # save out
2526 &lea ($acc,&DWP(16,$acc)); # advance inp
2527 &mov ($_inp,$acc); # save inp
2528 &mov ($_len,$s2); # save len
2529 &jnz (&label("slow_dec_loop_sse"));
2530 &emms ();
2531 &mov ("esp",$_esp);
2532 &popf ();
2533 &function_end_A();
2534 &pushf (); # kludge, never executed
2535
2536 &set_label("slow_dec_partial_sse",16);
2537 &movq (&QWP(0,$s0),"mm0"); # save output to temp
2538 &movq (&QWP(8,$s0),"mm4");
2539 &emms ();
2540
2541 &add ($s2 eq "ecx" ? "ecx":"",16);
2542 &mov ("edi",$s1); # out
2543 &mov ("esi",$s0); # temp
2544 &align (4);
2545 &data_word(0xA4F3F689); # rep movsb # copy partial output
2546
2547 &mov ("esp",$_esp);
2548 &popf ();
2549 &function_end_A();
2550 &pushf (); # kludge, never executed
2551 }
2552 &set_label("slow_dec_loop_x86",16);
2553 &mov ($s0,&DWP(0,$acc)); # read input
2554 &mov ($s1,&DWP(4,$acc));
2555 &mov ($s2,&DWP(8,$acc));
2556 &mov ($s3,&DWP(12,$acc));
2557
2558 &lea ($key,$ivec);
2559 &mov (&DWP(0,$key),$s0); # copy to temp
2560 &mov (&DWP(4,$key),$s1);
2561 &mov (&DWP(8,$key),$s2);
2562 &mov (&DWP(12,$key),$s3);
2563
2564 &mov ($key,$_key); # load key
2565 &call ("_x86_AES_decrypt_compact");
2566
2567 &mov ($key,$_ivp); # load ivp
2568 &mov ($acc,$_len); # load len
2569 &xor ($s0,&DWP(0,$key)); # xor iv
2570 &xor ($s1,&DWP(4,$key));
2571 &xor ($s2,&DWP(8,$key));
2572 &xor ($s3,&DWP(12,$key));
2573
2574 &sub ($acc,16);
2575 &jc (&label("slow_dec_partial_x86"));
2576
2577 &mov ($_len,$acc); # save len
2578 &mov ($acc,$_out); # load out
2579
2580 &mov (&DWP(0,$acc),$s0); # write output
2581 &mov (&DWP(4,$acc),$s1);
2582 &mov (&DWP(8,$acc),$s2);
2583 &mov (&DWP(12,$acc),$s3);
2584
2585 &lea ($acc,&DWP(16,$acc)); # advance out
2586 &mov ($_out,$acc); # save out
2587
2588 &lea ($acc,$ivec);
2589 &mov ($s0,&DWP(0,$acc)); # read temp
2590 &mov ($s1,&DWP(4,$acc));
2591 &mov ($s2,&DWP(8,$acc));
2592 &mov ($s3,&DWP(12,$acc));
2593
2594 &mov (&DWP(0,$key),$s0); # copy it to iv
2595 &mov (&DWP(4,$key),$s1);
2596 &mov (&DWP(8,$key),$s2);
2597 &mov (&DWP(12,$key),$s3);
2598
2599 &mov ($acc,$_inp); # load inp
2600 &lea ($acc,&DWP(16,$acc)); # advance inp
2601 &mov ($_inp,$acc); # save inp
2602 &jnz (&label("slow_dec_loop_x86"));
2603 &mov ("esp",$_esp);
2604 &popf ();
2605 &function_end_A();
2606 &pushf (); # kludge, never executed
2607
2608 &set_label("slow_dec_partial_x86",16);
2609 &lea ($acc,$ivec);
2610 &mov (&DWP(0,$acc),$s0); # save output to temp
2611 &mov (&DWP(4,$acc),$s1);
2612 &mov (&DWP(8,$acc),$s2);
2613 &mov (&DWP(12,$acc),$s3);
2614
2615 &mov ($acc,$_inp);
2616 &mov ($s0,&DWP(0,$acc)); # re-read input
2617 &mov ($s1,&DWP(4,$acc));
2618 &mov ($s2,&DWP(8,$acc));
2619 &mov ($s3,&DWP(12,$acc));
2620
2621 &mov (&DWP(0,$key),$s0); # copy it to iv
2622 &mov (&DWP(4,$key),$s1);
2623 &mov (&DWP(8,$key),$s2);
2624 &mov (&DWP(12,$key),$s3);
2625
2626 &mov ("ecx",$_len);
2627 &mov ("edi",$_out);
2628 &lea ("esi",$ivec);
2629 &align (4);
2630 &data_word(0xA4F3F689); # rep movsb # copy partial output
2631
2632 &mov ("esp",$_esp);
2633 &popf ();
2634&function_end("asm_AES_cbc_encrypt");
2635}
2636
2637#------------------------------------------------------------------#
2638
2639sub enckey()
2640{
2641 &movz ("esi",&LB("edx")); # rk[i]>>0
2642 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2643 &movz ("esi",&HB("edx")); # rk[i]>>8
2644 &shl ("ebx",24);
2645 &xor ("eax","ebx");
2646
2647 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2648 &shr ("edx",16);
2649 &movz ("esi",&LB("edx")); # rk[i]>>16
2650 &xor ("eax","ebx");
2651
2652 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2653 &movz ("esi",&HB("edx")); # rk[i]>>24
2654 &shl ("ebx",8);
2655 &xor ("eax","ebx");
2656
2657 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2658 &shl ("ebx",16);
2659 &xor ("eax","ebx");
2660
2661 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon
2662}
2663
2664&function_begin("_x86_AES_set_encrypt_key");
2665 &mov ("esi",&wparam(1)); # user supplied key
2666 &mov ("edi",&wparam(3)); # private key schedule
2667
2668 &test ("esi",-1);
2669 &jz (&label("badpointer"));
2670 &test ("edi",-1);
2671 &jz (&label("badpointer"));
2672
2673 &call (&label("pic_point"));
2674 &set_label("pic_point");
2675 &blindpop($tbl);
2676 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2677 &lea ($tbl,&DWP(2048+128,$tbl));
2678
2679 # prefetch Te4
2680 &mov ("eax",&DWP(0-128,$tbl));
2681 &mov ("ebx",&DWP(32-128,$tbl));
2682 &mov ("ecx",&DWP(64-128,$tbl));
2683 &mov ("edx",&DWP(96-128,$tbl));
2684 &mov ("eax",&DWP(128-128,$tbl));
2685 &mov ("ebx",&DWP(160-128,$tbl));
2686 &mov ("ecx",&DWP(192-128,$tbl));
2687 &mov ("edx",&DWP(224-128,$tbl));
2688
2689 &mov ("ecx",&wparam(2)); # number of bits in key
2690 &cmp ("ecx",128);
2691 &je (&label("10rounds"));
2692 &cmp ("ecx",192);
2693 &je (&label("12rounds"));
2694 &cmp ("ecx",256);
2695 &je (&label("14rounds"));
2696 &mov ("eax",-2); # invalid number of bits
2697 &jmp (&label("exit"));
2698
2699 &set_label("10rounds");
2700 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords
2701 &mov ("ebx",&DWP(4,"esi"));
2702 &mov ("ecx",&DWP(8,"esi"));
2703 &mov ("edx",&DWP(12,"esi"));
2704 &mov (&DWP(0,"edi"),"eax");
2705 &mov (&DWP(4,"edi"),"ebx");
2706 &mov (&DWP(8,"edi"),"ecx");
2707 &mov (&DWP(12,"edi"),"edx");
2708
2709 &xor ("ecx","ecx");
2710 &jmp (&label("10shortcut"));
2711
2712 &align (4);
2713 &set_label("10loop");
2714 &mov ("eax",&DWP(0,"edi")); # rk[0]
2715 &mov ("edx",&DWP(12,"edi")); # rk[3]
2716 &set_label("10shortcut");
2717 &enckey ();
2718
2719 &mov (&DWP(16,"edi"),"eax"); # rk[4]
2720 &xor ("eax",&DWP(4,"edi"));
2721 &mov (&DWP(20,"edi"),"eax"); # rk[5]
2722 &xor ("eax",&DWP(8,"edi"));
2723 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2724 &xor ("eax",&DWP(12,"edi"));
2725 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2726 &inc ("ecx");
2727 &add ("edi",16);
2728 &cmp ("ecx",10);
2729 &jl (&label("10loop"));
2730
2731 &mov (&DWP(80,"edi"),10); # setup number of rounds
2732 &xor ("eax","eax");
2733 &jmp (&label("exit"));
Robert Sloana94fe052017-02-21 08:49:28 -08002734
Adam Langleyd9e397b2015-01-22 14:27:53 -08002735 &set_label("12rounds");
2736 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords
2737 &mov ("ebx",&DWP(4,"esi"));
2738 &mov ("ecx",&DWP(8,"esi"));
2739 &mov ("edx",&DWP(12,"esi"));
2740 &mov (&DWP(0,"edi"),"eax");
2741 &mov (&DWP(4,"edi"),"ebx");
2742 &mov (&DWP(8,"edi"),"ecx");
2743 &mov (&DWP(12,"edi"),"edx");
2744 &mov ("ecx",&DWP(16,"esi"));
2745 &mov ("edx",&DWP(20,"esi"));
2746 &mov (&DWP(16,"edi"),"ecx");
2747 &mov (&DWP(20,"edi"),"edx");
2748
2749 &xor ("ecx","ecx");
2750 &jmp (&label("12shortcut"));
2751
2752 &align (4);
2753 &set_label("12loop");
2754 &mov ("eax",&DWP(0,"edi")); # rk[0]
2755 &mov ("edx",&DWP(20,"edi")); # rk[5]
2756 &set_label("12shortcut");
2757 &enckey ();
2758
2759 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2760 &xor ("eax",&DWP(4,"edi"));
2761 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2762 &xor ("eax",&DWP(8,"edi"));
2763 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2764 &xor ("eax",&DWP(12,"edi"));
2765 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2766
2767 &cmp ("ecx",7);
2768 &je (&label("12break"));
2769 &inc ("ecx");
2770
2771 &xor ("eax",&DWP(16,"edi"));
2772 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2773 &xor ("eax",&DWP(20,"edi"));
2774 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2775
2776 &add ("edi",24);
2777 &jmp (&label("12loop"));
2778
2779 &set_label("12break");
2780 &mov (&DWP(72,"edi"),12); # setup number of rounds
2781 &xor ("eax","eax");
2782 &jmp (&label("exit"));
2783
2784 &set_label("14rounds");
2785 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords
2786 &mov ("ebx",&DWP(4,"esi"));
2787 &mov ("ecx",&DWP(8,"esi"));
2788 &mov ("edx",&DWP(12,"esi"));
2789 &mov (&DWP(0,"edi"),"eax");
2790 &mov (&DWP(4,"edi"),"ebx");
2791 &mov (&DWP(8,"edi"),"ecx");
2792 &mov (&DWP(12,"edi"),"edx");
2793 &mov ("eax",&DWP(16,"esi"));
2794 &mov ("ebx",&DWP(20,"esi"));
2795 &mov ("ecx",&DWP(24,"esi"));
2796 &mov ("edx",&DWP(28,"esi"));
2797 &mov (&DWP(16,"edi"),"eax");
2798 &mov (&DWP(20,"edi"),"ebx");
2799 &mov (&DWP(24,"edi"),"ecx");
2800 &mov (&DWP(28,"edi"),"edx");
2801
2802 &xor ("ecx","ecx");
2803 &jmp (&label("14shortcut"));
2804
2805 &align (4);
2806 &set_label("14loop");
2807 &mov ("edx",&DWP(28,"edi")); # rk[7]
2808 &set_label("14shortcut");
2809 &mov ("eax",&DWP(0,"edi")); # rk[0]
2810
2811 &enckey ();
2812
2813 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2814 &xor ("eax",&DWP(4,"edi"));
2815 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2816 &xor ("eax",&DWP(8,"edi"));
2817 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2818 &xor ("eax",&DWP(12,"edi"));
2819 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2820
2821 &cmp ("ecx",6);
2822 &je (&label("14break"));
2823 &inc ("ecx");
2824
2825 &mov ("edx","eax");
2826 &mov ("eax",&DWP(16,"edi")); # rk[4]
2827 &movz ("esi",&LB("edx")); # rk[11]>>0
2828 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2829 &movz ("esi",&HB("edx")); # rk[11]>>8
2830 &xor ("eax","ebx");
2831
2832 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2833 &shr ("edx",16);
2834 &shl ("ebx",8);
2835 &movz ("esi",&LB("edx")); # rk[11]>>16
2836 &xor ("eax","ebx");
2837
2838 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2839 &movz ("esi",&HB("edx")); # rk[11]>>24
2840 &shl ("ebx",16);
2841 &xor ("eax","ebx");
2842
2843 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2844 &shl ("ebx",24);
2845 &xor ("eax","ebx");
2846
2847 &mov (&DWP(48,"edi"),"eax"); # rk[12]
2848 &xor ("eax",&DWP(20,"edi"));
2849 &mov (&DWP(52,"edi"),"eax"); # rk[13]
2850 &xor ("eax",&DWP(24,"edi"));
2851 &mov (&DWP(56,"edi"),"eax"); # rk[14]
2852 &xor ("eax",&DWP(28,"edi"));
2853 &mov (&DWP(60,"edi"),"eax"); # rk[15]
2854
2855 &add ("edi",32);
2856 &jmp (&label("14loop"));
2857
2858 &set_label("14break");
2859 &mov (&DWP(48,"edi"),14); # setup number of rounds
2860 &xor ("eax","eax");
2861 &jmp (&label("exit"));
2862
2863 &set_label("badpointer");
2864 &mov ("eax",-1);
2865 &set_label("exit");
2866&function_end("_x86_AES_set_encrypt_key");
2867
2868# int asm_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2869# AES_KEY *key)
2870&function_begin_B("asm_AES_set_encrypt_key");
2871 &call ("_x86_AES_set_encrypt_key");
2872 &ret ();
2873&function_end_B("asm_AES_set_encrypt_key");
2874
2875sub deckey()
2876{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2877 my $tmp = $tbl;
2878
2879 &mov ($tmp,0x80808080);
2880 &and ($tmp,$tp1);
2881 &lea ($tp2,&DWP(0,$tp1,$tp1));
2882 &mov ($acc,$tmp);
2883 &shr ($tmp,7);
2884 &sub ($acc,$tmp);
2885 &and ($tp2,0xfefefefe);
2886 &and ($acc,0x1b1b1b1b);
2887 &xor ($tp2,$acc);
2888 &mov ($tmp,0x80808080);
2889
2890 &and ($tmp,$tp2);
2891 &lea ($tp4,&DWP(0,$tp2,$tp2));
2892 &mov ($acc,$tmp);
2893 &shr ($tmp,7);
2894 &sub ($acc,$tmp);
2895 &and ($tp4,0xfefefefe);
2896 &and ($acc,0x1b1b1b1b);
2897 &xor ($tp2,$tp1); # tp2^tp1
2898 &xor ($tp4,$acc);
2899 &mov ($tmp,0x80808080);
2900
2901 &and ($tmp,$tp4);
2902 &lea ($tp8,&DWP(0,$tp4,$tp4));
2903 &mov ($acc,$tmp);
2904 &shr ($tmp,7);
2905 &xor ($tp4,$tp1); # tp4^tp1
2906 &sub ($acc,$tmp);
2907 &and ($tp8,0xfefefefe);
2908 &and ($acc,0x1b1b1b1b);
2909 &rotl ($tp1,8); # = ROTATE(tp1,8)
2910 &xor ($tp8,$acc);
2911
2912 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load
2913
2914 &xor ($tp1,$tp2);
2915 &xor ($tp2,$tp8);
2916 &xor ($tp1,$tp4);
2917 &rotl ($tp2,24);
2918 &xor ($tp4,$tp8);
2919 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
2920 &rotl ($tp4,16);
2921 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
2922 &rotl ($tp8,8);
2923 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
2924 &mov ($tp2,$tmp);
2925 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8)
2926
2927 &mov (&DWP(4*$i,$key),$tp1);
2928}
2929
2930# int asm_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2931# AES_KEY *key)
2932&function_begin_B("asm_AES_set_decrypt_key");
2933 &call ("_x86_AES_set_encrypt_key");
2934 &cmp ("eax",0);
2935 &je (&label("proceed"));
2936 &ret ();
2937
2938 &set_label("proceed");
2939 &push ("ebp");
2940 &push ("ebx");
2941 &push ("esi");
2942 &push ("edi");
2943
2944 &mov ("esi",&wparam(2));
2945 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds
2946 &lea ("ecx",&DWP(0,"","ecx",4));
2947 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk
2948
2949 &set_label("invert",4); # invert order of chunks
2950 &mov ("eax",&DWP(0,"esi"));
2951 &mov ("ebx",&DWP(4,"esi"));
2952 &mov ("ecx",&DWP(0,"edi"));
2953 &mov ("edx",&DWP(4,"edi"));
2954 &mov (&DWP(0,"edi"),"eax");
2955 &mov (&DWP(4,"edi"),"ebx");
2956 &mov (&DWP(0,"esi"),"ecx");
2957 &mov (&DWP(4,"esi"),"edx");
2958 &mov ("eax",&DWP(8,"esi"));
2959 &mov ("ebx",&DWP(12,"esi"));
2960 &mov ("ecx",&DWP(8,"edi"));
2961 &mov ("edx",&DWP(12,"edi"));
2962 &mov (&DWP(8,"edi"),"eax");
2963 &mov (&DWP(12,"edi"),"ebx");
2964 &mov (&DWP(8,"esi"),"ecx");
2965 &mov (&DWP(12,"esi"),"edx");
2966 &add ("esi",16);
2967 &sub ("edi",16);
2968 &cmp ("esi","edi");
2969 &jne (&label("invert"));
2970
2971 &mov ($key,&wparam(2));
2972 &mov ($acc,&DWP(240,$key)); # pull number of rounds
2973 &lea ($acc,&DWP(-2,$acc,$acc));
2974 &lea ($acc,&DWP(0,$key,$acc,8));
2975 &mov (&wparam(2),$acc);
2976
2977 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load
2978 &set_label("permute",4); # permute the key schedule
2979 &add ($key,16);
2980 &deckey (0,$key,$s0,$s1,$s2,$s3);
2981 &deckey (1,$key,$s1,$s2,$s3,$s0);
2982 &deckey (2,$key,$s2,$s3,$s0,$s1);
2983 &deckey (3,$key,$s3,$s0,$s1,$s2);
2984 &cmp ($key,&wparam(2));
2985 &jb (&label("permute"));
2986
2987 &xor ("eax","eax"); # return success
2988&function_end("asm_AES_set_decrypt_key");
2989&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
2990
2991&asm_finish();
David Benjaminc895d6b2016-08-11 13:26:41 -04002992
2993close STDOUT;