| // Copyright 2010 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // Entropy encoding (Huffman) utilities. |
| |
| #include "./entropy_encode.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <vector> |
| #include <cstdlib> |
| |
| #include "./histogram.h" |
| #include "./types.h" |
| |
| namespace brotli { |
| |
| namespace { |
| |
| struct HuffmanTree { |
| HuffmanTree(int count, int16_t left, int16_t right) |
| : total_count_(count), |
| index_left_(left), |
| index_right_or_value_(right) { |
| } |
| int total_count_; |
| int16_t index_left_; |
| int16_t index_right_or_value_; |
| }; |
| |
| // Sort the root nodes, least popular first. |
| bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) { |
| return v0.total_count_ < v1.total_count_; |
| } |
| |
| void SetDepth(const HuffmanTree &p, |
| HuffmanTree *pool, |
| uint8_t *depth, |
| int level) { |
| if (p.index_left_ >= 0) { |
| ++level; |
| SetDepth(pool[p.index_left_], pool, depth, level); |
| SetDepth(pool[p.index_right_or_value_], pool, depth, level); |
| } else { |
| depth[p.index_right_or_value_] = level; |
| } |
| } |
| |
| } // namespace |
| |
| // This function will create a Huffman tree. |
| // |
| // The catch here is that the tree cannot be arbitrarily deep. |
| // Brotli specifies a maximum depth of 15 bits for "code trees" |
| // and 7 bits for "code length code trees." |
| // |
| // count_limit is the value that is to be faked as the minimum value |
| // and this minimum value is raised until the tree matches the |
| // maximum length requirement. |
| // |
| // This algorithm is not of excellent performance for very long data blocks, |
| // especially when population counts are longer than 2**tree_limit, but |
| // we are not planning to use this with extremely long blocks. |
| // |
| // See http://en.wikipedia.org/wiki/Huffman_coding |
| void CreateHuffmanTree(const int *data, |
| const int length, |
| const int tree_limit, |
| uint8_t *depth) { |
| // For block sizes below 64 kB, we never need to do a second iteration |
| // of this loop. Probably all of our block sizes will be smaller than |
| // that, so this loop is mostly of academic interest. If we actually |
| // would need this, we would be better off with the Katajainen algorithm. |
| for (int count_limit = 1; ; count_limit *= 2) { |
| std::vector<HuffmanTree> tree; |
| tree.reserve(2 * length + 1); |
| |
| for (int i = length - 1; i >= 0; --i) { |
| if (data[i]) { |
| const int count = std::max(data[i], count_limit); |
| tree.push_back(HuffmanTree(count, -1, i)); |
| } |
| } |
| |
| const int n = tree.size(); |
| if (n == 1) { |
| depth[tree[0].index_right_or_value_] = 1; // Only one element. |
| break; |
| } |
| |
| std::stable_sort(tree.begin(), tree.end(), SortHuffmanTree); |
| |
| // The nodes are: |
| // [0, n): the sorted leaf nodes that we start with. |
| // [n]: we add a sentinel here. |
| // [n + 1, 2n): new parent nodes are added here, starting from |
| // (n+1). These are naturally in ascending order. |
| // [2n]: we add a sentinel at the end as well. |
| // There will be (2n+1) elements at the end. |
| const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1); |
| tree.push_back(sentinel); |
| tree.push_back(sentinel); |
| |
| int i = 0; // Points to the next leaf node. |
| int j = n + 1; // Points to the next non-leaf node. |
| for (int k = n - 1; k > 0; --k) { |
| int left, right; |
| if (tree[i].total_count_ <= tree[j].total_count_) { |
| left = i; |
| ++i; |
| } else { |
| left = j; |
| ++j; |
| } |
| if (tree[i].total_count_ <= tree[j].total_count_) { |
| right = i; |
| ++i; |
| } else { |
| right = j; |
| ++j; |
| } |
| |
| // The sentinel node becomes the parent node. |
| int j_end = tree.size() - 1; |
| tree[j_end].total_count_ = |
| tree[left].total_count_ + tree[right].total_count_; |
| tree[j_end].index_left_ = left; |
| tree[j_end].index_right_or_value_ = right; |
| |
| // Add back the last sentinel node. |
| tree.push_back(sentinel); |
| } |
| SetDepth(tree[2 * n - 1], &tree[0], depth, 0); |
| |
| // We need to pack the Huffman tree in tree_limit bits. |
| // If this was not successful, add fake entities to the lowest values |
| // and retry. |
| if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) { |
| break; |
| } |
| } |
| } |
| |
| void Reverse(std::vector<uint8_t>* v, int start, int end) { |
| --end; |
| while (start < end) { |
| int tmp = (*v)[start]; |
| (*v)[start] = (*v)[end]; |
| (*v)[end] = tmp; |
| ++start; |
| --end; |
| } |
| } |
| |
| void WriteHuffmanTreeRepetitions( |
| const int previous_value, |
| const int value, |
| int repetitions, |
| std::vector<uint8_t> *tree, |
| std::vector<uint8_t> *extra_bits_data) { |
| if (previous_value != value) { |
| tree->push_back(value); |
| extra_bits_data->push_back(0); |
| --repetitions; |
| } |
| if (repetitions == 7) { |
| tree->push_back(value); |
| extra_bits_data->push_back(0); |
| --repetitions; |
| } |
| if (repetitions < 3) { |
| for (int i = 0; i < repetitions; ++i) { |
| tree->push_back(value); |
| extra_bits_data->push_back(0); |
| } |
| } else { |
| repetitions -= 3; |
| int start = tree->size(); |
| while (repetitions >= 0) { |
| tree->push_back(16); |
| extra_bits_data->push_back(repetitions & 0x3); |
| repetitions >>= 2; |
| --repetitions; |
| } |
| Reverse(tree, start, tree->size()); |
| Reverse(extra_bits_data, start, tree->size()); |
| } |
| } |
| |
| void WriteHuffmanTreeRepetitionsZeros( |
| int repetitions, |
| std::vector<uint8_t> *tree, |
| std::vector<uint8_t> *extra_bits_data) { |
| if (repetitions == 11) { |
| tree->push_back(0); |
| extra_bits_data->push_back(0); |
| --repetitions; |
| } |
| if (repetitions < 3) { |
| for (int i = 0; i < repetitions; ++i) { |
| tree->push_back(0); |
| extra_bits_data->push_back(0); |
| } |
| } else { |
| repetitions -= 3; |
| int start = tree->size(); |
| while (repetitions >= 0) { |
| tree->push_back(17); |
| extra_bits_data->push_back(repetitions & 0x7); |
| repetitions >>= 3; |
| --repetitions; |
| } |
| Reverse(tree, start, tree->size()); |
| Reverse(extra_bits_data, start, tree->size()); |
| } |
| } |
| |
| int OptimizeHuffmanCountsForRle(int length, int* counts) { |
| int nonzero_count = 0; |
| int stride; |
| int limit; |
| int sum; |
| uint8_t* good_for_rle; |
| // Let's make the Huffman code more compatible with rle encoding. |
| int i; |
| for (i = 0; i < length; i++) { |
| if (counts[i]) { |
| ++nonzero_count; |
| } |
| } |
| if (nonzero_count < 16) { |
| return 1; |
| } |
| for (; length >= 0; --length) { |
| if (length == 0) { |
| return 1; // All zeros. |
| } |
| if (counts[length - 1] != 0) { |
| // Now counts[0..length - 1] does not have trailing zeros. |
| break; |
| } |
| } |
| { |
| int nonzeros = 0; |
| int smallest_nonzero = 1 << 30; |
| for (i = 0; i < length; ++i) { |
| if (counts[i] != 0) { |
| ++nonzeros; |
| if (smallest_nonzero > counts[i]) { |
| smallest_nonzero = counts[i]; |
| } |
| } |
| } |
| if (nonzeros < 5) { |
| // Small histogram will model it well. |
| return 1; |
| } |
| int zeros = length - nonzeros; |
| if (smallest_nonzero < 4) { |
| if (zeros < 6) { |
| for (i = 1; i < length - 1; ++i) { |
| if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) { |
| counts[i] = 1; |
| } |
| } |
| } |
| } |
| if (nonzeros < 28) { |
| return 1; |
| } |
| } |
| // 2) Let's mark all population counts that already can be encoded |
| // with an rle code. |
| good_for_rle = (uint8_t*)calloc(length, 1); |
| if (good_for_rle == NULL) { |
| return 0; |
| } |
| { |
| // Let's not spoil any of the existing good rle codes. |
| // Mark any seq of 0's that is longer as 5 as a good_for_rle. |
| // Mark any seq of non-0's that is longer as 7 as a good_for_rle. |
| int symbol = counts[0]; |
| int stride = 0; |
| for (i = 0; i < length + 1; ++i) { |
| if (i == length || counts[i] != symbol) { |
| if ((symbol == 0 && stride >= 5) || |
| (symbol != 0 && stride >= 7)) { |
| int k; |
| for (k = 0; k < stride; ++k) { |
| good_for_rle[i - k - 1] = 1; |
| } |
| } |
| stride = 1; |
| if (i != length) { |
| symbol = counts[i]; |
| } |
| } else { |
| ++stride; |
| } |
| } |
| } |
| // 3) Let's replace those population counts that lead to more rle codes. |
| // Math here is in 24.8 fixed point representation. |
| const int streak_limit = 1240; |
| stride = 0; |
| limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420; |
| sum = 0; |
| for (i = 0; i < length + 1; ++i) { |
| if (i == length || good_for_rle[i] || |
| (i != 0 && good_for_rle[i - 1]) || |
| abs(256 * counts[i] - limit) >= streak_limit) { |
| if (stride >= 4 || (stride >= 3 && sum == 0)) { |
| int k; |
| // The stride must end, collapse what we have, if we have enough (4). |
| int count = (sum + stride / 2) / stride; |
| if (count < 1) { |
| count = 1; |
| } |
| if (sum == 0) { |
| // Don't make an all zeros stride to be upgraded to ones. |
| count = 0; |
| } |
| for (k = 0; k < stride; ++k) { |
| // We don't want to change value at counts[i], |
| // that is already belonging to the next stride. Thus - 1. |
| counts[i - k - 1] = count; |
| } |
| } |
| stride = 0; |
| sum = 0; |
| if (i < length - 2) { |
| // All interesting strides have a count of at least 4, |
| // at least when non-zeros. |
| limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420; |
| } else if (i < length) { |
| limit = 256 * counts[i]; |
| } else { |
| limit = 0; |
| } |
| } |
| ++stride; |
| if (i != length) { |
| sum += counts[i]; |
| if (stride >= 4) { |
| limit = (256 * sum + stride / 2) / stride; |
| } |
| if (stride == 4) { |
| limit += 120; |
| } |
| } |
| } |
| free(good_for_rle); |
| return 1; |
| } |
| |
| static void DecideOverRleUse(const uint8_t* depth, const int length, |
| bool *use_rle_for_non_zero, |
| bool *use_rle_for_zero) { |
| int total_reps_zero = 0; |
| int total_reps_non_zero = 0; |
| int count_reps_zero = 0; |
| int count_reps_non_zero = 0; |
| for (uint32_t i = 0; i < length;) { |
| const int value = depth[i]; |
| int reps = 1; |
| for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) { |
| ++reps; |
| } |
| if (reps >= 3 && value == 0) { |
| total_reps_zero += reps; |
| ++count_reps_zero; |
| } |
| if (reps >= 4 && value != 0) { |
| total_reps_non_zero += reps; |
| ++count_reps_non_zero; |
| } |
| i += reps; |
| } |
| total_reps_non_zero -= count_reps_non_zero * 2; |
| total_reps_zero -= count_reps_zero * 2; |
| *use_rle_for_non_zero = total_reps_non_zero > 2; |
| *use_rle_for_zero = total_reps_zero > 2; |
| } |
| |
| void WriteHuffmanTree(const uint8_t* depth, |
| uint32_t length, |
| std::vector<uint8_t> *tree, |
| std::vector<uint8_t> *extra_bits_data) { |
| int previous_value = 8; |
| |
| // Throw away trailing zeros. |
| int new_length = length; |
| for (int i = 0; i < length; ++i) { |
| if (depth[length - i - 1] == 0) { |
| --new_length; |
| } else { |
| break; |
| } |
| } |
| |
| // First gather statistics on if it is a good idea to do rle. |
| bool use_rle_for_non_zero = false; |
| bool use_rle_for_zero = false; |
| if (length > 50) { |
| // Find rle coding for longer codes. |
| // Shorter codes seem not to benefit from rle. |
| DecideOverRleUse(depth, new_length, |
| &use_rle_for_non_zero, &use_rle_for_zero); |
| } |
| |
| // Actual rle coding. |
| for (uint32_t i = 0; i < new_length;) { |
| const int value = depth[i]; |
| int reps = 1; |
| if ((value != 0 && use_rle_for_non_zero) || |
| (value == 0 && use_rle_for_zero)) { |
| for (uint32_t k = i + 1; k < new_length && depth[k] == value; ++k) { |
| ++reps; |
| } |
| } |
| if (value == 0) { |
| WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data); |
| } else { |
| WriteHuffmanTreeRepetitions(previous_value, |
| value, reps, tree, extra_bits_data); |
| previous_value = value; |
| } |
| i += reps; |
| } |
| } |
| |
| namespace { |
| |
| uint16_t ReverseBits(int num_bits, uint16_t bits) { |
| static const size_t kLut[16] = { // Pre-reversed 4-bit values. |
| 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
| }; |
| size_t retval = kLut[bits & 0xf]; |
| for (int i = 4; i < num_bits; i += 4) { |
| retval <<= 4; |
| bits >>= 4; |
| retval |= kLut[bits & 0xf]; |
| } |
| retval >>= (-num_bits & 0x3); |
| return retval; |
| } |
| |
| } // namespace |
| |
| void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) { |
| // In Brotli, all bit depths are [1..15] |
| // 0 bit depth means that the symbol does not exist. |
| const int kMaxBits = 16; // 0..15 are values for bits |
| uint16_t bl_count[kMaxBits] = { 0 }; |
| { |
| for (int i = 0; i < len; ++i) { |
| ++bl_count[depth[i]]; |
| } |
| bl_count[0] = 0; |
| } |
| uint16_t next_code[kMaxBits]; |
| next_code[0] = 0; |
| { |
| int code = 0; |
| for (int bits = 1; bits < kMaxBits; ++bits) { |
| code = (code + bl_count[bits - 1]) << 1; |
| next_code[bits] = code; |
| } |
| } |
| for (int i = 0; i < len; ++i) { |
| if (depth[i]) { |
| bits[i] = ReverseBits(depth[i], next_code[depth[i]]++); |
| } |
| } |
| } |
| |
| } // namespace brotli |