| // Copyright 2013 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // Implementation of Brotli compressor. |
| |
| #include "./encode.h" |
| |
| #include <algorithm> |
| #include <limits> |
| |
| #include "./backward_references.h" |
| #include "./bit_cost.h" |
| #include "./block_splitter.h" |
| #include "./brotli_bit_stream.h" |
| #include "./cluster.h" |
| #include "./context.h" |
| #include "./metablock.h" |
| #include "./transform.h" |
| #include "./entropy_encode.h" |
| #include "./fast_log.h" |
| #include "./hash.h" |
| #include "./histogram.h" |
| #include "./prefix.h" |
| #include "./utf8_util.h" |
| #include "./write_bits.h" |
| |
| namespace brotli { |
| |
| static const int kMinQualityForBlockSplit = 4; |
| static const int kMinQualityForContextModeling = 5; |
| static const int kMinQualityForOptimizeHistograms = 4; |
| // For quality 1 there is no block splitting, so we buffer at most this much |
| // literals and commands. |
| static const int kMaxNumDelayedSymbols = 0x2fff; |
| |
| void RecomputeDistancePrefixes(Command* cmds, |
| size_t num_commands, |
| int num_direct_distance_codes, |
| int distance_postfix_bits) { |
| if (num_direct_distance_codes == 0 && distance_postfix_bits == 0) { |
| return; |
| } |
| for (int i = 0; i < num_commands; ++i) { |
| Command* cmd = &cmds[i]; |
| if (cmd->copy_len_ > 0 && cmd->cmd_prefix_ >= 128) { |
| PrefixEncodeCopyDistance(cmd->DistanceCode(), |
| num_direct_distance_codes, |
| distance_postfix_bits, |
| &cmd->dist_prefix_, |
| &cmd->dist_extra_); |
| } |
| } |
| } |
| |
| uint8_t* BrotliCompressor::GetBrotliStorage(size_t size) { |
| if (storage_size_ < size) { |
| delete[] storage_; |
| storage_ = new uint8_t[size]; |
| storage_size_ = size; |
| } |
| return storage_; |
| } |
| |
| BrotliCompressor::BrotliCompressor(BrotliParams params) |
| : params_(params), |
| hashers_(new Hashers()), |
| input_pos_(0), |
| num_commands_(0), |
| num_literals_(0), |
| last_insert_len_(0), |
| last_flush_pos_(0), |
| last_processed_pos_(0), |
| prev_byte_(0), |
| prev_byte2_(0), |
| storage_size_(0), |
| storage_(0) { |
| // Sanitize params. |
| params_.quality = std::max(1, params_.quality); |
| if (params_.lgwin < kMinWindowBits) { |
| params_.lgwin = kMinWindowBits; |
| } else if (params_.lgwin > kMaxWindowBits) { |
| params_.lgwin = kMaxWindowBits; |
| } |
| if (params_.lgblock == 0) { |
| params_.lgblock = params_.quality < kMinQualityForBlockSplit ? 14 : 16; |
| if (params_.quality >= 9 && params_.lgwin > params_.lgblock) { |
| params_.lgblock = std::min(21, params_.lgwin); |
| } |
| } else { |
| params_.lgblock = std::min(kMaxInputBlockBits, |
| std::max(kMinInputBlockBits, params_.lgblock)); |
| } |
| |
| // Set maximum distance, see section 9.1. of the spec. |
| max_backward_distance_ = (1 << params_.lgwin) - 16; |
| |
| // Initialize input and literal cost ring buffers. |
| // We allocate at least lgwin + 1 bits for the ring buffer so that the newly |
| // added block fits there completely and we still get lgwin bits and at least |
| // read_block_size_bits + 1 bits because the copy tail length needs to be |
| // smaller than ringbuffer size. |
| int ringbuffer_bits = std::max(params_.lgwin + 1, params_.lgblock + 1); |
| ringbuffer_ = new RingBuffer(ringbuffer_bits, params_.lgblock); |
| |
| commands_ = 0; |
| cmd_alloc_size_ = 0; |
| |
| // Initialize last byte with stream header. |
| if (params_.lgwin == 16) { |
| last_byte_ = 0; |
| last_byte_bits_ = 1; |
| } else if (params_.lgwin == 17) { |
| last_byte_ = 1; |
| last_byte_bits_ = 7; |
| } else if (params_.lgwin > 17) { |
| last_byte_ = ((params_.lgwin - 17) << 1) | 1; |
| last_byte_bits_ = 4; |
| } else { |
| last_byte_ = ((params_.lgwin - 8) << 4) | 1; |
| last_byte_bits_ = 7; |
| } |
| |
| // Initialize distance cache. |
| dist_cache_[0] = 4; |
| dist_cache_[1] = 11; |
| dist_cache_[2] = 15; |
| dist_cache_[3] = 16; |
| // Save the state of the distance cache in case we need to restore it for |
| // emitting an uncompressed block. |
| memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_)); |
| |
| // Initialize hashers. |
| hash_type_ = std::min(9, params_.quality); |
| hashers_->Init(hash_type_); |
| } |
| |
| BrotliCompressor::~BrotliCompressor() { |
| delete[] storage_; |
| free(commands_); |
| delete ringbuffer_; |
| delete hashers_; |
| } |
| |
| void BrotliCompressor::CopyInputToRingBuffer(const size_t input_size, |
| const uint8_t* input_buffer) { |
| ringbuffer_->Write(input_buffer, input_size); |
| input_pos_ += input_size; |
| |
| // TL;DR: If needed, initialize 7 more bytes in the ring buffer to make the |
| // hashing not depend on uninitialized data. This makes compression |
| // deterministic and it prevents uninitialized memory warnings in Valgrind. |
| // Even without erasing, the output would be valid (but nondeterministic). |
| // |
| // Background information: The compressor stores short (at most 8 bytes) |
| // substrings of the input already read in a hash table, and detects |
| // repetitions by looking up such substrings in the hash table. If it |
| // can find a substring, it checks whether the substring is really there |
| // in the ring buffer (or it's just a hash collision). Should the hash |
| // table become corrupt, this check makes sure that the output is |
| // still valid, albeit the compression ratio would be bad. |
| // |
| // The compressor populates the hash table from the ring buffer as it's |
| // reading new bytes from the input. However, at the last few indexes of |
| // the ring buffer, there are not enough bytes to build full-length |
| // substrings from. Since the hash table always contains full-length |
| // substrings, we erase with dummy 0s here to make sure that those |
| // substrings will contain 0s at the end instead of uninitialized |
| // data. |
| // |
| // Please note that erasing is not necessary (because the |
| // memory region is already initialized since he ring buffer |
| // has a `tail' that holds a copy of the beginning,) so we |
| // skip erasing if we have already gone around at least once in |
| // the ring buffer. |
| size_t pos = ringbuffer_->position(); |
| // Only clear during the first round of ringbuffer writes. On |
| // subsequent rounds data in the ringbuffer would be affected. |
| if (pos <= ringbuffer_->mask()) { |
| // This is the first time when the ring buffer is being written. |
| // We clear 7 bytes just after the bytes that have been copied from |
| // the input buffer. |
| // |
| // The ringbuffer has a "tail" that holds a copy of the beginning, |
| // but only once the ring buffer has been fully written once, i.e., |
| // pos <= mask. For the first time, we need to write values |
| // in this tail (where index may be larger than mask), so that |
| // we have exactly defined behavior and don't read un-initialized |
| // memory. Due to performance reasons, hashing reads data using a |
| // LOAD64, which can go 7 bytes beyond the bytes written in the |
| // ringbuffer. |
| memset(ringbuffer_->start() + pos, 0, 7); |
| } |
| } |
| |
| void BrotliCompressor::BrotliSetCustomDictionary( |
| const size_t size, const uint8_t* dict) { |
| CopyInputToRingBuffer(size, dict); |
| last_flush_pos_ = size; |
| last_processed_pos_ = size; |
| if (size > 0) { |
| prev_byte_ = dict[size - 1]; |
| } |
| if (size > 1) { |
| prev_byte2_ = dict[size - 2]; |
| } |
| hashers_->PrependCustomDictionary(hash_type_, size, dict); |
| } |
| |
| bool BrotliCompressor::WriteBrotliData(const bool is_last, |
| const bool force_flush, |
| size_t* out_size, |
| uint8_t** output) { |
| const size_t bytes = input_pos_ - last_processed_pos_; |
| const uint8_t* data = ringbuffer_->start(); |
| const size_t mask = ringbuffer_->mask(); |
| |
| if (bytes > input_block_size()) { |
| return false; |
| } |
| |
| // Theoretical max number of commands is 1 per 2 bytes. |
| size_t newsize = num_commands_ + bytes / 2 + 1; |
| if (newsize > cmd_alloc_size_) { |
| // Reserve a bit more memory to allow merging with a next block |
| // without realloc: that would impact speed. |
| newsize += bytes / 4; |
| cmd_alloc_size_ = newsize; |
| commands_ = |
| static_cast<Command*>(realloc(commands_, sizeof(Command) * newsize)); |
| } |
| |
| CreateBackwardReferences(bytes, last_processed_pos_, data, mask, |
| max_backward_distance_, |
| params_.quality, |
| hashers_, |
| hash_type_, |
| dist_cache_, |
| &last_insert_len_, |
| &commands_[num_commands_], |
| &num_commands_, |
| &num_literals_); |
| |
| int max_length = std::min<int>(mask + 1, 1 << kMaxInputBlockBits); |
| if (!is_last && !force_flush && |
| (params_.quality >= kMinQualityForBlockSplit || |
| (num_literals_ + num_commands_ < kMaxNumDelayedSymbols)) && |
| input_pos_ + input_block_size() <= last_flush_pos_ + max_length) { |
| // Merge with next input block. Everything will happen later. |
| last_processed_pos_ = input_pos_; |
| *out_size = 0; |
| return true; |
| } |
| |
| // Create the last insert-only command. |
| if (last_insert_len_ > 0) { |
| brotli::Command cmd(last_insert_len_); |
| commands_[num_commands_++] = cmd; |
| num_literals_ += last_insert_len_; |
| last_insert_len_ = 0; |
| } |
| |
| return WriteMetaBlockInternal(is_last, out_size, output); |
| } |
| |
| // Decide about the context map based on the ability of the prediction |
| // ability of the previous byte UTF8-prefix on the next byte. The |
| // prediction ability is calculated as shannon entropy. Here we need |
| // shannon entropy instead of 'BitsEntropy' since the prefix will be |
| // encoded with the remaining 6 bits of the following byte, and |
| // BitsEntropy will assume that symbol to be stored alone using Huffman |
| // coding. |
| void ChooseContextMap(int quality, |
| int* bigram_histo, |
| int* num_literal_contexts, |
| const int** literal_context_map) { |
| int monogram_histo[3] = { 0 }; |
| int two_prefix_histo[6] = { 0 }; |
| int total = 0; |
| for (int i = 0; i < 9; ++i) { |
| total += bigram_histo[i]; |
| monogram_histo[i % 3] += bigram_histo[i]; |
| int j = i; |
| if (j >= 6) { |
| j -= 6; |
| } |
| two_prefix_histo[j] += bigram_histo[i]; |
| } |
| int dummy; |
| double entropy1 = ShannonEntropy(monogram_histo, 3, &dummy); |
| double entropy2 = (ShannonEntropy(two_prefix_histo, 3, &dummy) + |
| ShannonEntropy(two_prefix_histo + 3, 3, &dummy)); |
| double entropy3 = 0; |
| for (int k = 0; k < 3; ++k) { |
| entropy3 += ShannonEntropy(bigram_histo + 3 * k, 3, &dummy); |
| } |
| |
| assert(total != 0); |
| entropy1 *= (1.0 / total); |
| entropy2 *= (1.0 / total); |
| entropy3 *= (1.0 / total); |
| |
| static const int kStaticContextMapContinuation[64] = { |
| 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| static const int kStaticContextMapSimpleUTF8[64] = { |
| 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| if (quality < 7) { |
| // 3 context models is a bit slower, don't use it at lower qualities. |
| entropy3 = entropy1 * 10; |
| } |
| // If expected savings by symbol are less than 0.2 bits, skip the |
| // context modeling -- in exchange for faster decoding speed. |
| if (entropy1 - entropy2 < 0.2 && |
| entropy1 - entropy3 < 0.2) { |
| *num_literal_contexts = 1; |
| } else if (entropy2 - entropy3 < 0.02) { |
| *num_literal_contexts = 2; |
| *literal_context_map = kStaticContextMapSimpleUTF8; |
| } else { |
| *num_literal_contexts = 3; |
| *literal_context_map = kStaticContextMapContinuation; |
| } |
| } |
| |
| void DecideOverLiteralContextModeling(const uint8_t* input, |
| size_t start_pos, |
| size_t length, |
| size_t mask, |
| int quality, |
| int* literal_context_mode, |
| int* num_literal_contexts, |
| const int** literal_context_map) { |
| if (quality < kMinQualityForContextModeling || length < 64) { |
| return; |
| } |
| // Gather bigram data of the UTF8 byte prefixes. To make the analysis of |
| // UTF8 data faster we only examine 64 byte long strides at every 4kB |
| // intervals. |
| const size_t end_pos = start_pos + length; |
| int bigram_prefix_histo[9] = { 0 }; |
| for (; start_pos + 64 <= end_pos; start_pos += 4096) { |
| static const int lut[4] = { 0, 0, 1, 2 }; |
| const size_t stride_end_pos = start_pos + 64; |
| int prev = lut[input[start_pos & mask] >> 6] * 3; |
| for (size_t pos = start_pos + 1; pos < stride_end_pos; ++pos) { |
| const uint8_t literal = input[pos & mask]; |
| ++bigram_prefix_histo[prev + lut[literal >> 6]]; |
| prev = lut[literal >> 6] * 3; |
| } |
| } |
| *literal_context_mode = CONTEXT_UTF8; |
| ChooseContextMap(quality, &bigram_prefix_histo[0], num_literal_contexts, |
| literal_context_map); |
| } |
| |
| bool BrotliCompressor::WriteMetaBlockInternal(const bool is_last, |
| size_t* out_size, |
| uint8_t** output) { |
| const size_t bytes = input_pos_ - last_flush_pos_; |
| const uint8_t* data = ringbuffer_->start(); |
| const size_t mask = ringbuffer_->mask(); |
| const size_t max_out_size = 2 * bytes + 500; |
| uint8_t* storage = GetBrotliStorage(max_out_size); |
| storage[0] = last_byte_; |
| int storage_ix = last_byte_bits_; |
| |
| bool uncompressed = false; |
| if (num_commands_ < (bytes >> 8) + 2) { |
| if (num_literals_ > 0.99 * bytes) { |
| int literal_histo[256] = { 0 }; |
| static const int kSampleRate = 13; |
| static const double kMinEntropy = 7.92; |
| const double bit_cost_threshold = bytes * kMinEntropy / kSampleRate; |
| for (int i = last_flush_pos_; i < input_pos_; i += kSampleRate) { |
| ++literal_histo[data[i & mask]]; |
| } |
| if (BitsEntropy(literal_histo, 256) > bit_cost_threshold) { |
| uncompressed = true; |
| } |
| } |
| } |
| |
| if (bytes == 0) { |
| if (!StoreCompressedMetaBlockHeader(is_last, 0, &storage_ix, &storage[0])) { |
| return false; |
| } |
| storage_ix = (storage_ix + 7) & ~7; |
| } else if (uncompressed) { |
| // Restore the distance cache, as its last update by |
| // CreateBackwardReferences is now unused. |
| memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_)); |
| if (!StoreUncompressedMetaBlock(is_last, |
| data, last_flush_pos_, mask, bytes, |
| &storage_ix, |
| &storage[0])) { |
| return false; |
| } |
| } else { |
| int num_direct_distance_codes = 0; |
| int distance_postfix_bits = 0; |
| if (params_.quality > 9 && params_.mode == BrotliParams::MODE_FONT) { |
| num_direct_distance_codes = 12; |
| distance_postfix_bits = 1; |
| RecomputeDistancePrefixes(commands_, |
| num_commands_, |
| num_direct_distance_codes, |
| distance_postfix_bits); |
| } |
| if (params_.quality < kMinQualityForBlockSplit) { |
| if (!StoreMetaBlockTrivial(data, last_flush_pos_, bytes, mask, is_last, |
| commands_, num_commands_, |
| &storage_ix, |
| &storage[0])) { |
| return false; |
| } |
| } else { |
| MetaBlockSplit mb; |
| int literal_context_mode = CONTEXT_UTF8; |
| if (params_.quality <= 9) { |
| int num_literal_contexts = 1; |
| const int* literal_context_map = NULL; |
| DecideOverLiteralContextModeling(data, last_flush_pos_, bytes, mask, |
| params_.quality, |
| &literal_context_mode, |
| &num_literal_contexts, |
| &literal_context_map); |
| if (literal_context_map == NULL) { |
| BuildMetaBlockGreedy(data, last_flush_pos_, mask, |
| commands_, num_commands_, |
| &mb); |
| } else { |
| BuildMetaBlockGreedyWithContexts(data, last_flush_pos_, mask, |
| prev_byte_, prev_byte2_, |
| literal_context_mode, |
| num_literal_contexts, |
| literal_context_map, |
| commands_, num_commands_, |
| &mb); |
| } |
| } else { |
| if (!IsMostlyUTF8(data, last_flush_pos_, mask, bytes, kMinUTF8Ratio)) { |
| literal_context_mode = CONTEXT_SIGNED; |
| } |
| BuildMetaBlock(data, last_flush_pos_, mask, |
| prev_byte_, prev_byte2_, |
| commands_, num_commands_, |
| literal_context_mode, |
| &mb); |
| } |
| if (params_.quality >= kMinQualityForOptimizeHistograms) { |
| OptimizeHistograms(num_direct_distance_codes, |
| distance_postfix_bits, |
| &mb); |
| } |
| if (!StoreMetaBlock(data, last_flush_pos_, bytes, mask, |
| prev_byte_, prev_byte2_, |
| is_last, |
| num_direct_distance_codes, |
| distance_postfix_bits, |
| literal_context_mode, |
| commands_, num_commands_, |
| mb, |
| &storage_ix, |
| &storage[0])) { |
| return false; |
| } |
| } |
| if (bytes + 4 < (storage_ix >> 3)) { |
| // Restore the distance cache and last byte. |
| memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_)); |
| storage[0] = last_byte_; |
| storage_ix = last_byte_bits_; |
| if (!StoreUncompressedMetaBlock(is_last, data, last_flush_pos_, mask, |
| bytes, &storage_ix, &storage[0])) { |
| return false; |
| } |
| } |
| } |
| last_byte_ = storage[storage_ix >> 3]; |
| last_byte_bits_ = storage_ix & 7; |
| last_flush_pos_ = input_pos_; |
| last_processed_pos_ = input_pos_; |
| prev_byte_ = data[(last_flush_pos_ - 1) & mask]; |
| prev_byte2_ = data[(last_flush_pos_ - 2) & mask]; |
| num_commands_ = 0; |
| num_literals_ = 0; |
| // Save the state of the distance cache in case we need to restore it for |
| // emitting an uncompressed block. |
| memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_)); |
| *output = &storage[0]; |
| *out_size = storage_ix >> 3; |
| return true; |
| } |
| |
| bool BrotliCompressor::WriteMetaBlock(const size_t input_size, |
| const uint8_t* input_buffer, |
| const bool is_last, |
| size_t* encoded_size, |
| uint8_t* encoded_buffer) { |
| CopyInputToRingBuffer(input_size, input_buffer); |
| size_t out_size = 0; |
| uint8_t* output; |
| if (!WriteBrotliData(is_last, /* force_flush = */ true, &out_size, &output) || |
| out_size > *encoded_size) { |
| return false; |
| } |
| if (out_size > 0) { |
| memcpy(encoded_buffer, output, out_size); |
| } |
| *encoded_size = out_size; |
| return true; |
| } |
| |
| bool BrotliCompressor::WriteMetadata(const size_t input_size, |
| const uint8_t* input_buffer, |
| const bool is_last, |
| size_t* encoded_size, |
| uint8_t* encoded_buffer) { |
| if (input_size > (1 << 24) || input_size + 6 > *encoded_size) { |
| return false; |
| } |
| int storage_ix = last_byte_bits_; |
| encoded_buffer[0] = last_byte_; |
| WriteBits(1, 0, &storage_ix, encoded_buffer); |
| WriteBits(2, 3, &storage_ix, encoded_buffer); |
| WriteBits(1, 0, &storage_ix, encoded_buffer); |
| if (input_size == 0) { |
| WriteBits(2, 0, &storage_ix, encoded_buffer); |
| *encoded_size = (storage_ix + 7) >> 3; |
| } else { |
| size_t nbits = Log2Floor(input_size - 1) + 1; |
| size_t nbytes = (nbits + 7) / 8; |
| WriteBits(2, nbytes, &storage_ix, encoded_buffer); |
| WriteBits(8 * nbytes, input_size - 1, &storage_ix, encoded_buffer); |
| size_t hdr_size = (storage_ix + 7) >> 3; |
| memcpy(&encoded_buffer[hdr_size], input_buffer, input_size); |
| *encoded_size = hdr_size + input_size; |
| } |
| if (is_last) { |
| encoded_buffer[(*encoded_size)++] = 3; |
| } |
| last_byte_ = 0; |
| last_byte_bits_ = 0; |
| return true; |
| } |
| |
| bool BrotliCompressor::FinishStream( |
| size_t* encoded_size, uint8_t* encoded_buffer) { |
| return WriteMetaBlock(0, NULL, true, encoded_size, encoded_buffer); |
| } |
| |
| int BrotliCompressBuffer(BrotliParams params, |
| size_t input_size, |
| const uint8_t* input_buffer, |
| size_t* encoded_size, |
| uint8_t* encoded_buffer) { |
| if (*encoded_size == 0) { |
| // Output buffer needs at least one byte. |
| return 0; |
| } |
| BrotliMemIn in(input_buffer, input_size); |
| BrotliMemOut out(encoded_buffer, *encoded_size); |
| if (!BrotliCompress(params, &in, &out)) { |
| return 0; |
| } |
| *encoded_size = out.position(); |
| return 1; |
| } |
| |
| size_t CopyOneBlockToRingBuffer(BrotliIn* r, BrotliCompressor* compressor) { |
| const size_t block_size = compressor->input_block_size(); |
| size_t bytes_read = 0; |
| const uint8_t* data = reinterpret_cast<const uint8_t*>( |
| r->Read(block_size, &bytes_read)); |
| if (data == NULL) { |
| return 0; |
| } |
| compressor->CopyInputToRingBuffer(bytes_read, data); |
| |
| // Read more bytes until block_size is filled or an EOF (data == NULL) is |
| // received. This is useful to get deterministic compressed output for the |
| // same input no matter how r->Read splits the input to chunks. |
| for (size_t remaining = block_size - bytes_read; remaining > 0; ) { |
| size_t more_bytes_read = 0; |
| data = reinterpret_cast<const uint8_t*>( |
| r->Read(remaining, &more_bytes_read)); |
| if (data == NULL) { |
| break; |
| } |
| compressor->CopyInputToRingBuffer(more_bytes_read, data); |
| bytes_read += more_bytes_read; |
| remaining -= more_bytes_read; |
| } |
| return bytes_read; |
| } |
| |
| bool BrotliInIsFinished(BrotliIn* r) { |
| size_t read_bytes; |
| return r->Read(0, &read_bytes) == NULL; |
| } |
| |
| int BrotliCompress(BrotliParams params, BrotliIn* in, BrotliOut* out) { |
| return BrotliCompressWithCustomDictionary(0, 0, params, in, out); |
| } |
| |
| int BrotliCompressWithCustomDictionary(size_t dictsize, const uint8_t* dict, |
| BrotliParams params, |
| BrotliIn* in, BrotliOut* out) { |
| size_t in_bytes = 0; |
| size_t out_bytes = 0; |
| uint8_t* output; |
| bool final_block = false; |
| BrotliCompressor compressor(params); |
| if (dictsize != 0) compressor.BrotliSetCustomDictionary(dictsize, dict); |
| while (!final_block) { |
| in_bytes = CopyOneBlockToRingBuffer(in, &compressor); |
| final_block = in_bytes == 0 || BrotliInIsFinished(in); |
| out_bytes = 0; |
| if (!compressor.WriteBrotliData(final_block, |
| /* force_flush = */ false, |
| &out_bytes, &output)) { |
| return false; |
| } |
| if (out_bytes > 0 && !out->Write(output, out_bytes)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| } // namespace brotli |