blob: 7fb77fd522f0420cc3f8994777bed6a0f420afeb [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Implementation of Brotli compressor.
#include "./encode.h"
#include <algorithm>
#include <limits>
#include "./backward_references.h"
#include "./bit_cost.h"
#include "./block_splitter.h"
#include "./brotli_bit_stream.h"
#include "./cluster.h"
#include "./context.h"
#include "./transform.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./hash.h"
#include "./histogram.h"
#include "./literal_cost.h"
#include "./prefix.h"
#include "./write_bits.h"
namespace brotli {
static const int kWindowBits = 22;
// To make decoding faster, we allow the decoder to write 16 bytes ahead in
// its ringbuffer, therefore the encoder has to decrease max distance by this
// amount.
static const int kDecoderRingBufferWriteAheadSlack = 16;
static const int kMaxBackwardDistance =
(1 << kWindowBits) - kDecoderRingBufferWriteAheadSlack;
static const int kMetaBlockSizeBits = 21;
static const int kRingBufferBits = 23;
static const int kRingBufferMask = (1 << kRingBufferBits) - 1;
template<int kSize>
double Entropy(const std::vector<Histogram<kSize> >& histograms) {
double retval = 0;
for (int i = 0; i < histograms.size(); ++i) {
retval += histograms[i].EntropyBitCost();
}
return retval;
}
template<int kSize>
double TotalBitCost(const std::vector<Histogram<kSize> >& histograms) {
double retval = 0;
for (int i = 0; i < histograms.size(); ++i) {
retval += PopulationCost(histograms[i]);
}
return retval;
}
int ParseAsUTF8(int* symbol, const uint8_t* input, int size) {
// ASCII
if ((input[0] & 0x80) == 0) {
*symbol = input[0];
if (*symbol > 0) {
return 1;
}
}
// 2-byte UTF8
if (size > 1 &&
(input[0] & 0xe0) == 0xc0 &&
(input[1] & 0xc0) == 0x80) {
*symbol = (((input[0] & 0x1f) << 6) |
(input[1] & 0x3f));
if (*symbol > 0x7f) {
return 2;
}
}
// 3-byte UFT8
if (size > 2 &&
(input[0] & 0xf0) == 0xe0 &&
(input[1] & 0xc0) == 0x80 &&
(input[2] & 0xc0) == 0x80) {
*symbol = (((input[0] & 0x0f) << 12) |
((input[1] & 0x3f) << 6) |
(input[2] & 0x3f));
if (*symbol > 0x7ff) {
return 3;
}
}
// 4-byte UFT8
if (size > 3 &&
(input[0] & 0xf8) == 0xf0 &&
(input[1] & 0xc0) == 0x80 &&
(input[2] & 0xc0) == 0x80 &&
(input[3] & 0xc0) == 0x80) {
*symbol = (((input[0] & 0x07) << 18) |
((input[1] & 0x3f) << 12) |
((input[2] & 0x3f) << 6) |
(input[3] & 0x3f));
if (*symbol > 0xffff && *symbol <= 0x10ffff) {
return 4;
}
}
// Not UTF8, emit a special symbol above the UTF8-code space
*symbol = 0x110000 | input[0];
return 1;
}
// Returns true if at least min_fraction of the data is UTF8-encoded.
bool IsMostlyUTF8(const uint8_t* data, size_t length, double min_fraction) {
size_t size_utf8 = 0;
size_t pos = 0;
while (pos < length) {
int symbol;
int bytes_read = ParseAsUTF8(&symbol, data + pos, length - pos);
pos += bytes_read;
if (symbol < 0x110000) size_utf8 += bytes_read;
}
return size_utf8 > min_fraction * length;
}
void EncodeMetaBlockLength(size_t meta_block_size,
bool is_last,
bool is_uncompressed,
int* storage_ix, uint8_t* storage) {
WriteBits(1, is_last, storage_ix, storage);
if (is_last) {
if (meta_block_size == 0) {
WriteBits(1, 1, storage_ix, storage);
return;
}
WriteBits(1, 0, storage_ix, storage);
}
--meta_block_size;
int num_bits = Log2Floor(meta_block_size) + 1;
if (num_bits < 16) {
num_bits = 16;
}
WriteBits(2, (num_bits - 13) >> 2, storage_ix, storage);
while (num_bits > 0) {
WriteBits(4, meta_block_size & 0xf, storage_ix, storage);
meta_block_size >>= 4;
num_bits -= 4;
}
if (!is_last) {
WriteBits(1, is_uncompressed, storage_ix, storage);
}
}
template<int kSize>
void BuildAndStoreEntropyCode(const Histogram<kSize>& histogram,
const int tree_limit,
const int alphabet_size,
EntropyCode<kSize>* code,
int* storage_ix, uint8_t* storage) {
memset(code->depth_, 0, sizeof(code->depth_));
memset(code->bits_, 0, sizeof(code->bits_));
BuildAndStoreHuffmanTree(histogram.data_, alphabet_size, 9,
code->depth_, code->bits_, storage_ix, storage);
}
template<int kSize>
void BuildAndStoreEntropyCodes(
const std::vector<Histogram<kSize> >& histograms,
int alphabet_size,
std::vector<EntropyCode<kSize> >* entropy_codes,
int* storage_ix, uint8_t* storage) {
entropy_codes->resize(histograms.size());
for (int i = 0; i < histograms.size(); ++i) {
BuildAndStoreEntropyCode(histograms[i], 15, alphabet_size,
&(*entropy_codes)[i],
storage_ix, storage);
}
}
void EncodeCommand(const Command& cmd,
const EntropyCodeCommand& entropy,
int* storage_ix, uint8_t* storage) {
int code = cmd.cmd_prefix_;
WriteBits(entropy.depth_[code], entropy.bits_[code], storage_ix, storage);
int nextra = cmd.cmd_extra_ >> 48;
uint64_t extra = cmd.cmd_extra_ & 0xffffffffffffULL;
if (nextra > 0) {
WriteBits(nextra, extra, storage_ix, storage);
}
}
void EncodeCopyDistance(const Command& cmd, const EntropyCodeDistance& entropy,
int* storage_ix, uint8_t* storage) {
int code = cmd.dist_prefix_;
int extra_bits = cmd.dist_extra_ >> 24;
uint64_t extra_bits_val = cmd.dist_extra_ & 0xffffff;
WriteBits(entropy.depth_[code], entropy.bits_[code], storage_ix, storage);
if (extra_bits > 0) {
WriteBits(extra_bits, extra_bits_val, storage_ix, storage);
}
}
void RecomputeDistancePrefixes(std::vector<Command>* cmds,
int num_direct_distance_codes,
int distance_postfix_bits) {
if (num_direct_distance_codes == 0 &&
distance_postfix_bits == 0) {
return;
}
for (int i = 0; i < cmds->size(); ++i) {
Command* cmd = &(*cmds)[i];
if (cmd->copy_len_ > 0 && cmd->cmd_prefix_ >= 128) {
PrefixEncodeCopyDistance(cmd->DistanceCode(),
num_direct_distance_codes,
distance_postfix_bits,
&cmd->dist_prefix_,
&cmd->dist_extra_);
}
}
}
int IndexOf(const std::vector<int>& v, int value) {
for (int i = 0; i < v.size(); ++i) {
if (v[i] == value) return i;
}
return -1;
}
void MoveToFront(std::vector<int>* v, int index) {
int value = (*v)[index];
for (int i = index; i > 0; --i) {
(*v)[i] = (*v)[i - 1];
}
(*v)[0] = value;
}
std::vector<int> MoveToFrontTransform(const std::vector<int>& v) {
if (v.empty()) return v;
std::vector<int> mtf(*max_element(v.begin(), v.end()) + 1);
for (int i = 0; i < mtf.size(); ++i) mtf[i] = i;
std::vector<int> result(v.size());
for (int i = 0; i < v.size(); ++i) {
int index = IndexOf(mtf, v[i]);
result[i] = index;
MoveToFront(&mtf, index);
}
return result;
}
// Finds runs of zeros in v_in and replaces them with a prefix code of the run
// length plus extra bits in *v_out and *extra_bits. Non-zero values in v_in are
// shifted by *max_length_prefix. Will not create prefix codes bigger than the
// initial value of *max_run_length_prefix. The prefix code of run length L is
// simply Log2Floor(L) and the number of extra bits is the same as the prefix
// code.
void RunLengthCodeZeros(const std::vector<int>& v_in,
int* max_run_length_prefix,
std::vector<int>* v_out,
std::vector<int>* extra_bits) {
int max_reps = 0;
for (int i = 0; i < v_in.size();) {
for (; i < v_in.size() && v_in[i] != 0; ++i) ;
int reps = 0;
for (; i < v_in.size() && v_in[i] == 0; ++i) {
++reps;
}
max_reps = std::max(reps, max_reps);
}
int max_prefix = max_reps > 0 ? Log2Floor(max_reps) : 0;
*max_run_length_prefix = std::min(max_prefix, *max_run_length_prefix);
for (int i = 0; i < v_in.size();) {
if (v_in[i] != 0) {
v_out->push_back(v_in[i] + *max_run_length_prefix);
extra_bits->push_back(0);
++i;
} else {
int reps = 1;
for (uint32_t k = i + 1; k < v_in.size() && v_in[k] == 0; ++k) {
++reps;
}
i += reps;
while (reps) {
if (reps < (2 << *max_run_length_prefix)) {
int run_length_prefix = Log2Floor(reps);
v_out->push_back(run_length_prefix);
extra_bits->push_back(reps - (1 << run_length_prefix));
break;
} else {
v_out->push_back(*max_run_length_prefix);
extra_bits->push_back((1 << *max_run_length_prefix) - 1);
reps -= (2 << *max_run_length_prefix) - 1;
}
}
}
}
}
// Returns a maximum zero-run-length-prefix value such that run-length coding
// zeros in v with this maximum prefix value and then encoding the resulting
// histogram and entropy-coding v produces the least amount of bits.
int BestMaxZeroRunLengthPrefix(const std::vector<int>& v) {
int min_cost = std::numeric_limits<int>::max();
int best_max_prefix = 0;
for (int max_prefix = 0; max_prefix <= 16; ++max_prefix) {
std::vector<int> rle_symbols;
std::vector<int> extra_bits;
int max_run_length_prefix = max_prefix;
RunLengthCodeZeros(v, &max_run_length_prefix, &rle_symbols, &extra_bits);
if (max_run_length_prefix < max_prefix) break;
HistogramContextMap histogram;
for (int i = 0; i < rle_symbols.size(); ++i) {
histogram.Add(rle_symbols[i]);
}
int bit_cost = PopulationCost(histogram);
if (max_prefix > 0) {
bit_cost += 4;
}
for (int i = 1; i <= max_prefix; ++i) {
bit_cost += histogram.data_[i] * i; // extra bits
}
if (bit_cost < min_cost) {
min_cost = bit_cost;
best_max_prefix = max_prefix;
}
}
return best_max_prefix;
}
void EncodeContextMap(const std::vector<int>& context_map,
int num_clusters,
int* storage_ix, uint8_t* storage) {
StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
if (num_clusters == 1) {
return;
}
std::vector<int> transformed_symbols = MoveToFrontTransform(context_map);
std::vector<int> rle_symbols;
std::vector<int> extra_bits;
int max_run_length_prefix = BestMaxZeroRunLengthPrefix(transformed_symbols);
RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix,
&rle_symbols, &extra_bits);
HistogramContextMap symbol_histogram;
for (int i = 0; i < rle_symbols.size(); ++i) {
symbol_histogram.Add(rle_symbols[i]);
}
bool use_rle = max_run_length_prefix > 0;
WriteBits(1, use_rle, storage_ix, storage);
if (use_rle) {
WriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
}
EntropyCodeContextMap symbol_code;
BuildAndStoreEntropyCode(symbol_histogram, 15,
num_clusters + max_run_length_prefix,
&symbol_code,
storage_ix, storage);
for (int i = 0; i < rle_symbols.size(); ++i) {
WriteBits(symbol_code.depth_[rle_symbols[i]],
symbol_code.bits_[rle_symbols[i]],
storage_ix, storage);
if (rle_symbols[i] > 0 && rle_symbols[i] <= max_run_length_prefix) {
WriteBits(rle_symbols[i], extra_bits[i], storage_ix, storage);
}
}
WriteBits(1, 1, storage_ix, storage); // use move-to-front
}
void MoveAndEncode(const BlockSplitCode& code,
BlockSplitIterator* it,
int* storage_ix, uint8_t* storage) {
if (it->length_ == 0) {
++it->idx_;
it->type_ = it->split_.types_[it->idx_];
it->length_ = it->split_.lengths_[it->idx_];
StoreBlockSwitch(code, it->idx_, storage_ix, storage);
}
--it->length_;
}
struct EncodingParams {
int num_direct_distance_codes;
int distance_postfix_bits;
int literal_context_mode;
};
struct MetaBlock {
std::vector<Command> cmds;
EncodingParams params;
BlockSplit literal_split;
BlockSplit command_split;
BlockSplit distance_split;
std::vector<int> literal_context_modes;
std::vector<int> literal_context_map;
std::vector<int> distance_context_map;
std::vector<HistogramLiteral> literal_histograms;
std::vector<HistogramCommand> command_histograms;
std::vector<HistogramDistance> distance_histograms;
};
void BuildMetaBlock(const EncodingParams& params,
const std::vector<Command>& cmds,
const uint8_t* ringbuffer,
const size_t pos,
const size_t mask,
MetaBlock* mb) {
mb->cmds = cmds;
mb->params = params;
if (cmds.empty()) {
return;
}
RecomputeDistancePrefixes(&mb->cmds,
mb->params.num_direct_distance_codes,
mb->params.distance_postfix_bits);
SplitBlock(mb->cmds,
&ringbuffer[pos & mask],
&mb->literal_split,
&mb->command_split,
&mb->distance_split);
mb->literal_context_modes.resize(mb->literal_split.num_types_,
mb->params.literal_context_mode);
int num_literal_contexts =
mb->literal_split.num_types_ << kLiteralContextBits;
int num_distance_contexts =
mb->distance_split.num_types_ << kDistanceContextBits;
std::vector<HistogramLiteral> literal_histograms(num_literal_contexts);
mb->command_histograms.resize(mb->command_split.num_types_);
std::vector<HistogramDistance> distance_histograms(num_distance_contexts);
BuildHistograms(mb->cmds,
mb->literal_split,
mb->command_split,
mb->distance_split,
ringbuffer,
pos,
mask,
mb->literal_context_modes,
&literal_histograms,
&mb->command_histograms,
&distance_histograms);
// Histogram ids need to fit in one byte.
static const int kMaxNumberOfHistograms = 256;
mb->literal_histograms = literal_histograms;
ClusterHistograms(literal_histograms,
1 << kLiteralContextBits,
mb->literal_split.num_types_,
kMaxNumberOfHistograms,
&mb->literal_histograms,
&mb->literal_context_map);
mb->distance_histograms = distance_histograms;
ClusterHistograms(distance_histograms,
1 << kDistanceContextBits,
mb->distance_split.num_types_,
kMaxNumberOfHistograms,
&mb->distance_histograms,
&mb->distance_context_map);
}
size_t MetaBlockLength(const std::vector<Command>& cmds) {
size_t length = 0;
for (int i = 0; i < cmds.size(); ++i) {
const Command& cmd = cmds[i];
length += cmd.insert_len_ + cmd.copy_len_;
}
return length;
}
void StoreMetaBlock(const MetaBlock& mb,
const bool is_last,
const uint8_t* ringbuffer,
const size_t mask,
size_t* pos,
int* storage_ix, uint8_t* storage) {
size_t length = MetaBlockLength(mb.cmds);
const size_t end_pos = *pos + length;
EncodeMetaBlockLength(length, is_last, false, storage_ix, storage);
if (length == 0) {
return;
}
BlockSplitCode literal_split_code;
BlockSplitCode command_split_code;
BlockSplitCode distance_split_code;
BuildAndStoreBlockSplitCode(mb.literal_split.types_,
mb.literal_split.lengths_,
mb.literal_split.num_types_,
9, // quality
&literal_split_code,
storage_ix, storage);
BuildAndStoreBlockSplitCode(mb.command_split.types_,
mb.command_split.lengths_,
mb.command_split.num_types_,
9, // quality
&command_split_code,
storage_ix, storage);
BuildAndStoreBlockSplitCode(mb.distance_split.types_,
mb.distance_split.lengths_,
mb.distance_split.num_types_,
9, // quality
&distance_split_code,
storage_ix, storage);
WriteBits(2, mb.params.distance_postfix_bits, storage_ix, storage);
WriteBits(4,
mb.params.num_direct_distance_codes >>
mb.params.distance_postfix_bits,
storage_ix, storage);
int num_distance_codes =
kNumDistanceShortCodes + mb.params.num_direct_distance_codes +
(48 << mb.params.distance_postfix_bits);
for (int i = 0; i < mb.literal_split.num_types_; ++i) {
WriteBits(2, mb.literal_context_modes[i], storage_ix, storage);
}
EncodeContextMap(mb.literal_context_map, mb.literal_histograms.size(),
storage_ix, storage);
EncodeContextMap(mb.distance_context_map, mb.distance_histograms.size(),
storage_ix, storage);
std::vector<EntropyCodeLiteral> literal_codes;
std::vector<EntropyCodeCommand> command_codes;
std::vector<EntropyCodeDistance> distance_codes;
BuildAndStoreEntropyCodes(mb.literal_histograms, 256, &literal_codes,
storage_ix, storage);
BuildAndStoreEntropyCodes(mb.command_histograms, kNumCommandPrefixes,
&command_codes, storage_ix, storage);
BuildAndStoreEntropyCodes(mb.distance_histograms, num_distance_codes,
&distance_codes, storage_ix, storage);
BlockSplitIterator literal_it(mb.literal_split);
BlockSplitIterator command_it(mb.command_split);
BlockSplitIterator distance_it(mb.distance_split);
for (int i = 0; i < mb.cmds.size(); ++i) {
const Command& cmd = mb.cmds[i];
MoveAndEncode(command_split_code, &command_it, storage_ix, storage);
EncodeCommand(cmd, command_codes[command_it.type_], storage_ix, storage);
for (int j = 0; j < cmd.insert_len_; ++j) {
MoveAndEncode(literal_split_code, &literal_it, storage_ix, storage);
int histogram_idx = literal_it.type_;
uint8_t prev_byte = *pos > 0 ? ringbuffer[(*pos - 1) & mask] : 0;
uint8_t prev_byte2 = *pos > 1 ? ringbuffer[(*pos - 2) & mask] : 0;
int context = ((literal_it.type_ << kLiteralContextBits) +
Context(prev_byte, prev_byte2,
mb.literal_context_modes[literal_it.type_]));
histogram_idx = mb.literal_context_map[context];
int literal = ringbuffer[*pos & mask];
WriteBits(literal_codes[histogram_idx].depth_[literal],
literal_codes[histogram_idx].bits_[literal],
storage_ix, storage);
++(*pos);
}
if (*pos < end_pos && cmd.cmd_prefix_ >= 128) {
MoveAndEncode(distance_split_code, &distance_it, storage_ix, storage);
int context = (distance_it.type_ << 2) + cmd.DistanceContext();
int histogram_index = mb.distance_context_map[context];
EncodeCopyDistance(cmd, distance_codes[histogram_index],
storage_ix, storage);
}
*pos += cmd.copy_len_;
}
}
BrotliCompressor::BrotliCompressor(BrotliParams params)
: params_(params),
window_bits_(kWindowBits),
hashers_(new Hashers()),
input_pos_(0),
ringbuffer_(kRingBufferBits, kMetaBlockSizeBits),
literal_cost_(1 << kRingBufferBits),
storage_ix_(0),
storage_(new uint8_t[2 << kMetaBlockSizeBits]) {
dist_cache_[0] = 4;
dist_cache_[1] = 11;
dist_cache_[2] = 15;
dist_cache_[3] = 16;
storage_[0] = 0;
switch (params.mode) {
case BrotliParams::MODE_TEXT: hash_type_ = 8; break;
case BrotliParams::MODE_FONT: hash_type_ = 9; break;
default: break;
}
hashers_->Init(hash_type_);
if (params.mode == BrotliParams::MODE_TEXT) {
StoreDictionaryWordHashes();
}
}
BrotliCompressor::~BrotliCompressor() {
delete[] storage_;
}
StaticDictionary *BrotliCompressor::static_dictionary_ = NULL;
void BrotliCompressor::StoreDictionaryWordHashes() {
const int num_transforms = kNumTransforms;
if (static_dictionary_ == NULL) {
static_dictionary_ = new StaticDictionary;
for (int t = num_transforms - 1; t >= 0; --t) {
for (int i = kMaxDictionaryWordLength;
i >= kMinDictionaryWordLength; --i) {
const int num_words = 1 << kBrotliDictionarySizeBitsByLength[i];
for (int j = num_words - 1; j >= 0; --j) {
int word_id = t * num_words + j;
std::string word = GetTransformedDictionaryWord(i, word_id);
if (word.size() >= 4) {
static_dictionary_->Insert(word, i, word_id);
}
}
}
}
}
hashers_->SetStaticDictionary(static_dictionary_);
}
void BrotliCompressor::WriteStreamHeader() {
// Encode window size.
if (window_bits_ == 16) {
WriteBits(1, 0, &storage_ix_, storage_);
} else {
WriteBits(1, 1, &storage_ix_, storage_);
WriteBits(3, window_bits_ - 17, &storage_ix_, storage_);
}
}
void BrotliCompressor::WriteMetaBlock(const size_t input_size,
const uint8_t* input_buffer,
const bool is_last,
size_t* encoded_size,
uint8_t* encoded_buffer) {
static const double kMinUTF8Ratio = 0.75;
bool utf8_mode = false;
std::vector<Command> commands((input_size + 1) >> 1);
if (input_size > 0) {
ringbuffer_.Write(input_buffer, input_size);
utf8_mode = IsMostlyUTF8(
&ringbuffer_.start()[input_pos_ & kRingBufferMask],
input_size, kMinUTF8Ratio);
if (utf8_mode) {
EstimateBitCostsForLiteralsUTF8(input_pos_, input_size,
kRingBufferMask, kRingBufferMask,
ringbuffer_.start(), &literal_cost_[0]);
} else {
EstimateBitCostsForLiterals(input_pos_, input_size,
kRingBufferMask, kRingBufferMask,
ringbuffer_.start(), &literal_cost_[0]);
}
int last_insert_len = 0;
int num_commands = 0;
double base_min_score = 8.115;
CreateBackwardReferences(
input_size, input_pos_,
ringbuffer_.start(), kRingBufferMask,
&literal_cost_[0], kRingBufferMask,
kMaxBackwardDistance,
base_min_score,
9, // quality
hashers_.get(),
hash_type_,
dist_cache_,
&last_insert_len,
&commands[0],
&num_commands);
commands.resize(num_commands);
if (last_insert_len > 0) {
commands.push_back(Command(last_insert_len));
}
}
EncodingParams params;
params.num_direct_distance_codes =
params_.mode == BrotliParams::MODE_FONT ? 12 : 0;
params.distance_postfix_bits =
params_.mode == BrotliParams::MODE_FONT ? 1 : 0;
params.literal_context_mode = CONTEXT_SIGNED;
const int storage_ix0 = storage_ix_;
MetaBlock mb;
BuildMetaBlock(params, commands, ringbuffer_.start(), input_pos_,
kRingBufferMask, &mb);
StoreMetaBlock(mb, is_last, ringbuffer_.start(), kRingBufferMask,
&input_pos_, &storage_ix_, storage_);
size_t output_size = is_last ? ((storage_ix_ + 7) >> 3) : (storage_ix_ >> 3);
output_size -= (storage_ix0 >> 3);
if (input_size + 4 < output_size) {
storage_ix_ = storage_ix0;
storage_[storage_ix_ >> 3] &= (1 << (storage_ix_ & 7)) - 1;
EncodeMetaBlockLength(input_size, false, true, &storage_ix_, storage_);
size_t hdr_size = (storage_ix_ + 7) >> 3;
memcpy(encoded_buffer, storage_, hdr_size);
memcpy(encoded_buffer + hdr_size, input_buffer, input_size);
*encoded_size = hdr_size + input_size;
if (is_last) {
encoded_buffer[*encoded_size] = 0x3; // ISLAST, ISEMPTY
++(*encoded_size);
}
storage_ix_ = 0;
storage_[0] = 0;
} else {
memcpy(encoded_buffer, storage_, output_size);
*encoded_size = output_size;
if (is_last) {
storage_ix_ = 0;
storage_[0] = 0;
} else {
storage_ix_ -= output_size << 3;
storage_[storage_ix_ >> 3] = storage_[output_size];
}
}
}
void BrotliCompressor::FinishStream(
size_t* encoded_size, uint8_t* encoded_buffer) {
WriteMetaBlock(0, NULL, true, encoded_size, encoded_buffer);
}
int BrotliCompressBuffer(BrotliParams params,
size_t input_size,
const uint8_t* input_buffer,
size_t* encoded_size,
uint8_t* encoded_buffer) {
if (input_size == 0) {
encoded_buffer[0] = 6;
*encoded_size = 1;
return 1;
}
BrotliCompressor compressor(params);
compressor.WriteStreamHeader();
const int max_block_size = 1 << kMetaBlockSizeBits;
size_t max_output_size = *encoded_size;
const uint8_t* input_end = input_buffer + input_size;
*encoded_size = 0;
while (input_buffer < input_end) {
int block_size = max_block_size;
bool is_last = false;
if (block_size >= input_end - input_buffer) {
block_size = input_end - input_buffer;
is_last = true;
}
size_t output_size = max_output_size;
compressor.WriteMetaBlock(block_size, input_buffer, is_last,
&output_size, &encoded_buffer[*encoded_size]);
input_buffer += block_size;
*encoded_size += output_size;
max_output_size -= output_size;
}
return 1;
}
} // namespace brotli